
Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Convolutional Neural Networks
and how to fit them

Eilif Solberg

TEK5040/TEK9040

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Outline

Neural Networks
Neuron
Network of neurons

CNN Architectures
Convolutional neural networks

Fitness

Optimization

Regularization

Hyperparameters

Getting started

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Supervised Deep Learning Cheat Sheet

1. Generate training and validation data on the form x , y , where y is the supervision, e.g. class
label, only available during training. Later, add data augmentation to training data to improve
generalization.

2. Create a suitable model (use pretrained model if appropriate). Add model regularization to
improve generalization.

3. Define a metric (what you care about) and loss function (something differentiable).

4. Choose an optimizer (SGD-like) and learning rate (schedule).

5. Define training step where we on a minibatch x , y :

• Calculate model predictions ŷ and loss wrt y .
• Find gradient of loss with respect to variables
• Update model paramaters either by passing gradients to optimizer, or by

using custom update rule.
• Update loss and metric summaries.

6. Define validation step where we on each iteration update metric (and optionally loss) summaries.

7. Regularly plot loss and metric as well as other potential summaries.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Neural Networks

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Biological model

Figure: Biological model of neuron. Illustration from
http://cs231n.github.io/neural-networks-1/

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Mathematical model

Figure: Biological model of neuron.
Illustration from
http://cs231n.github.io/neural-networks-1/

Figure: Mathematical model of
neuron. Illustration from
http://cs231n.github.io/neural-networks-1/

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Neuron in TensorFlow

1 import numpy as np
2 import tensorflow as tf
3

4 class Neuron(object):
5 def __init__(self, num_inputs):
6 self.weights = tf.Variable(np.random.uniform(-0.1, 0.1,

size=num_inputs)) # random uniform initialzation↪→
7 self.bias = tf.Variable(0) # zero initialization
8

9 def __call__(self, x):
10 """Calculate activation for the neuron."""
11 cell_body_sum = tf.reduce_sum(x*self.weights) + self.bias
12 # apply sigmoid activation function
13 firing_rate = 1.0 / (1.0 + tf.exp(-cell_body_sum))
14 return firing_rate
15

16 neuron = Neuron(num_inputs=5)
17 output = neuron([0.1, 0.4, -0.3, 0.7, -1.3])

• Why do we define the weights and bias with tf.Variable?

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Detector / activation function

• Non-saturating activation functions as ReLU, leaky ReLU
dominating

Figure: Sigmoid
function

Figure: Tanh function
Figure: ReLU function

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Activation functions in TensorFlow

Some commonly used activations functions are already
implemented and can be found at tf.keras.activations, e.g.

1 # Note that activation functions work elementwise on the input
tensor/array↪→

2 tf.keras.activations.relu # f(x) = tf.maximum(x, 0)
3 tf.keras.activations.tanh # f(x) =

(tf.exp(2*x)-1)/(tf.exp(2*x)+1)↪→

4 tf.keras.activations.sigmoid # f(x) = 1 / (1+tf.exp(-x))

Note: activation functions with trainable parameters are found
under tf.keras.layers and start with uppercase letters.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Network with several fully connected layers

Figure: Illustration from http://cs231n.github.io/neural-networks-1/

• What is the number of parameters?
• Mathematican: One hidden layer is enough

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Layer of neurons in TensorFlow

1 class FullyConnected_v1(object):
2 def __init__(self, num_inputs, num_outputs):
3 self.weights = tf.Variable(np.random.uniform(-0.1, 0.1,

size=[num_inputs, num_outputs]))↪→

4 self.bias = tf.Variable(np.zeros(num_outputs))
5

6 def __call__(self, x):
7 # Why do we right-multiply with matrix rather than

left-multiply?↪→

8 return tf.matmul(x, self.weights) + self.bias
9

10 # array of shape [batch_size, 3] ==> [batch_size, 5]
11 fc = FullyConnected_v1(nun_inputs=3, num_outputs=5)
12 # array of shape [2, 3] ==> [2, 5]
13 fc(np.array([[1.0, 0.4, 0.2], [-0.4, 0.3, 0.2]]))

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Layer of neurons in TensorFlow as Keras Layer
1 class FullyConnected_v2(tf.keras.layers.Layer):
2 def __init__(self, num_outputs):
3 super(FullyConnected_v2, self).__init__()
4 self.num_outputs = num_outputs
5

