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Probability and Statistics Basics

o Normal (Gaussian) Distribution

p(x) = Wexp {—g (x—p) T (x —u)} = N(g,X)

@ Categorical Distribution

H P

@ Sampling
x ~ p(x)
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Probability and Statistics Basics

@ Independent variables

p(x1, %2, ,xk) = [ [ p(x7)

@ Expectation
Ep)f (x) = / f(x)p(x)dx

or for discrete variables

k
Eppf (X) =D f(xi) P (xi)
i=1
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Kullback Leibler Distance

KL(q (x)[|p (x)) = Eq(x) log [m]

_ / [q () log g (x) — q (x) log p (x)] dx

For the discrete case

KL(Q(x)[[P(x Z[Q(X:)logQ(X/) Q (x;)log P (xi)]
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Bayesian Deep Learning
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Bayesian Statistics

@ Joint distribution
p(x,y)=p(xly)p(y)

@ Marginalization

p(x):/,,(x,y)dy
P(x) = P(x.y)
y

o Conditional distribution

p(x,y) p(ylx) p(x)

(
ply)  [pylx)p(x)dx

p(xly) =
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Statistical view of Neural Networks

@ Prediction

pylx,w) =N (fw(x),X)

@ Classification .

P (ylx,w) =[] fi, (x)V"="

i=1
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Training Criteria

@ Maximum Likelihood(ML)
w=arg max p (Y|X,w)
@ Maximum A-Posteriori (MAP)
W = arg max p (Y,w|X) =arg max p (Y|X,w) p(w)

o Bayesian

p(YIX;w)p(w) — p(YX,w)p(w)
P(Y|X) ~ [P(Y|X,w)p(w)dw

p(W|Y,X) =
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Motivation for Bayesian Approach

How sure are we of the
output?
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Motivation for Bayesian Approach

/
/

ét o

Narada Warakagoda (FFI) Short title October 19, 2020 12 / 43



Types of Uncertainty

e Epistemic Uncertainty
@ Due to lack of data and modelling error.
e Model parameter distributions can tackle this.
o We consider this.

@ Aleatoric Uncertainty

e Due to poor quality data.
o Need to model observation quality (noise).
e We do not consider this.
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Uncertainty with Bayesian Approach

e Not only prediction/classification, but their uncertainty can also be
calculated

e Since we have p (w|Y, X) we can sample w and use each sample as
network parameters in calculating the prediction/classification
p (¥|x,w)) (i.e.network output for a given input ).

o Prediction/classification is the mean of p (¥|x, w)

Pout = P (YIX, Y, X) = /p(?l)?, w)p(wlY,X)dw

o Uncertainty of prediction/classification is the variance of p (y|X, w)
Var(p (717 w) = [ 1o (717, w) — pal” p (] X) dw

@ Uncertainty is important in safety critical applications (eg: self-driving
cars, medical diagnosis, military applications
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Bayesian Approach vs ML and MAP

~

X

Model % Model

Training N Testing ; .
D=(¥.X) w p(y Ix)

Figure: ML and MAP

)

) Mean(p (¥|X, w))
| Model Model .
po(rx) | TN Testing | Var(p (7[%.w))

p(wlY,X)

Figure: Bayesian approach
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Other Advantages of Bayesian Approach

o Natural interpretation for regularization
@ Model selection

@ Input data selection (active learning)
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Main Challenge of Bayesian Approach

o We calculate
e For continuous case:
p(YIX,w)p (W)

PWY-X) = TBIVIX, w) p () dw

o For discrete case:

C p(YX.w) P (w)
PWIY-X) = & VX, wy P (w)

o Calculating denominator is often intractable
o Eg: Consider a weight vector w of 100 elements, each can have two
values. Then there are 2190 = 1.2 x 10% different weight vectors.
Compare this with universe's age 13.7 billion years.

@ We need approximations
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Different Approaches

e Monte Carlo techniques (Eg: Markov Chain Monte Carlo -MCMC)
@ Variational Inference

e Ensembles (eg: Dropout)
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Advantages and Disadvantages of Different Approaches

@ Markov Chain Monte Carlo - MCMC

o Asymptotically exact
e Computationally expensive

@ Variational Inference

o No guarantee of exactness
o Possibility for faster computation
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Monte Carlo Techniques

@ We are interested in

Pout = Mean(p (y[x,w)) = p(¥[x, Y, X) = /P(?!?, w)p(wlY,X)dw

Var(p (7%, w)) = / [p (712, W) — poutl® p (W|Y, X) dw

@ Both are integrals of the type

I:/F(w)p(w\D) dw

where D = (Y, X) is training data.
@ Approximate the integral by sampling w; from p (w|D)

