
Mandarory Assignment 2
Proximal Policy Optimization (PPO)

TEK5040/TEK9040
Fall, 2020

Contents

1 Preliminaries 2
1.1 Introduction . 2
1.2 Preparation . 2

1.2.1 Installation . 2
1.2.2 Visualize random agent 3
1.2.3 Try playing yourself! 3

1.3 Environment . 4
1.3.1 State space . 4
1.3.2 Action space . 5
1.3.3 Time scale . 6

2 Implementation 6
2.0.1 TensorFlow hints . 7

2.1 Return . 8
2.2 Value loss . 8
2.3 Policy loss . 8
2.4 Entropy loss . 8
2.5 Optimization of surrogate objective 9
2.6 Improvement estimations . 9

3 Report 10
3.1 Linear vs non-linear policy . 10

3.1.1 Solution . 10
3.2 Linear value network . 11

1

3.2.1 Solution . 11
3.3 Convolutional vs fully connected model 12

3.3.1 Solution . 12
3.4 Visualization of policy network weights 12

3.4.1 Solution . 13
3.5 Eval policy . 13
3.6 Actual improvement vs “predicted” 15

3.6.1 Solution . 15

4 Delivery 15

1 Preliminaries

1.1 Introduction

In this assignment we will look at CarRacing environment from OpenAI
Gym. We will implement a version of the PPO algorithm, where the pseu-
docode is given below.

Algorithm 1 PPO, Actor-Critic Style
Initialize value network vη with random weights.
Initialize policy network πθ with random weights.
Initialize θold = θ.
for iteration = 1, 2, . . . do

for i = 1, N do
Run policy πθold in environment (possibly limit timesteps)
Compute advantage estimates d̂1, . . . , d̂τ (i)

end for
Set surrogate objective L based on the sampled data.
Optimize surrogate L wrt. η and θ, for K epochs and
minibatch size M ≤

∑N
i=1 τ

(i).
θold ← θ.

end for

1.2 Preparation

1.2.1 Installation

We need to have the gym python package installed, as well as the box2d
environment. The exact installation process will depend on your operating

2

https://gym.openai.com/envs/CarRacing-v0/
https://arxiv.org/abs/1707.06347

system and setup. You may look at the requirements.txt file for python
dependencies, using pip the dependencies may be installed by

1 pip3 install -r requirements.txt

In some cases there may be additional system (non-python) dependencies
that are not met. On Ubuntu, if you get error messages about “missing swig”,
you may install this package with

1 sudo apt install swig

1.2.2 Visualize random agent

Test your installation by running 100 steps of a predefined random policy
and visualize the results

1 import gym
2

3 env = gym.make('CarRacing-v0')
4 observation = env.reset()
5 for t in range(100):
6 env.render()
7

8 action = env.action_space.sample()
9 observation, reward, done, info = env.step(action)

10 if done:
11 print("Episode finished after {} timesteps".format(t+1))
12 break
13 env.close()

1.2.3 Try playing yourself!

You may get a feel of the game by trying to play yourself. You first need to
locate where the gym package has been installed. If you installed using pip3
on Ubuntu, it should be found at either /usr/local/lib/python3.x/site-
packages/gym or $HOME/.local/lib/python3.x/site-packages/gym
depending on whether you used the --user flag or not. Here x is e.g. 7 if
you use python3.7, and $HOME is the path to your home directory. After
you have located the package, you may run

1 python3 /path/to/gym/envs/box2d/car_racing.py

and use the arrows on your keyboard to control the car.

3

1.3 Environment

1.3.1 State space

What should our state space be?
After taking an action at time step t, the agent receives a reward rt+1 ∈ R

and a new observation ot+1 ∈ R96×96×3, i.e. a color image with height
and width of 96. An example observation is given in Figure 1. Note that
this observation has much lower resolution then what you get when you use
env.render().

Figure 1: Example observation

We would like to avoid having to use the whole history of observa-
tions and rewards to make decisions. We would like to map the history
ht = (o0, a0, r1, o1, . . . , at−1, rt, ot) into something more managable, by some

4

function f . The first idea might be to just use the last observation (last
frame), such that f(ht) = ot. Is this sufficient?

From a single frame an agent can figure out its position on the tracks
and also the heading of the vehicle. What about e.g. speed though? Clearly
when deciding to break or not before a turn, it would be useful to know how
fast we are going. Normally one would need at least two frames to figure out
speed and three frames if one would also like to know acceleration (why?).
If we however look at the bottom part of the frame, it actually provides
some additional information: From left to right the bars are indicating: true
speed, four ABS sensors, steering wheel position and gyroscope.

In theory the agent can thus learn about its speed by extracting this
information from the leftmost bar in the observation. Whether the agent
will actually be able to do this is not clear though. The information has
a very different meaning than most other pixels, which gives information
about a particular point on the track. Unlike other pixels, the information
is actually very high-level, and it would probably have been easier for the
agent if we directly gave this as an additional input that could be combined
with the extracted information from the image features at a later stage.