6 def build(self, input_shape):
7 """Assume input_shape[0] is batch size and input_shape[1] is size

of input samples."""↪→
8 self.W = tf.Variable(np.random.uniform(-0.1, 0.1,

size=[input_shape[1], self.num_outputs]))↪→
9 self.b = tf.Variable(np.zeros(self.num_outputs))

10

11 def call(self, x):
12 return tf.matmul(x, self.W) + self.b
13

14 # array of shape [batch_size, num_inputs] ==> [batch_size, 5]
15 fc = FullyConnected_v2(num_outputs=5)
16 # array of shape [2, 3] ==> [2, 5]
17 fc(np.array([[1.0, 0.4, 0.2], [-0.4, 0.3, 0.2]]))

• Why don’t we need to specify the number of input nodes?
• Can we later give an array of shape [2, 4] as input?

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Notes on extending Keras layer

• The build method is called the first time __call__ is called.
• We implement call rather than __call__. The __call__

metods is implemented in the parent class, and will call ’call’
• We may also use self.add_variable method to add

variables to layer
• Remember to call super method in __init__ to initialize
Layer class properly.
• This layer can already be found at tf.keras.layers.Dense

(with more functionality)
• Optional: Implement get_config and
compute_output_shape (for serialization and model summary
purposes respectiverly).
• See custom layers and models guide and Layer documentation.

https://www.tensorflow.org/guide/keras/custom_layers_and_models
https://www.tensorflow.org/api_docs/python/tf/keras/layers

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Create model

1 class MyModel(tf.keras.Model):
2 def __init__(self):
3 super(MyModel, self).__init__()
4 self.d1 = tf.keras.layers.Dense(4, activation='relu')
5 self.d2 = tf.keras.layers.Dense(4, activation='relu')
6 self.d3 = tf.keras.layers.Dense(1, activation='sigmoid')
7

8 def call(self, x):
9 x = self.d1(x)

10 x = self.d2(x)
11 return self.d3(x)
12

13 model = MyModel()
14 print(model(np.array([[1.0, 0.4, 0.2], [-0.4, 0.3, 0.2]])))
15 print(model.summary())

Use kernel_initializer and bias_initializer arguments to
specify initialization scheme different from default.
• Will later look at simpler ways as well to create a model.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

CNN Architectures

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Template matching

Figure: Illustration from
http://pixuate.com/technology/template-matching/

1. Try to match template at each location by “sliding over
window”

2. Threshold for detection
For 2D-objects, kind of possible but difficult

http://pixuate.com/technology/template-matching/

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Convolution

Which filter has produces the activation map on the right?

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Convolutional layer

–> Glorified template matching
• Many templates (aka output filters)
• We learn the templates, the weights are the templates
• Intermediate detection results only means to an end

• treat them as features, which we again match new templates to

• Starting from the second layer we have “nonlinear filters”

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Hyperparameters of convolutional layer

1. Kernel height and width -
template sizes

2. Stride - skips between template
matches

3. Dilation rate
• Holes in template where we

“don’t care”.
• Larger field-of-view without

more weights. . .

4. Number of output filters -
number of templates

5. Padding - expand image,
typically with zeros

Figure: Image from
http://neuralnetworksanddeeplearning.com/

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

2D-Convolutional layers in TensorFlow

1 conv = tf.keras.layers.Conv2D(
2 filters, # e.g. 64
3 kernel_size, # e.g. (3, 3)
4 strides=(1, 1),
5 padding='valid', # other option is 'same'
6 data_format=None,
7 dilation_rate=(1, 1),
8 activation=None,
9 use_bias=True,

10 kernel_initializer='glorot_uniform',
11 bias_initializer='zeros',
12 kernel_regularizer=None,
13 bias_regularizer=None,
14 activity_regularizer=None,
15 kernel_constraint=None,
16 bias_constraint=None,
17 **kwargs)

Note: some arguments can be both strings and python objects.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Pro tip

Many properties of convolutional layers can be most easily studied
by considering 1D convolutions.
1. Shape of output (P=padding, W=kernel_width, S=stride)

(input_width + 2P −W)/S + 1

2. Field-Of-View as function of depth d (if stacked), assuming no
stride, and W odd.

d(W − 1) + 1

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Basic CNN architecture for image classification

Image –> [Conv –> ReLU]xN –> Fully Connected –> Softmax
• Increase filter depth when using stride

Improve with:
• Batch normalization
• Skip connections ala ResNet or DenseNet
• No fully connected, average pool predictions instead

