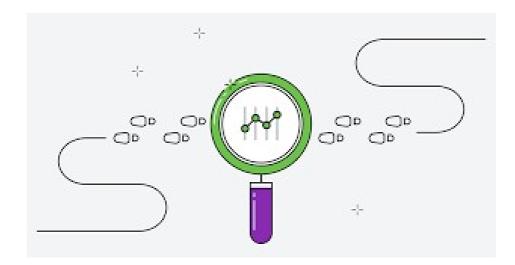
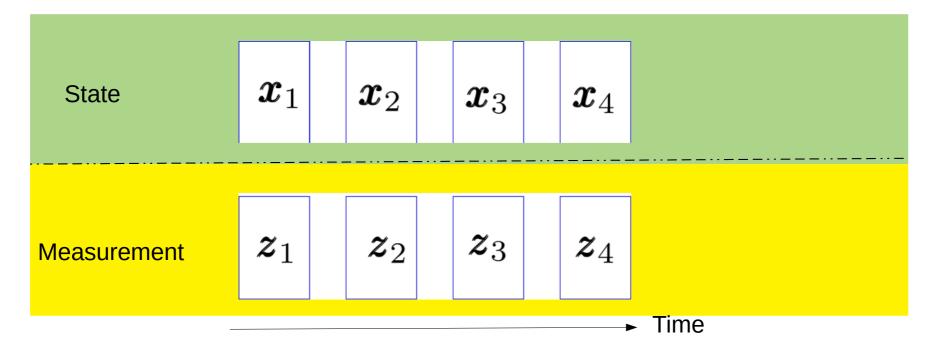
Object Tracking with Deep Learning

Narada Warakagoda



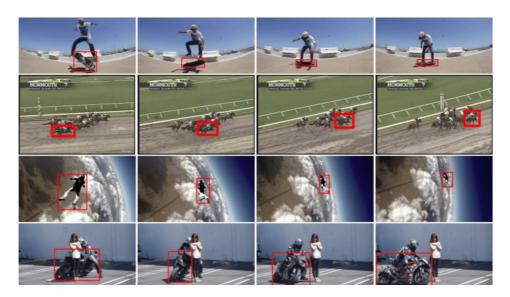
What is Tracking?

- Process of successively determining the state of an object or objects based on noisy measurements.
 - State: position, velocity, pose etc.
 - Measurements: Radar, Sonar, Camera etc.



Visual Tracking

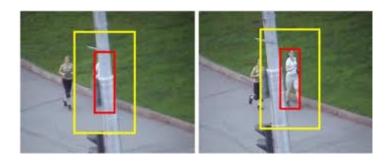
- The process of locating dynamic object(s) in successive frames of a video
 - Special case of general object tracking
 - Information exploited
 - Appearance of objects
 - History (motion) of objects



https://neurohive.io/en/datasets/new-datasets-for-object-tracking/

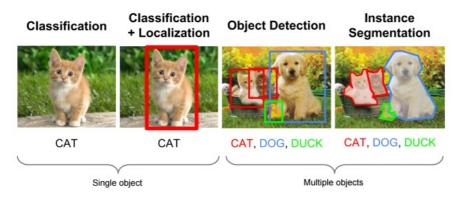
Challenges of Visual Tracking

- Occlusion
- Identity switches
- Motion blur
- Viewpoint variation
- Scale change
- Illumination variation
- Background clutter
- Low resolution



Classification of Tracking Algorithms

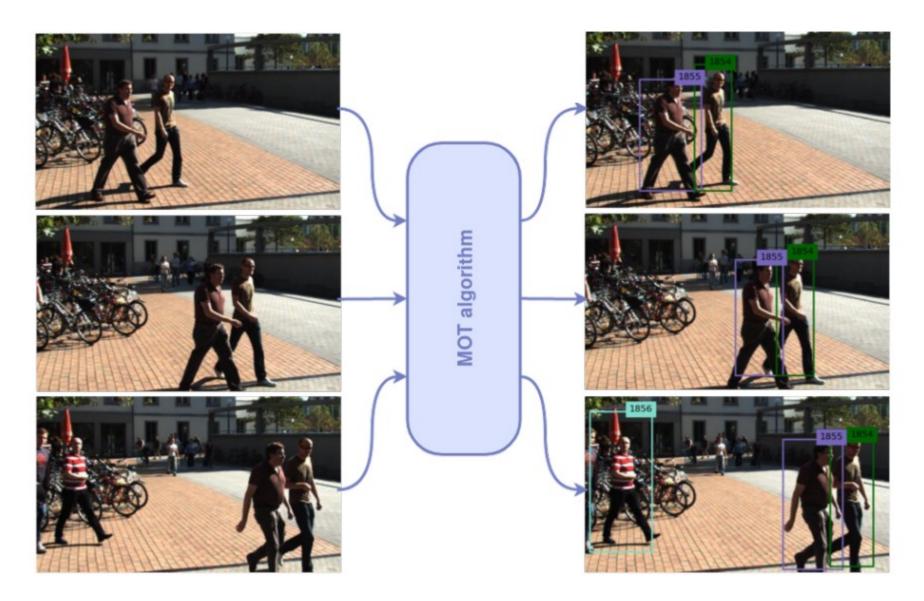
- Detection based vs detection free
 - Detection vs localization of objects



- Single object (target) vs multiple object (target)
 - How many objects are of interest?
- On-line vs off-line (bidirectional)
 - Can we use future frames?
- On-line training vs off-line training
 - Can the system adapt to data?

