Deep Learning Models for Processing 3D Data

Narada Warakagoda

Why 3D?

Real world applications of autonomous systems need to perceive depth information

(a). 2D Image

(c) 2D Prediction

(b) 3D Point Cloud

(d) Ours (3D Prediction)

Common 3D Sensor Outputs

- Point Cloud
 - Set of points $\{(x, y, z, a_1, a_2, \cdots, a_n)\}$
 - x, y, z co-ordinates of the point
 - a_1, a_2, \cdots, a_n are attributes of the point
 - Examples:
 - LiDAR
 - Camera images with depth (RGBD)

- Stereo camera images

3D Processing Approaches

- Use point clouds directly as input to a deep network
 - Not straight-forward as deep networks are designed for regular grid inputs (eg: pixelized images)
- Convert the point cloud to a grid-like structure and input to a deep network
 - Voxel inputs
 - 3D convolutions
- Represent the point cloud as a graph and input to a suitable neural network
 - Graph neural networks

2

1

3

Learning with Voxel Inputs

Convolutions

Michele Cavaioni https://medium.com/machine-learning-bites/deeplearning-series-convolutional-neural-networks-a9c2f2ee1524

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

https://www.kaggle.com/shivamb/3d-convolutions-understanding-use-case

3D Convolutional Network

Object Classification

3D Segmentation

Problems of Voxelization

- High memory consumption
 - Affects the possible resolution
- Most of the space is empty (zero voxels)
 - Inefficient use of resources
- More memory efficient voxelization solutions exist:
 - Eg: OctNets

OctNet

- Create an irregular grid
 - Iterative split voxels into 8 child voxels
 - Limits to depth 3
- Split only important areas
 - Areas where objects lie (high resolution)
 - Do not split empty areas (low resolution)
- Memory and speed savings,

Direct Point Cloud Input

- Challenges of direct point cloud processing
 - Point clouds can be unordered (it is a set),
 therefore we need <u>permutation invariance</u>
 - Need to model interaction among points
 - Need to model <u>transformation invariance</u> (eg: rotation, translation)
- PointNet addresses those challenges

PointNet

Can be used for classification and segmentation

PointNet Permutation Invariance

 Network should respond equally to different input orders of the point cloud of the same scene

$$- \{(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)\}\$$

$$-\{(x_3,y_3,z_3),(x_1,y_1,z_1),(x_2,y_2,z_2)\}$$

Solution:

- Process each point individually with the same transform (MLP)
- Finally apply a symmetric function (eg: max-pooling)

PointNet Transformation Invariance

 Network should respond equally to transformed (rotated, shifted) version of the same point cloud subset

Solution:

Employ the Spacial Transformer Network

Interaction among Local Points

- PointNet does not address this issue
- Despite this, PointNet works fairly well

V133 2235	input	#views	accuracy avg. class	accuracy overall		
SPH [11]	mesh	-	68.2			
3DShapeNets [25]	volume	1	77.3	84.7		
VoxNet [15]	volume	12	83.0	85.9		
Subvolume [16]	volume	20	86.0	89.2		
LFD [25]	image	10	75.5	-		
MVCNN [20]	image	80	90.1	-		
Ours baseline	point	-	72.6	77.4		
Ours PointNet	point	1	86.2	89.2		

Table 1. Classification results on ModelNet40. Our net achieves state-of-the-art among deep nets on 3D input.

Graph Neural Networks

- Aim to exploit locality
- Relationships among local points in a neighborhood carries important information
- Locality in point clouds is represented as a graph
- Take the inspiration from regular convolution in CNNs
- Extend regular convolution to graph convolution and CNN to GNN (Graph Neural Network)