One more thing. When we train our car-driving agent, we are going to
cut the episodes short, say after a few hundred time steps. If we want to
learn a good value function, and only use ot as input we do have a potential
issue. Assume we are going at full speed with a straight lane ahead of us.
If you have a fairly decent policy, this would mean that things are looking
quite good and you should expect a fair amount of reward. If however,
you are actually at the final time step before we cut the episode short, you
will actually not get any more reward! Thus it will be very hard to learn
a value function without any information about how much time we have
left1. For the value function, we will thus give an additional input that gives
information on how much time there is left before the episode ends.

For this exercise we shall let our state at time t be st = (ot, time_remainingt).
The policy network will only use ot, while the value network will use both.

1.3.2 Action space

The enviroment has a continuous action space : [−1, 1]× [0, 1]× [0, 1] which
we in this exercise simplify into a discrete action space with 5 actions:

• turn left: [−1, 0, 0]
1Even if we didn’t cut our episodes short, the issue still remains as the episode would

still end after we have finished one lap

5

• straight: [0, 0, 0]

• turn right [1, 0, 0]

• gas: [0, 1, 0]

• break: [0, 0, 1]

Note that this limits us to only a subset of the possible actions, which
may impact how well we can do. Note that the actions above are also at
their extreme values, e.g. if we want to increase the speed, we have to put
the gas at full throttle!

1.3.3 Time scale

It is not always clear what the right time scale to operate at is. You would
normally like to be able to perform actions just “often enough”. If your time
scale is too fine-grained, you may just end up running your policy network
a lot, just to find that you are going to repeat your last action. If the time-
scale is too coarse on the other hand, you may not be able to switch actions
often enough to get a good policy. For the gym environments, the finest
time scale we can get is decided by the environment. We can however get a
more coarse-grained time scale by repeating actions. If we choose to repeat
actions say k times, we get a new environment where the agent only sees
every k frames, and where the “immediate” reward is the sum over the four
following rewards. One step in the new environment is thus on the form

1 action_repeat = 4
2 reward = 0
3 for _ in range(action_repeat):
4 observation, r, done, info = env.step(action)
5 reward = reward + r
6 if done:
7 break

In this assignment we choose 4 repeats during training.

2 Implementation

This section contains information on your implementation tasks. The only
file you should need to modify is ppo.py. For each of the tasks here, you
will find TODO comments in this file. Any functions we refer to here are

6

also in that file. The policy network and value networks have already been
implemented for you, and your main focus will be on the learning algorithm.
As default, both the policy network and value network are linear functions.
You should have one run with the paramaters already given, but may if you
like, also try additional configurations of the networks and/or other hyper-
parameters. Note that each iteration takes on the order of one minute on a
not too powerful laptop. Thus if you want a “full” run of 500 iterations, you
probably want to run it over night. Checkpointing has been implemented,
so that you may start and stop training at your convenience. If you don’t
want to continue from a previous checkpoint, you should either delete the
corresponding directory or change the run_name parameter.

Your may run your program by e.g.

1 python3 ppo.py

If there are any empty windows that pops up, just ignore these, you should
not expect any visualization here. If you get the error message

ImportError: No module named 'car_race'

you need to add the parent directory of the car_race directory to your
PYTHONPATH environmental variable.

It is recommended to reduce the num_episodes and maxlen_environment
parameters to low values, e.g. 2 and 12, during debugging, as this will greatly
reduce the time used on dataset creation.

2.0.1 TensorFlow hints

TensorFlow low-level operations work similar to numpy and are designed
to work on tensors/arrays. Furthermore many operators like e.g. +, −, ∗
and / works elementwise for tensors/arrays. E.g. to take the elementwise
difference between two arrays y and v this may be accomplished with

1 diff = y - v

A lot of the basic operations in TensorFlow is located in the tf.math names-
pace, see https://www.tensorflow.org/api_docs/python/tf/math. Op-
erations that aggregates information are named tf.math.reduce_*, e.g.
tf.math.reduce_sum and tf.math.reduce_mean calculates the sum and
mean respectively. The axis argument may be only used to aggregate over
certain dimensions.

7

https://www.tensorflow.org/api_docs/python/tf/math

2.1 Return

Implement the calculate_returns function. Recall that the return at a
time step is calculated as

gt =

T∑
k=0

γkrt+k+1

where rt is the reward at time step t, γ is the discount factor and T is the
episode length.

2.2 Value loss

Implement the value_loss function. Given a batch of value predictions
v1, . . . vN and corresponding target values y1, . . . , yN we define the loss as

1

N

N∑
i=1

(yi − vi)2

where N is the batch size.