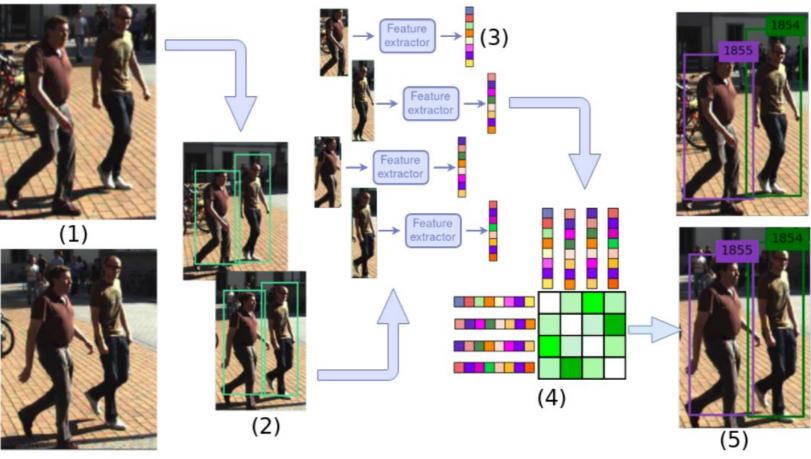
https://cv-tricks.com/object-tracking/quick-guide-mdnet-goturn-rolo/

Multi-Object Tracking (MOT)



Deep learning in video multi-object tracking, a survey, Gioele Ciaparrone et. Al 2019

MOT Workflow



- 1) Video frames
- 2) Detection
- 3) Feature extraction
- 4) Affinity computation
- 5) Association

Deep learning can be employed in all these steps

Deep learning in video multi-object tracking, a survey, Gioele Ciaparrone et. Al 2019

Deep Learning for Detection

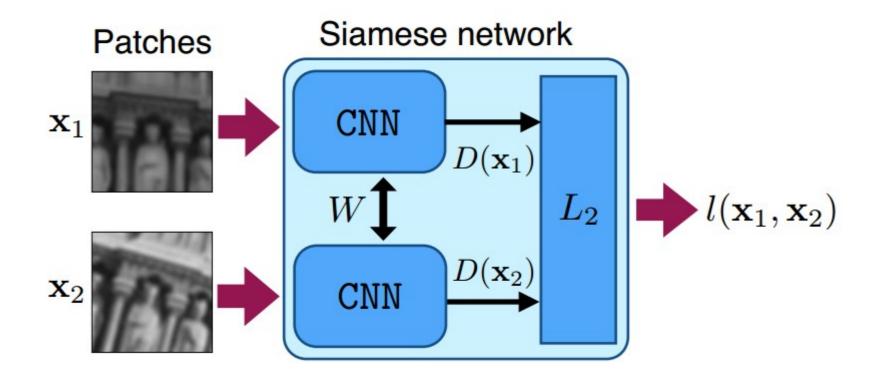
- Several well-known systems
 - Faster R-CNN
 - Single Shot Detector (SSD)
 - You Only Look Once (YOLO)
 - Detection Transformer (DETR)

• We do not discuss detection systems

Deep Learning for Feature Extraction

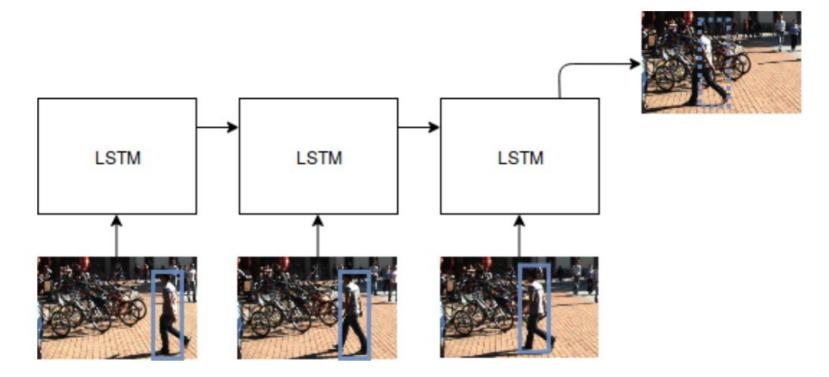
- Mainly two types of features
 - Visual appearance
 - Motion
- Visual feature extraction
 - Auto-encoders
 - CNN
 - Siamese Networks
- Motion feature extraction
 - RNN/LSTM
 - CNN + Correlation filter
 - Reinforcement Learning

Visual Feature Extraction Siamese Networks



- In training minimize distance I between image patch pairs
- In inference CNN output gives features