Convolution as a Operation on a Graph

Image

Filter

$$oldsymbol{x_5}' = \sum_{i=1}^9 oldsymbol{x}_i oldsymbol{w}_i$$

Graph Representation of the grid

Generalized Convolution on a Graph

$$x_3'(1) = \mathbf{w}_1^T(1)\mathbf{x}_1 + \mathbf{w}_2^T(1)\mathbf{x}_2 + \mathbf{w}_3^T(1)\mathbf{x}_3 + \mathbf{w}_4^T(1)\mathbf{x}_4 + \mathbf{w}_5^T(1)\mathbf{x}_5$$

$$x_3'(2) = \mathbf{w}_1^T(2)\mathbf{x}_1 + \mathbf{w}_2^T(2)\mathbf{x}_2 + \mathbf{w}_3^T(2)\mathbf{x}_3 + \mathbf{w}_4^T(2)\mathbf{x}_4 + \mathbf{w}_5^T(2)\mathbf{x}_5$$

$$\vdots$$

$$x_3'(M) = \mathbf{w}_1^T(M)\mathbf{x}_1 + \mathbf{w}_2^T(M)\mathbf{x}_2 + \mathbf{w}_3^T(M)\mathbf{x}_3 + \mathbf{w}_4^T(M)\mathbf{x}_4 + \mathbf{w}_5^T(M)\mathbf{x}_5$$

Even More Generalized Convolution Operation on a Graph

• Different architectures for different $h_{\Theta}(\cdot)$ and aggregation operations

Different Architectures

	Aggregation	Edge Function	Learnable parameters		
PointNet [Qi et al. 2017b]	-	$h_{\Theta}(\mathbf{x}_i, \mathbf{x}_i) = h_{\Theta}(\mathbf{x}_i)$	Θ		
PointNet++ [Qi et al. 2017c]	max	$h_{\mathbf{\Theta}}(\mathbf{x}_i, \mathbf{x}_j) = h_{\mathbf{\Theta}}(\mathbf{x}_j)$	Θ		
MoNet [Monti et al. 2017a]	Σ	$h_{\theta_m, \mathbf{w}_n}(\mathbf{x}_i, \mathbf{x}_j) = \theta_m \cdot (\mathbf{x}_j \odot g_{\mathbf{w}_n}(u(\mathbf{x}_i, \mathbf{x}_j)))$	w_n, θ_m		
PCNN [Atzmon et al. 2018]	Σ	$h_{\theta_m}(\mathbf{x}_i, \mathbf{x}_j) = (\theta_m \cdot \mathbf{x}_j)g(u(\mathbf{x}_i, \mathbf{x}_j))$	θ_m		

$$\mathbf{x}_i' = \prod_{j:(i,j)\in\mathcal{E}} h_{\Theta}(\mathbf{x}_i,\mathbf{x}_j).$$

Standard Convolution

- Edge function is the dot product
- Aggregation is the SUM

$$x'_{im} = \sum_{j:(i,j)\in\mathcal{E}} \theta_m \cdot \mathbf{x}_j,$$

$$\mathbf{x}_i' = \prod_{j:(i,j)\in\mathcal{E}} h_{\Theta}(\mathbf{x}_i,\mathbf{x}_j).$$

PointNet

- Edge function acts only upon the current point
- No aggregation

$$h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = h_{\Theta}(\mathbf{x}_i)$$

Segmentation Network

MoNet

- Edge Function is Gaussian Mixture Like
- Aggregation is SUM

$$h_{\theta_m, w_n}(\mathbf{x}_i, \mathbf{x}_j) = \theta_m \cdot (\mathbf{x}_j \odot g_{w_n}(u(\mathbf{x}_i, \mathbf{x}_j)))$$

$$x'_{im} = \sum_{j:(i,j)\in\mathcal{E}} \theta_m \cdot (\mathbf{x}_j \odot g_{w_n}(u(\mathbf{x}_i, \mathbf{x}_j)))$$

MoNet

$$m{x}_i, m{x}_j$$
 $m{u}(m{x}_i, m{x}_j)$ pseudo coordinate vector $m{w}_m = \exp(-rac{1}{2}(m{u} - m{\mu}_m)^T \Sigma_m^{-1} (m{u} - m{\mu}_m))$ $m{x}_j w_m$ $m{\theta}_m^T \cdot m{x}_j w_m$ $m{x}_j w_m$ $m{x}_j w_m$ $m{x}_j w_m$