2.3 Policy loss

Implement the function policy_loss. Given a batch of empirical state-
action pairs (si, ai) and estimated advantages d̂i = gi − vη(si), the policy
loss should be calculated as

− 1

N

N∑
i=1

min
(
ui(θ)d̂i , clip(ui(θ), 1− ε, 1 + ε)d̂i

)
where N is the batch size and we have defined

ui(θ) =
πθ(ai|si)
πθold(ai|si)

2.4 Entropy loss

Implement the function entropy_loss. You may use the function entropy
to calculate the entropy for each sample in the batch. The entropy loss
should be the average negative entropy over the batch.

Adding an entropy bonus for policy gradient like methods is a common
way to encourage the policy not to be too deterministic. This might improve
exploration and reduce the potential risk of getting stuck in a local optima.

8

2.5 Optimization of surrogate objective

For each training iteration, optimize the surrogate loss2 for K epochs, where
K is a hyperparamter set to 3 for this exercise, and minibatches of size M ,
where we here set M to 32.

Note that policy_network, value_network and optimizer has already
been initialized for you, and should be used here. To get the logits over ac-
tions (“unnormalized probabilties”) you may use policy_network.policy(observation).
To get predicted returns at timestep t, call value_network(observation,
maxlen-t). You may iterate over the dataset for an epoch by

1 for batch in dataset:
2 observation, action, advantage, pi_old, value_target, t = batch

where each of the tensors above have M = 32 elements.
Your loss should be of the form:

1 loss = policy_loss(pi_a, pi_old_a, advantage, epsilon) \
2 + c1*value_loss(value_target, v) \
3 + c2*entropy_loss(pi)

2.6 Improvement estimations

Implement the functions estimate_improvement and estimate_improvement_lb.
These functions are only used for summary purposes, and do not have any
impact on the optimization. We use them to to calculate estimated improve-
ments policy improvements for the policy iteration, as well as an estimated
lower bound. You will later (see Section 3.6) compare these estimates against
actual improvements for the policy.

estimate_improvement should for a batch return an array with values

πθ(at|st)
πθold (at|st)

γtd̂t

where d̂t is the advantage estimate.
If we define

ut(θ) =
πθ(at|st)
πθold(at|st)

2Optimizers in TensorFlow always tries to minimize the objective function.

9

then estimate_improvement_lb should return an array with values

min
(
ut(θ)d̂t, clip(ut(θ), 1− ε, 1 + ε)d̂t

)
γt

3 Report

For the report, you should answer the questions below. Note that the ques-
tions do not necessarily have precise answers. They are meant to make you
think about e.g. how small changes to the environment might affect the
difficulty of the problem and the appropriateness of different models. Try to
answer the questions as best you can.

3.1 Linear vs non-linear policy

Assume that the state of the policy is just the last observation ot (as has
been the case for this exercise). Do you expect a linear policy to work? Do
you expect the optimal policy to be linear? If not, what are some things you
expect that the linear policy will have have issues with? If the camera view
did not follow the position and direction of the car, but rather was a fixed
view over the entire course, do you believe a linear policy would have worked
better or worse? Can you think about a simple change to the environment
that would make a linear policy not work at all?

3.1.1 Solution

It seems reasonable that a linear policy should work somewhat. If the pixels
at the top are green, and the top-left pixels are gray (color of the road), we
should probably turn left (and possibly break as well). If the pixels at the
top are gray, we should probably speed, etc. The optimal policy is probably
not linear though. As an example, the optimal policy would probably use
the white speed bar to decide if it should break or not before a turn. This
is clearly a non-linear effect as the probability of breaking depends on an
interactive effect between how much we are speeding and the fact that there
is a turn coming.

If our observations were from a fixed top-view this would be difficult, e.g.
if we always looked at the track from the perspective of Figure 2. Another
issue with be if e.g. the road had different colors on different tracks.

10

Figure 2: Top-view of track

3.2 Linear value network

Assume that the state used by the value network is st = (ot, time_remainingt).
Do you expect the true value function vπ of the optimal policy (or any decent
policy) to be linear? If not, what are some effects that a linear value network
is not able to capture?

3.2.1 Solution

We might say that in general there are two factors that should affect the
return

• The more time is left, in general the higher the expected return should
be. This effect by itself should be fairly linear, a constant reward per
time step left might not be a too bad approximation.

• If we are in the center of the lane with a straight road ahead, the
expected return should be high. If we get to a turn, the estimated
return from that position should probably be a bit lower. If we are in
the middle of the field, the expected return, and thus value function,
should be even lower.

With a linear model, there is an interactive effect that can not be ac-
counted for. If there is no or little time left, it doesn’t really make a dif-

11

ference if we are on track, or not. On the other hand, if we have quite a
bit time left, it does matter whether we are on track or not. Thus we see
that the contributions can not be seen independently of each other, which a
linear function approximator necessarily have to do. We should thus expect
a linear approximation to the value function to be fairly inaccurate for some
parts of the state space.

