
Image captioning

1 Introduction

Image captioning is a a term used in machine learning for the task of giving
a textual desription of an image. In this assigmnent we will see how we
can use RNNs for this task. In addition we will use a convolutional neural
network to extract features from the image. The convolutional neural net-
work will extract a feature map of size 7× 7× 1024 for a an image of shape
224 × 224 × 3. This feature extraction will be fixed throughout. We will
then learn a projection of the 1024 - dimensional feature-vectors down to
256 - dimensional vectors, mainly due to computational considerations. Fur-
thermore we will use content-based soft attention so that at each time step
we transform the 7 × 7 × 256 feature map into a 256 - dimensional vector
that is a weighted average of the 49 feature vectors. Note that when using
content-based attention, the vectors are just treated as a flat array without
considerations to their spaital positions or relaitionships. If we want to use
that kind of information we should use some spatial encoding scheme to em-
bed that information into the feature vectors themselves. The idea is that
at each time step we can attend to the location in the image that contains
the relevant information for what we are currently describing.

There are two files included:

• image_captioning.py - Python script

• image_captioning.ipynb - Ipython notebook

The notebook may be opened locally using Jupyter or in the cloud with
Google Colab (navigate to File –> Upload notebook). The notebook format
may sometimes be easier to read, and work with interactively, so give it a try
if you like. If you use Colab you may also use a GPU for free! Navigate to
’Edit –> Notebook settings“ and then choose GPU as hardware accelrator.

Note that some summaries are already being logged into TensorBoard,
so you probably want to check those out, and maybe add your own.

1

https://jupyter.org/
https://colab.research.google.com/notebooks/gpu.ipynb


2 Implementation tasks

Our baseline attention mechansim (implemented in the class UniformAt-
tention attentions equally to all parts of the image at every time step, i.e.

pt,j =
1

49
(1)

zt =
49∑
j=1

pt,jxj (2)

where zt is the context vector given as input to the RNN at timestep t.
Your task is to improve upon this by implementing two other trainable

attention schemes that estimates the attention weights pt,j in a way that we
can pay more attention to relevant parts of the image. More specifically we
shall try to learn a function f so that

αt,j = f(st, xj) (3)

pt,j =
eαt,j∑
k e

αt,k
(4)

f should thus hopefully be able to figure out how relevant location j is at
time step t. Note that the attention weights are just the softmax activation
functions applied to the logits αt,j at each time step.

2.1 Additive attention

The first method is an example of what is sometimes called additive atten-
tion. Here we replace f above with a feedforward neural network. In this
problem you will implement a very simple feedforward network, following
Neural Machine Translation by Jointly Learning to Align and Translate,
which we shall denote Bahdanau-attention. The logits αt,j are calculated as

αt,j =W tanh(Ust + V xj + b) + c (5)

for learnable matrices U, V,W and bias vectors b and c. Implement the atten-
tion mechanism given in (5) through a class, e.g. called BahdanauAttention,
that inherits from tf.keras.layers.Layer. Train a model and try the
evaluate function for different images and see if the attention weights seem
to make sense. The call method of the class should have the same signature
as that of UniformAttention, it should take two inputs:

• feature_vectors: tensor of shape [batch_size, 49, 256]

2

https://arxiv.org/abs/1409.0473


• state_output: tensor of shape [batch_size, 512]

and return

• context_vector : tensor of shape [batch_size, 256], which is the weighted
average of the feature vectors.

• attention_weights: tensor of shape [batch_size, 49], which are the
weights used in the averaging. These are returned for visualization
purposes only.

2.1.1 Solution

1 class BahdanauAttention(layers.Layer):
2 def __init__(self, units):
3 super(BahdanauAttention, self).__init__()
4 self.W1 = layers.Dense(units)
5 self.W2 = layers.Dense(units)
6 self.V = layers.Dense(1)
7

8 def call(self, features, state_out):
9 # features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)

10

11 # state_out shape == (batch_size, state_out_size)
12 # state_out_with_spatial_axis shape == (batch_size, 1, state_out_size)
13 state_out_with_spatial_axis = tf.expand_dims(state_out, 1)
14

15 # score shape == (batch_size, 64, state_out_size)
16 score = activations.tanh(self.W1(features) +

self.W2(state_out_with_spatial_axis))↪→

17

18 # attention_weights shape == (batch_size, 64, 1)
19 # you get 1 at the last axis because you are applying score to self.V
20 attention_weights = activations.softmax(self.V(score), axis=1)
21

22 # context_vector shape after sum == (batch_size, embedding_dim)
23 context_vector = attention_weights * features
24 context_vector = tf.reduce_sum(context_vector, axis=1)
25

26 return context_vector, attention_weights

2.2 Multiplicative/dot-product - attention

The second approch uses a more tailored to the estimation of attention
weights. We learn a query matrix Q and key matrix K so that

αt,j = (Qst)TKxj (6)

3



Implement the attention mechanism in (6) and try to train a model with it.