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

CNN TensorFlow

Can use tf.keras.models.Sequential to easily define a model
from a sequence of layers

1 from tensorflow.keras.layers import Conv2D, Flatten, Dense
2

3 model = tf.keras.models.Sequential([
4 Conv2D(32, kernel_size=3, activation='relu'),
5 Conv2D(64, kernel_size=3, strides=2, activation='relu'),
6 Flatten(),
7 Dense(128, activation='relu'),
8 Dense(10, activation='softmax')
9])

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

CNN TensorFlow II

1 inputs = tf.keras.Input(shape=(32, 32, 3))
2 x = Conv2D(32, kernel_size=3, activation='relu')(inputs)
3 x = Conv2D(64, kernel_size=3, strides=2, activation='relu')(x)
4 x = Flatten()(x)
5 x = Dense(128, activation='relu')(x)
6 outputs = Dense(10, activation='softmax')(x)
7

8 model = tf.keras.Model(inputs=inputs, outputs=outputs)

• Allows for non-sequential structure, but structure of layers is
still fixed in advance.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

CNN TensorFlow III

1 class MyModel(tf.keras.Model):
2 def __init__(self):
3 super(MyModel, self).__init__()
4 self.conv1 = Conv2D(32, kernel_size=3, activation='relu')
5 self.conv2 = Conv2D(64, kernel_size=3, strides=2, activation='relu')
6 self.flatten = Flatten()
7 self.d1 = Dense(128, activation='relu')
8 self.d2 = Dense(10, activation='softmax')
9

10 def call(self, x):
11 x = self.conv1(x)
12 x = self.conv2(x)
13 x = self.flatten(x)
14 x = self.d1(x)
15 return self.d2(x)
16 model = MyModel()

• Most flexible, but more code (and thus room for mistakes).
• Need model code to restore model as python object.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Fitness

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

How do we fit model?

How do we find parameters θ for our network?

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Supervised learning

• Training data comes as (X ,Y) pairs, where Y is the target
• Want to learn fθ(x) ∼ p(y |x), conditional distribution of Y

given X , where θ are our parameters.
• Define differentiable surrogate loss function, e.g. for a single

sample with Y ∈ Rn and Y ∈ N respectively:

l(θ) = l(fθ(X),Y) =
n∑

i=1

((fθ(X))i − Yi)
2 squared error loss

l(θ) = l(pθ(X),Y) = −log(pθ(X)Y) negative likelihood

The first loss is common in regression, while the second is
common in classification.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Losses in TensorFlow

1 def mean_squared_error(y_true, y_pred):
2 """y_true: [batch_size, n], y_pred : [batch_size, n]"""
3 # sum over axis, mean over batch dimension
4 return tf.reduce_mean(tf.reduce_sum((y_true-y_pred)**2,

axis=-1))↪→

5

6 def sparse_categorical_cross_entropy(y_true, y_pred):
7 """y_true: [batch_size], y_pred : [batch_size, num_classes]"""
8 y_true = tf.expand_dims(y_true, axis=-1) # [batch_size] ==>

[batch_size, 1]↪→

9 # tf.gather --> extracts probabilities from y_pred using
indices in y_true↪→

10 log_likelihoods = tf.math.log(tf.gather(y_pred, y_true,
batch_dims=1))↪→

11 return -tf.reduce_mean(log_likelihoods)
12

13 mean_squared_error(np.zeros((3, 5)), np.ones((3, 5))) # ==> 5
14 sparse_categorical_cross_entropy([0, 1, 2], [[.9, .05, .05],

[.5, .89, .6], [.05, .01, .94]])↪→

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Losses in TensorFlow II

Many losses can already be found implemented at
tf.keras.losses.

1 mse = tf.keras.losses.MeanSquaredError()
2 loss = mse([0., 0., 1., 1.], [1., 1., 1., 0.])
3 print('Loss: ', loss.numpy()) # Loss: 0.75
4

5 cce = tf.keras.losses.SparseCategoricalCrossEntropy(from_logits c
=False) # set true if not softmax
applied

↪→

↪→

6 loss = cce([0, 1, 2], [[.9, .05, .05], [.5, .89, .6], [.05,
.01, .94]])↪→

7 print('Loss: ', loss.numpy()) # Loss: 0.3239

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Optimization

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Gradient
• For a function f : Rn → R the gradient is the n-dimensional

vector of all partial derivatives of the f with respect to the
input variables.
• The gradient is the direction for which the function increases

the most.