Dynamic Graph CNN (DGCNN)

- Edge function is a MLP
- Aggregation is MAX

$$\begin{aligned} e'_{ijm} &= \text{ReLU}(\theta_m \cdot (\mathbf{x}_j - \mathbf{x}_i) + \phi_m \cdot \mathbf{x}_i) \\ x'_{im} &= \max_{j:(i,j) \in \mathcal{E}} e'_{ijm} \end{aligned}$$

DGCNN Architecture

DGCNN Properties

$$e'_{ijm} = \text{ReLU}(\theta_m \cdot (\mathbf{x}_j - \mathbf{x}_i) + \phi_m \cdot \mathbf{x}_i)$$
$$x'_{im} = \max_{j:(i,j) \in \mathcal{E}} e'_{ijm}$$

- Exploitation of locality information
 - Uses a graph of nearest neighbors and hence locality information is exploited
- Permutation Invariance
 - MAX operation does not consider order, hence the DGCNN is permutation invariant
- Translation Invariance
 - Only partially translation invariant

$$e'_{ijm} = \boldsymbol{\theta}_m \cdot (\mathbf{x}_j + T - (\mathbf{x}_i + T)) + \boldsymbol{\phi}_m \cdot (\mathbf{x}_i + T)$$
$$= \boldsymbol{\theta}_m \cdot (\mathbf{x}_j - \mathbf{x}_i) + \boldsymbol{\phi}_m \cdot (\mathbf{x}_i + T).$$

DGCNN Performance

	MEAN CLASS ACCURACY	OVERALL ACCURACY		
3DShapeNets [Wu et al. 2015]	77.3	84.7		
VOXNET [MATURANA AND SCHERER 2015]	83.0	85.9		
Subvolume [Qi et al. 2016]	86.0	89.2		
VRN (SINGLE VIEW) [BROCK ET AL. 2016]	88.98	-		
VRN (MULTIPLE VIEWS) [BROCK ET AL. 2016]	91.33	-		
ECC [SIMONOVSKY AND KOMODAKIS 2017]	83.2	87.4		
POINTNET [QI ET AL. 2017B]	86.0	89.2		
POINTNET++ [QI ET AL. 2017c]	-	90.7		
KD-NET [KLOKOV AND LEMPITSKY 2017]	-	90.6		
POINTCNN [LI ET AL. 2018A]	88.1	92.2		
PCNN [Atzmon et al. 2018]	-	92.3		
Ours (baseline)	88.9	91.7		
Ours	90.2	92.9		
Ours (2048 points)	90.7	93.5		

Table 2. Classification results on ModelNet40.

	MEAN	AREO	BAG	CAP	CAR	CHAIR	EAR PHONE	GUITAR	KNIFE	LAMP	LAPTOP	MOTOR	MUG	PISTOL	ROCKET	SKATE BOARD	TABLE
# SHAPES		2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
PointNet	83.7	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6
PointNet++	85.1	82.4	79.0	87.7	77.3	90.8	71.8	91.0	85.9	83.7	95.3	71.6	94.1	81.3	58.7	76.4	82.6
Kd-Net	82.3	80.1	74.6	74.3	70.3	88.6	73.5	90.2	87.2	81.0	94.9	57.4	86.7	78.1	51.8	69.9	80.3
LocalFeatureNet	84.3	86.1	73.0	54.9	77.4	88.8	55.0	90.6	86.5	75.2	96.1	57.3	91.7	83.1	53.9	72.5	83.8
PCNN	85.1	82.4	80.1	85.5	79.5	90.8	73.2	91.3	86.0	85.0	95.7	73.2	94.8	83.3	51.0	75.0	81.8
POINTCNN	86.1	84.1	86.45	86.0	80.8	90.6	79.7	92.3	88.4	85.3	96.1	77.2	95.3	84.2	64.2	80.0	83.0
Ours	85.2	84.0	83.4	86.7	77.8	90.6	74.7	91.2	87.5	82.8	95.7	66.3	94.9	81.1	63.5	74.5	82.6

Table 6. Part segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points.

DGCNN Results

near far