L
1
I%L;F(w;).
=
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Monte Carlo techniques

@ Challenge: We don't have the posterior

@ "Solution”: Use importance sampling by sampling from a proposal
distribution g(w)

_ p(w|D) 1 P(WilD)
l_/F(w) e q(w)dWNLiZ::F(w,)q(wi)

@ Problem: We still do not have p (w|D)
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Monte Carlo Techniques

@ Problem: We still do not have p (w|D)

@ Solution: use unnormalized posterior  (w|D) = p (Y|X,w) p(w)
where normalization factor Z = [ P (Y|X,w) p (w) dw such that

p(w|D)

p(wD)="—~

@ Integral can be calculated with:

| ~ Sy F(wi) B (wi|D) /q(w;)
SFy B (wilD) /q(wi)

Narada Warakagoda (FFI) Short title October 19, 2020 22 /43



Weakness of Importance Sampling

@ Proposal distribution must be close to the non-zero areas of original
distribution p (w|D).

@ In neural networks, p (w|D) is typically small except for few narrow
areas.

Blind sampling from g (w) has a high chance that they fall outside
non-zero areas of p (w|D)

We must actively try to get samples that lie close to p (w|D)
Markov Chain Monte Carlo (MCMC) is such technique.
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Metropolis Algorithm

Metropolis algorithm is an example of MCMC

Draw samples repeatedly from random walk w1 = w; + € where € is
a small random vector, € ~ g(€) (eg: Gaussian noise)

_ i e iy _P(w:D)
@ Drawn sample at t = t is either accepted based on the ratio B(w,1]D)

o If p(w|D) > p(w:_1|D) accept sample

o If p(w:|D) < p(w:1|D) accept sample with probability ;2P
o If sample accepted use it for calculating /
B(w¢|D)
p(w:D) _ p(D) _ _p(w:D) ; ; ;
@ Because Bwe D) = ﬁ(wt(l)‘D) = pwe D)’ sampling is valid for
p(D
p (w|D) too.

@ Since we sample w; from p (w|D), approximate the integral with

1 L
i=1
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Other Monte Carlo and Related Techniques

@ Hybrid Monte Carlo (Hamiltonian Monte Carlo)

e Similar to Metropolis algorithm
e But uses gradient information rather than a random walk.

@ Simulated Annealing
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Variational Inference

@ Goal: computation of posterior p (w|D), i.e. the parameters of the
neural network w given data D = (Y, X)

But this computation is often intractable

Idea: find a distribution g(w) from a family of distributions Q such
that g(w) can closely approximate p(w|D)

@ How to measure the distance between g(w) and p(w|D) ?

o Kullback-Leibler Distance KL(g(w)||p(w|D))

The problem can be formulated as

B(w|D) = arg min KL (a(w)||p(w|D))
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Minimizing KL Distance

@ Using the definition of KL distance
q(w)
KL(g(w w|D :/ w)ln dw
(aw)llpwiD)) = [ a(w)in TS

e Cannot minimize this directly, because we do not know p (w|D)

@ But we can manipulate it further, and transform it to another
equivalent optimization problem involving a quantity known as
Evidence Lower Bound (ELBO)

Narada Warakagoda (FFI) Short title October 19, 2020 27 / 43



Evidence Lower Bound (ELBO)

e Since In p(D) is constant, minimizing KL(q(w)||p(w|D)) is
equivalent to maximizing ELBO
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Another Look at ELBO

ELBO = Eq(w) In

:/q(w)lnp(w,D)dw—/q(w)lnq(w)dw

:/q(w)ln[p(D|w)p(w)]dw—/q(w)ln q(w)dw

:/q(w)lnp(D|w)dw—/q(w)ln ZE:;CJW

= Eqw)In p(Dlw) — KL(g(w)||p(w))

e We maximize ELBO with respect to g(w)

o First term Eg(,)In p(D|w) is equivalent to maximizing g(w)'s ability
explain training data

o Second term KL(g(w)||p(w)) is equivalent to minimizing q(w)’s

distance to p(w
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Outline of Procedure with ELBO

o Start with ELBO

w,D
ELBO = £ = Eg(y) In pc(](w) )~y [Inp(w. D) — Inq(w)]

