

Deep Learning Models for
Processing 3D Data

Narada Warakagoda

Why 3D?

3D Graph Neural Networks for RGBD Semantic Segmentation, Qi et. al

Real world applications of autonomous systems need to perceive depth information

Common 3D Sensor Outputs

● Point Cloud
– Set of points

●

●

– Examples:
● LiDAR
● Camera images with depth (RGBD)

● Multi-view images
– Stereo camera images

3D Processing Approaches

● Use point clouds directly as input to a deep network
– Not straight-forward as deep networks are designed for regular grid

inputs (eg: pixelized images)

● Convert the point cloud to a grid-like structure and input to a
deep network
– Voxel inputs
– 3D convolutions

● Represent the point cloud as a graph and input to a suitable
neural network
– Graph neural networks

1

2

3

Learning with Voxel Inputs

3D-Convolutions

Voxels

VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition, Maturana and Scherer

Convolutions

2D

3D

2.5D

Michele Cavaioni https://medium.com/machine-learning-bites/deeplearning-series-convolutional-neural-networks-a9c2f2ee1524

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

https://www.kaggle.com/shivamb/3d-convolutions-understanding-use-case

3D Convolutional Network

N- Filters Feature Maps Pooling

Object Classification

3D Segmentation

SEGCloud: Semantic Segmentation of 3D Point Clouds, Tchapmi et.al

Problems of Voxelization

● High memory consumption
– Affects the possible resolution

● Most of the space is empty (zero voxels)
– Inefficient use of resources

● More memory efficient voxelization solutions
exist:
– Eg: OctNets

OctNet

● Create an irregular grid
– Iterative split voxels into 8 child voxels
– Limits to depth 3

● Split only important areas
– Areas where objects lie (high resolution)
– Do not split empty areas (low resolution)

● Memory and speed savings,

OctNet: Learning Deep 3D Representations at High Resolutions, Riegler et. al

Direct Point Cloud Input

● Challenges of direct point cloud processing
– Point clouds can be unordered (it is a set),

therefore we need permutation invariance
– Need to model interaction among points
– Need to model transformation invariance (eg:

rotation, translation)

● PointNet addresses those challenges

PointNet

● Can be used for classification and
segmentation

Spacial Transformer Network

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, Qi et. al

PointNet Permutation Invariance
● Network should respond equally to different input

orders of the point cloud of the same scene
–

–

● Solution:
– Process each point individually with the same

transform (MLP)
– Finally apply a symmetric function (eg: max-pooling)

PointNet Transformation Invariance
● Network should respond equally to transformed

(rotated, shifted) version of the same point
cloud subset

● Solution:
– Employ the Spacial Transformer Network

5

5

5 5

Spatial Transformer Networks, Jaderberg et. al

Interaction among Local Points

● PointNet does not address this issue
● Despite this, PointNet works fairly well

Graph Neural Networks

● Aim to exploit locality
● Relationships among local points in a

neighborhood carries important information
● Locality in point clouds is represented as a graph
● Take the inspiration from regular convolution in

CNNs
● Extend regular convolution to graph convolution

and CNN to GNN (Graph Neural Network)

Convolution as a Operation on a
Graph

Image Filter
Graph Representation
 of the grid

Generalized Convolution on a
Graph

Even More Generalized Convolution
Operation on a Graph

● Different architectures for different and aggregation
operations

Aggregation operation, eg: SUM or MAX

Edge Function

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

Different Architectures

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

Standard Convolution

● Edge function is the dot product
● Aggregation is the SUM

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

PointNet

● Edge function acts only upon the current point
● No aggregation

MoNet
● Edge Function is Gaussian Mixture Like
● Aggregation is SUM

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

MoNet

Geometric deep learning on graphs and manifolds using mixture model CNNs, Monti et. al

 pseudo coordinate vector

Dynamic Graph CNN (DGCNN)
● Edge function is a MLP
● Aggregation is MAX

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

DGCNN Architecture

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

DGCNN Properties

● Exploitation of locality information
– Uses a graph of nearest neighbors and hence locality

information is exploited

● Permutation Invariance
– MAX operation does not consider order, hence the DGCNN is

permutation invariant

● Translation Invariance
– Only partially translation invariant

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

DGCNN Performance

Dynamic Graph CNN for Learning on Point Clouds, Wang et. al

DGCNN Results

Input After transform Feature space Input After transform Feature space

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