3.3 Convolutional vs fully connected model

What are some common arguments for using convolutional neural networks
instead of fully connected neural networks? Are the arguments valid for
the observations from this environment? Would you expect a convolutional
neural network to work better than a fully connected neural network here?

3.3.1 Solution

Common arguments for using convolutional neural networks:

• Properties are local

• We want to detect the same features everywhere in the image

Neither of these arguments seems to hold very much value here. One
might argue that one would like to e.g. detect where the road is. On the
other hand the road is kind of detected for us already, as the color is distinct
from the surroundings. One might also say that one would like to detect the
car in different positions in the image. As a counterargument, one might
say that the car only appears in a very few positions in the image, which
perhaps a few different neurons could detect. One might also argue that as
the frame move with the car, detecting where the car is may not really be
very important in the first place.

We cannot however be conclusive whether convolutional neural networks
would be beneficial or not. There might e.g. be some subtle effects, like skid
marks from breaking, that might be interesting to detect and that could also
appear in different positions.

3.4 Visualization of policy network weights

You may visualize the weights of a linear policy network saved at /path/to/saved/model
with

1 python3 vis_filters.py /path/to/saved/model

12

To visualize the weights for the highest scoring model for a run

1 python3 vis_filters.py train_out/<run-name>/high_score_model

where <run-name> is the name you have given the run in ppo.py (ppo_linear
by default). The weights are organized as in the pattern below.

gas
left straight right

break

Save this figure and put in the report. Are you able to interpret the
weights in any way?

3.4.1 Solution

See Figure 3 for an example. They should look something like this! The
weights for left kind of looks like a template that should match well to a
left turn, which seems appropriate. Similar interpretations can be made
for right and gas and with more training and/or regularization some of the
noise would probably dissappear. You might ask why the road looks purple
instead of gray though. The explanation is quite simple. Pixels that have
somewhat high value red and blue adds evidence that the pixel is a road
pixel (as gray is a mix of red, green and blue). Although green is also part
of gray , green is also the color of the grass, and a high value of green thus
also have a negative effect on the likelihood of the pixel being a road pixel,
while red and blue don’t have such negative contributions. Adding red and
blue gives purple! The argument given here shows us that there are some
subtleties to the “template” interpretation even though the main intution is
still correct.

3.5 Eval policy

Evaluate your model for the highest scoring iteration (in terms of mean) by

1 python3 eval_policy.py --num_episodes 32 \
2 --policy </path/to/high_score_model> \
3 --action_repeat <N>

Report scores for <N> equal to 1, 2, 4 and 8. Report both minimum,
median, mean and maximum scores for all cases.

For each evaluation you will also get a video showing your agent for the
best episode. How would you judge its performance qualitatively?

13

Figure 3: Example policy-network weights (after about 500 iterations). Top
row: gas. Center row: (left, straight, right). Bottom row: break.

14

3.6 Actual improvement vs “predicted”

With proximal policy, at each iteration we try to maximize3

L(πθ) = Eπ

[∑
t

πθ(At|St)
πθold (At|St)

γtdπθold (St, At)
]

which is the policy improvement we would get when we ignore changes in
state visitation frequencies. We do this by optimizing an approximation

max
θ
Ê[

πθ(at|st)
πθold (at|st)

γtd̂t]

over a sampled dataset. We can thus estimate the expected change in policy
improvement by measuring this quantity. Compare the estimated_improvement
and estimated_improvement_lb values in TensorBoard, to the estimated
change in expected return. Are the estimates accurate? Do they have sys-
tematic biases? Note that you need to look at the accumulated values over
the iterations between each policy iteration.

3.6.1 Solution

You should find that the estimated improvements in general are too opti-
mistic, even the lower bound.

4 Delivery

You should hand in your assignment on Devilry. It should include:

• Your code (including the files handed out to you)

• TensorBoard log files

• Your report

You should zip everything together into one file.

3Actually we do not include the γt factor, in our loss function. A reason for this as
that we may not only care about the return from the initial state, but might be interested
in getting high returns from later states as well.

15

https://devilry.ifi.uio.no

	Preliminaries
	Introduction
	Preparation
	Installation
	Visualize random agent
	Try playing yourself!

	Environment
	State space
	Action space
	Time scale

	Implementation
	TensorFlow hints
	Return
	Value loss
	Policy loss
	Entropy loss
	Optimization of surrogate objective
	Improvement estimations

	Report
	Linear vs non-linear policy
	Solution

	Linear value network
	Solution

	Convolutional vs fully connected model
	Solution

	Visualization of policy network weights
	Solution

	Eval policy
	Actual improvement vs ``predicted''
	Solution

	Delivery