Figure: Gradient of the function f (x2, y2) = x/ex
2+y2

[By Vivekj78 [CC BY-SA
3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons]

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

How do we find the gradient?

• Approximate by finite differences. Recall that for a function of
one variable

d

dx
f (x) ≈ f (x + h)− f (x)

h

for small enough h. How does this scale with number of
variables?
• Analytically with backpropagation

• Integration is an art - derivation is craftmanship.
• Gradients propagated from output towards input.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Automatic differentiation - first order

Compute first order derivatives

1 x = tf.constant(3.0)
2 with tf.GradientTape() as g:
3 g.watch(x) # keep 'tape' of values that x affects
4 y = x * x
5 # Find derivative of y with respect to x
6 dy_dx = g.gradient(y, x) # Will compute to 6.0 (dy_dx x^2 = 2x)

Note that y should always be a scalar (typically our loss value),
while x can in general be a vector (typically the parameters of our
model).

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Automatic differentiation wrt. variables

No need to explicitly add ’watch’ for trainable variables

1 x = tf.Variable(3.0, trainable=True) # Note: 'trainable' is
True by default↪→

2 with tf.GradientTape() as g:
3 y = x * x
4 dy_dx = g.gradient(y, x) # Will compute to 6.0 (dy_dx x^2 = 2x)

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Automatic differentitation - second order

Compute first and second order derivatives

1 x = tf.Variable(3.0)
2 with tf.GradientTape() as g:
3 with tf.GradientTape() as gg:
4 y = x * x
5 dy_dx = gg.gradient(y, x) # Will compute to 6.0 (dy_dx x^2 =

2x)↪→

6 d2y_dx2 = g.gradient(dy_dx, x) # Will compute to 2.0 (dy_dx 2x
= 2)↪→

For more information:
• https://www.tensorflow.org/api_docs/python/tf/
GradientTape

https://www.tensorflow.org/api_docs/python/tf/GradientTape
https://www.tensorflow.org/api_docs/python/tf/GradientTape

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

(Stochastic) gradient descent
Taking steps in the opposite direction of the gradient

Figure: [By Vivekj78 [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from
Wikimedia Commons]

• Full gradient too expensive / not necessary

N∑
i=1

∇θl(f (Xi),Yi) ≈
n∑

i=1

∇θl(f (XP(i)),YP(i)) (1)

for a random permutation P .

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Updating model with vanilla gradient descent

1 for x, y in train_data:
2 with tf.GradientTape() as tape:
3 y_pred = model(x, training=True) # training argument only

needed when model has different behaviour under
training and inference

↪→

↪→

4 loss = loss_fn(y, y_pred)
5

6 grads = tape.gradient(loss, model.trainable_variables)
7 for grad, var in zip(grads, model.trainable_variables):
8 var.assign_add(-lr*grad) # var = var - lr*grad

Can we do better than basic gradient descent with fixed step size?

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Updating model with optimizer

’Optimizers’ try to improve upon the simple update rule above by
e.g. trying to incorporate some kind of curvature (without
calculating second derivatives!)

1 optimizer = tf.keras.optimizers.SGD(0.0001, momentum=0.9)
2 for x, y in train_data:
3 with tf.GradientTape() as tape:
4 y_pred = model(x, training=True)
5 loss = loss_fn(y, y_pred)
6

7 grads = tape.gradient(loss, model.trainable_variables)
8 optimizer.apply_gradients(zip(grads,

model.trainable_variables))↪→

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Optimizer

1 print(tf.keras.optimizers.Adam.__doc__)

Optimizer that implements the Adam algorithm. Adam optimization is a
stochastic gradient descent method that is based on adaptive
estimation of first-order and second-order moments. According to the
paper [Adam: A Method for Stochastic Optimization. Kingma et al.,
2014](http://arxiv.org/abs/1412.6980), the method is
"*computationally efficient, has little memory requirement, invariant
to diagonal rescaling of gradients, and is well suited for problems

that are large in terms of data/parameters*".

For AMSGrad see [On The Convergence Of Adam And Beyond.
Reddi et al., 5-8](https://openreview.net/pdf?id=ryQu7f-RZ).

• SGD with momentum, RMSprop, Adam are popular choices

• For more see https://www.tensorflow.org/api_docs/
python/tf/keras/optimizers.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Learning rate schedule
Normally you want to reduce your learning rate as training
progresses (typically when loss stops decreasing).