@ Rewrite with parameter A of g (w) and expand expectation

£(\) = /In[p(w,D)]q(w, \) dw—/ln[q(w, Mg (w, ) dw
e Maximize £(\) with respect to A
A" = arg max L(N)
@ Use the optimized g witn respect to A as posterior
q(w, ") = p(w, D)
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How to Maximize ELBO

@ Analytical methods are not practical for deep neural networks

@ We resort to gradient methods with Monte Carlo sampling
@ We discuss two methods:

e Black box variational inference: Based on log derivative trick
o Bayes by Backprop: Based on re-parameterization trick
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Black Box Variational Inference

@ Start with ELBO:
£0) = [ nlp (w. D)la (w. A)dw [ Inla (w, \lq (w. ) dw
o Differentiate with respect to \.
VAL(Y) = [ Infp (w, D)V, [q (w. \)]dw
~ [ Inla (w, )19 Lq (w ) w
— [ V[l (w. ) q . 3)

@ The last term is zero (Can you prove it?)
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Black Box Variational Inference

@ Now we have
VALO) = [ ol (w. D)V la (w. V]dw
~ [ nla (w, A}V lq (w. V)]
— [ {05 . 221 (w01 5l .

@ We want to write this as an expectation with respect to g

@ Use the log derivative trick

V)\[q (Wa )‘)] = V)\[In q (W7 )‘)]q (W> )‘)
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Black Box Variational Inference

@ Using log derivative trick, we get

VAL(A) = / [In[p (w,D)] —Ing(w, )\)} Vallng (w,\)]g (w,\) dw

@ This is the same as Expectation with respect to q

VAL(A) = Eqw,n) [In[p (w,D)] —Ing(w, )\)] Vallng (w, \)]
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BBVI optimization procedure

Assume a distribution g (w, \) parameterized by A.

Draw S samples of w from the distribution using the current value of
)\ - >\t

o Estimate the gradient of ELBO using the sample values:
S
VAL(A 52; [In[p w®,D)] — Ing (w®,\) | V[ln g (w®, \)]
o Update A .
At+1 = At + pVAL(N)
@ repeat from step 2
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Bayes by Backprop

e Try to approximate ELBO directly by sampling from the g(w, \)
ELBO = L(A) = Eqw,\)[Inp (W, D) —Inq(w, ))]

with s
Z [Inp(w®,D) — Ing(w®,)\)]

s=1

L) =

)

o But we need V,£()\) and we can not differentiate £()\) because it is
not a smooth function of A

@ Use the re-parameterization trick
w® =w(\€%)

where € is drawn from for example a standard Gaussian distribution.
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Bayes by BackProp (BbB)

@ The estimated ELBO now

S
L(\) = %Z [Inp(w(\€),D) —Inq(w()e),\)]

s=1

@ Now this is a smooth function of A and can differentiate
S ~ A
N | 0LsOw 0L

VAL(A) = 5; [8w ox ax]

where £, = Inp (w(\,€%),D) — Ing (w(\,€),))

@ Once the gradients are known, optimum A\* and hence g(w, \*) can
be found by gradient descent.
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Bayes by Backprop - Schematic 1

D
WS p(w*, D)
) @
)‘. q(w,) Loss -
. . - q L(N)
q(ws, )

s
Z Inp(w®,D) —Ing(w*,\)]

(n \
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Bayes by Backprop - Schematic 2

D
. p(w'D)
p [
Loss o
. £(%)
q(w*, )
S
o 1
£0) = ¢ 3 [Inp WX €), D) — Ing (w(, %), V)]

s=1
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Performance of BBVI and BbB

@ Both methods estimate approximate gradients by sampling
@ High variance of the estimated gradients is a problem

@ In practice, these algorithms need modifications to tackle high
variance

@ BbB tends to have a lower variance estimates than BBVI
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Bayesian Deep Learning through Ensembles

@ Direct ensembles

@ Indirect ensembles- Dropout
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Bayesian Deep Learning with Direct Ensembles

@ Train a set of models (say S models) with the same data set, but
with different sets of initial values.

o Feed each network S with the test data and collect the outputs f(s),
s=1,2,---,§
e Output variance = £ Y (f(s) — f(s))? where f(s) = £ >, f(s)
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Bayesian Deep Learning with Dropout

@ Stochastic gradient descent and Dropout can be given Bayesian
interpretations

@ Dropout procedure in testing can be used for estimating the
uncertainty of model outputs (Monte Carlo Dropout).

e Enable dropout and feed the network S times with test data and
collect the outputs f(s), s =1,2,---,S B
o Output variance = £ > (f(s) — f(s))? where f(s) = + >, f(s)
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