2.2.1 Solution

1 class DotproductAttention(layers.Layer):
2 def __init__(self, embedding_dim):
3 super(DotproductAttention, self).__init__()
4

5 self.Q = layers.Dense(embedding_dim)
6 self.K = layers.Dense(embedding_dim)
7

8 def call(self, feature_vectors, state):
9 """feature_vectors: [batch_size, num_feature_vectors, feature_units]"""

10

11 # [batch_size, embedding_dim]
12 q = self.Q(state)
13 # [batch_size, num_feature_vectors, embedding_dim]
14 k = self.K(feature_vectors)
15 # [batch_size, embedding_dim] ==> [batch_size, 1, embedding_dim]
16 q = tf.expand_dims(q, axis=1)
17 # ==> [batch_size, feature_vectors]
18 alpha = tf.reduce_sum(q*k, axis=-1)
19 attention_weights = activations.softmax(alpha, axis=-1)
20

21 # ==> [batch_size, feature_units]
22 context_vector = tf.reduce_sum(tf.expand_dims(attention_weights,

axis=-1)* feature_vectors, axis=1)↪→

23

24 return context_vector, attention_weights

3 Questions

3.1 Pretrained Convnet

We are using a convolutional neural network trained on imagenet to extract
features, and their parameters are not adjusted during the optimization.
What are some advantages and disadvantages to this approach compared
to also updating these weights during optimization (or even starting with
random weights)?

3.1.1 Solution

Starting with a pretrained model helps us immediately get a more seman-
tically meaninful feature vector representing the information in the image.

4



Starting with random weights would probably require a lot more training
data as we are vastly increasing the number of parameters we are optimizing
over. Learning good image features starting from random weights may also
be challenging in this situation, as the learning signal is much more noise
(or less direct, if you will) compared to training the convnet on an image
classification task. Finetuning the model could be an option, it might give
better results given enough training data. The downside is however that it
will be require much more computation and memory, as we can’t extract the
features once and cache them.

3.2 Pretrained word embedding

The embedding layer is initialized with random weights. Would it be possible
to somehow use a pretrained embedding layer?

3.2.1 Solution

• Possible but some caveats: many existing embeddings may be trained
on different tokenization, e.g. instead of splitting a sentence into words,
may even have been split into subwords.

• See e.g. https://keras.io/examples/nlp/pretrained_word_embeddings/

• Also see https://tfhub.dev/s?module-type=text-embedding

3.3 Supervised learning

One can not in general say that there is a correct caption for a given image.
Is supervised learning still an appropriate framework?

3.3.1 Solution

Yes, in general Y can be a stochastic function of X.

3.4 Baseline loss

Having a simple baseline loss during training is often useful for a sanity check
that things behave as expected. Can you think of any models you should be
able to beat?

5

https://keras.io/examples/nlp/pretrained_word_embeddings/
https://tfhub.dev/s?module-type=text-embedding


3.4.1 Solution

• Probabilities according to word frequency.

• Probabilities according to word frequency by time step.

• Model trained on only captions (independent of images). In this way
you can check if your model is not just learning to generate typical
sentences.

3.5 Validation loss

What are some possible issues with our validation loss? Why do this valida-
tion loss not tell the whole story?

3.5.1 Solution

• We do teacher forcing during validation. When generating captions we
may go outside the distribution we have trained on. The validation
loss does not measure such effect.

• In general difficult to find any good automatic measures for test per-
formance.

3.6 RNN cell vs layer

In TensorFlow, what is the difference between the LSTM and LSTMCell layers
(or in general betwenn RNN and RNNCell layers?

3.6.1 Solution

The RNN layer is basically the application of an RNNCell to the whole time
sequence. It is very convenient to use when

1. We are presented the whole input sequence at once.

2. We do not feed the outputs of the model as input at the next time
step.

If either of the two conditions above are not satisfied we will usually have
to create a custom loop where we iterate over the sequence and this is where
the RNNCell us useful. Note that if you create your own custom RNN cell,
you may create an RNN layer by giving your cell as input to the RNN class.

6


	Introduction
	Implementation tasks
	Additive attention
	Solution

	Multiplicative/dot-product - attention
	Solution


	Questions
	Pretrained Convnet
	Solution

	Pretrained word embedding
	Solution

	Supervised learning
	Solution

	Baseline loss
	Solution

	Validation loss
	Solution

	RNN cell vs layer
	Solution