1 class MySchedule(tf.keras.optimizers. c
schedules.LearningRateSchedule):↪→

2 def __call__(self, step):
3 if step < 100000:
4 lr = 0.1
5 elif 100000 <= step < 200000:
6 lr = 0.01
7 else:
8 lr = 0.001
9 return lr

10

11 optimizer = tf.keras.optimizers.SGD(M c
ySchedule())↪→

Figure: Example train run following
learning rate schedule shown left.

See e.g. tf.keras.optimizers.schedules for common learning
rate schedules.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Regularization

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Overfitting

Figure: Model complexity. {Image from scikit-learn} Figure: Train vs test error

• Early stopping is an option, but can we do better?
• Also see tutorial https://www.tensorflow.org/
tutorials/keras/overfit_and_underfit

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Regularization vs optimization

• Optimization: try to reduce training loss
• often leads to reduction of validation/test loss as a side-effect

• Regularization: try to reduce test loss
• may lead to increase in train loss

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Weight regularization

• Penalize non-smooth functions by penalizing large values for
the model weights.
• Weight penalty added to loss term, usually squared L2

normalization uniformly for all parameters

J(θ) = l(θ) + λ‖θ‖22

where λ ≥ 0. In TensorFlow this might look like

1 v = tf.Variable([[0.0, 1.0, 2.0], [0.0, -1.0, -2.0]])
2 for x, y in train_data:
3 with tf.GradientTape() as tape:
4 y_pred = tf.matmul(x, v)
5 loss = loss_fn(y, y_pred) # primary loss
6 loss += 0.0001*tf.reduce_sum(v**2) # first iter: 0.0001*10

= 0.001↪→

7 # ... compute gradient, update model

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Weight regularization in TensorFlow - layer

1 dense = tf.keras.layers.Dense(10,
kernel_regularizer=tf.keras.regularizers.l2(0.0001))↪→

2 # each time dense is run for input x, a loss is added to
dense.losses↪→

3 for x, y in train_data:
4 with tf.GradientTape() as tape:
5 y_pred = dense(x)
6 loss = loss_fn(y, y_pred) # primary loss
7 loss += sum(dense.losses) # add regularization loss
8 assert dense.losses[0].numpy() ==

(0.0001*tf.reduce_sum(dense.kernel**2)).numpy()↪→

9 # ... compute gradient, update model

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Weight regularization in TensorFlow - use in model

If you have a tf.keras.Model object, model, the losses for all
layers will be collected into the list model.losses.

1 for x, y in train_data:
2 with tf.GradientTape() as tape:
3 y_pred = model(x, training=True)
4 loss = loss_fn(y, y_pred) # primary loss
5 loss += sum(model.losses) # add regularization loss for all

layers↪→

6 # ... compute gradient, update model

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Dropout

Figure: Left: Inference execution of model. Right: sample of train
execution.

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

TensorFlow dropout

1 dropout = tf.keras.layers.Dropout(0.5)
2 tf.random.set_seed(123)
3 x = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
4 dropout(x, training=True) # [[0., 2., 0.], [2., 2., 2.]]
5 dropout(x, training=True) # [[2., 0., 2.], [2., 2., 0.]]
6 dropout(x, training=False) # [[1., 1., 1.], [1., 1., 1.]]

• Different behaviours during training and inference (randomness
only during training)
• Expected value remains the same

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Batch normalization

• Unit normalize the input of a neuron, or set of (related)
neurons, over the batch.
• Idea: keep mean and standard deviation of input fairly

constant to improve optimization.
• Many theories why it works.

• Turns out randomness also act as regularization.
• Your best friend and your worst enemy

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

TensorFlow batch normalization

1 batch_norm = tf.keras.layers.BatchNormalization(axis=-1,
center=False, scale=False)↪→

2 x = np.array([[-1.0, 4.0, 1.0], [1.0, -4.0, 3.0]])
3 # [batch_size, num_features] == [2, 3]
4 # feature 1: mean = 0, std ~= 1
5 # feature 2: mean = 0, std ~= 4
6 # feature 3: mean = 2, std ~= 1
7 batch_norm(x, training=True) # ~= [[-1.0, 1.0, -1.0], [1.0,

-1.0, 1.0]]↪→

8 batch_norm(x, training=False) # ~= ?

• Different behaviours during training and inference (randomness
only during training)
• Expected value about the same

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Batch normalization for image data
For a tensor [batch_size × height × width × depth], normalize
“template matching scores” for each template d by

µd ←
1

N ∗ H ∗W

N∑
i=1

H∑
h=1

W∑
w=1

xi ,h,w ,d (2)

σ2d ←
1

N ∗ H ∗W

N∑
i=1

H∑
h=1

W∑
w=1

(xi ,h,w ,d − µd)2 (3)

x̂i ,h,w ,d ←
xi ,h,w ,d − µd√

(σ2d + ε)
(4)

yi ,h,w ,d ← γx̂i ,h,w ,d + β (5)

where N, H and W represents batch size, height and width.
• “Template/Feature more present than usual or not”
• During inference we use stored values for µd and σd .
• scale and center params in BatchNormalization layer

corresponds to γ and β respectively

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Data augmentation
Idea: apply random transformation to X that does not alter Y .
• Normally you would like result X ′ to be plausible, i.e. could

have been a sample from the distribution of interest
• Which transformation you may use is application-dependent.
• May also have transformations that change Y as long as we

know the effect. E.g. flipping image and label image for
semantic segmentation.

Image data
• Horizontal mirroring (issue

for objects not left/right
symmetric)
• Random crop
• Scale
• Aspect ratio
• Lightning etc.

Text data
• Synonym insertion
• Back-translation: translate

and translate back with e.g.
Google Translate!!!

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Reguluarization summary

• Data augmentation - randomness in input ==> “increases”
training data set
• Dropout - randomness in activations
• Batch normalization - randomness in activations
• Usually either dropout or batch normalization enough
• Weight regularization - penalizes large weights (“non-smooth

function”)

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Hyperparameters

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Hyperparameters to search

From Wikipedia:

In machine learning, a hyperparameter is a parameter
whose value is used to control the learning process.
By contrast, the values of other parameters (typically
node weights) are derived via training.

Important examples are:
• Learning rate (and learning rate schedule)
• Regularization params: L2, (dropout)
• Model architecture

• What is the search space?

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Search strategies

• Random search rather than grid search
• Logscale when appropriate
• Careful with best values on border
• May refine search

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Getting started

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Install TensorFlow

Need Python 3.5-3.8. In case of GPU, install prerequisites first.
On Linux/Ubuntu (without virtual environment)

1 pip3 install --upgrade pip
2 pip3 install --user tensorflow>=2

• See https://www.tensorflow.org/install for more.
• API: https://www.tensorflow.org/api_docs/python/
• Tutorials: https://www.tensorflow.org/tutorials

https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install
https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/tutorials

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Why TensorFlow / machine learning framework

• Automatic differentiation
• High-level APIs for deep learning (Keras), yet flexible
• Predefined/pretrained models
• Speed - optimized implementation accross devices

• C++ on CPU
• CUDA on Nvidia GPUs
• TPU
• Embedded devices

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

Predifined/pretrained models

1 from matplotlib import pyplot as plt
2

3 model = tf.keras.applications.NASNetMobile(weights="imagenet")
4 image_file = tf.keras.utils.get_file("dog.jpg",

"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRDg8 c
cZEWA2vuBWvVwGqgilDtKtJKQN-vr17AwwiyOF8C1id81J")

↪→

↪→

5 image = plt.imread(image_file)
6 plt.imshow(image); plt.show()
7

8 # resize and preprocess to what model expects
9 image = tf.expand_dims(tf.image.resize(image, [224, 224]), 0)

10 image = tf.keras.applications.nasnet.preprocess_input(image)
11 p = model(image)[0] # 1000-dimensional vector with probabilities

Neural Networks CNN Architectures Fitness Optimization Regularization Hyperparameters Getting started

12 # Show labels and probabilty for top5 predictions
13 sorted_indices = tf.argsort(p, direction="DESCENDING")
14 labels_path = tf.keras.utils.get_file('ImageNetLabels.txt','htt c

ps://storage.googleapis.com/download.tensorflow.org/data/Im c
ageNetLabels.txt')

↪→

↪→

15 imagenet_labels = np.array(open(labels_path).read().splitlines(c
))

16 for idx in sorted_indices[:5]:
17 print("%25s: %g" % (imagenet_labels[idx], p[idx]))

• Also unofficial/random models from community
• Use as part of larger system and/or finetuning.

	Neural Networks
	Neuron
	Network of neurons

	CNN Architectures
	Convolutional neural networks

	Fitness
	Optimization
	Regularization
	Hyperparameters
	Getting started