Motion Feature Extraction LSTM Networks

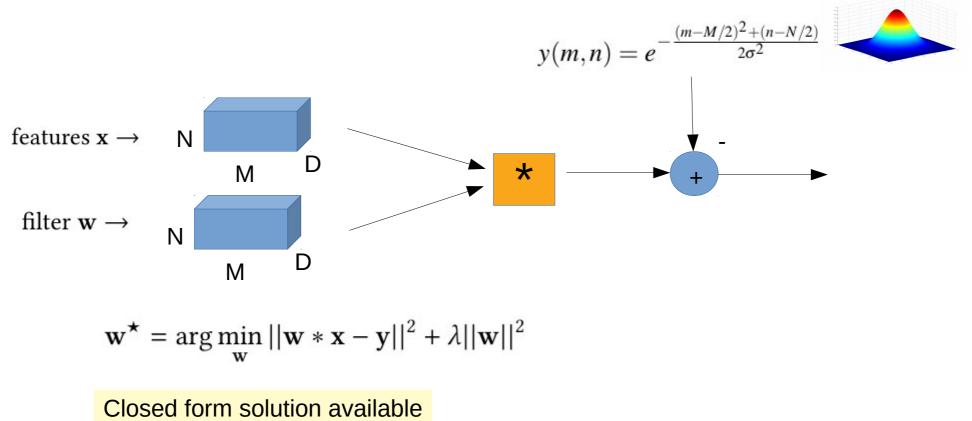


Deep learning in video multi-object tracking, a survey, Gioele Ciaparrone et. Al 2019

- LSTM network predicts the bounding box for the next frame based on the history
- Predicted bounding box can be used (as a feature) in computing affinity with other objects

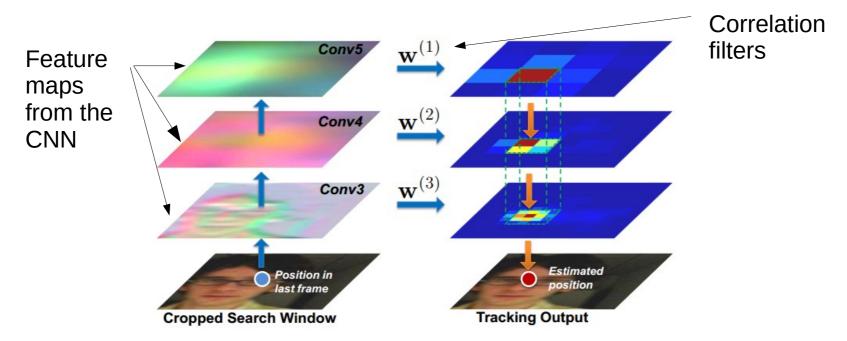
Motion Feature Extraction CNN + Correlation filter

- CNN features are good for appearance representation, not as good for location representation
- Use a correlation filter to estimate the location.
- Correlation filter is a linear filter trained to maximize response at the target location.



Hierarchical Convolutional Features for Visual Tracking Chao Ma et. al, 2015

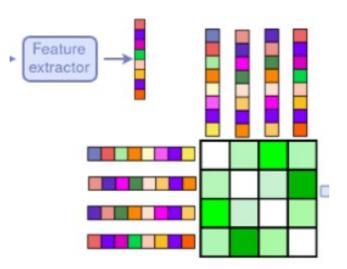
Motion Feature Extraction CNN + Correlation filter



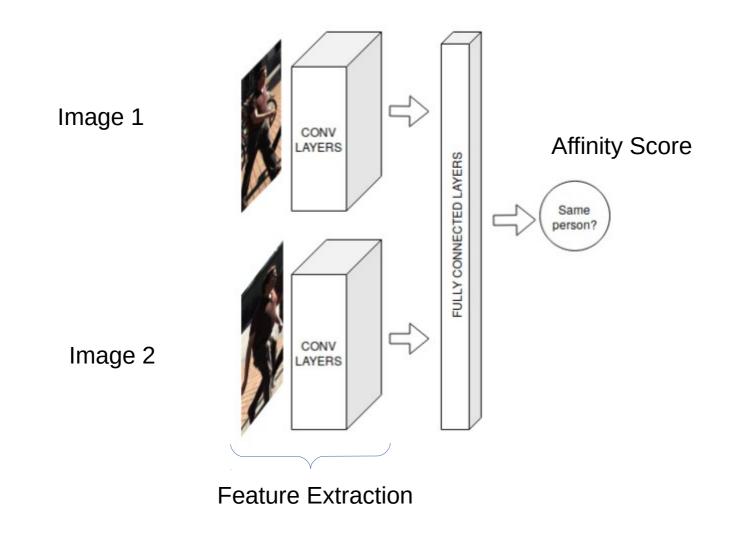
- Pre-trained CNN is used for generating feature maps at different layers
- For each frame of the video
 - Apply correlation filters and estimate the object location
 - Move to the estimated location
 - Update correlation filter parameters (use the closed form)
- Object location = motion feature

Deep Learning for Affinity Computation

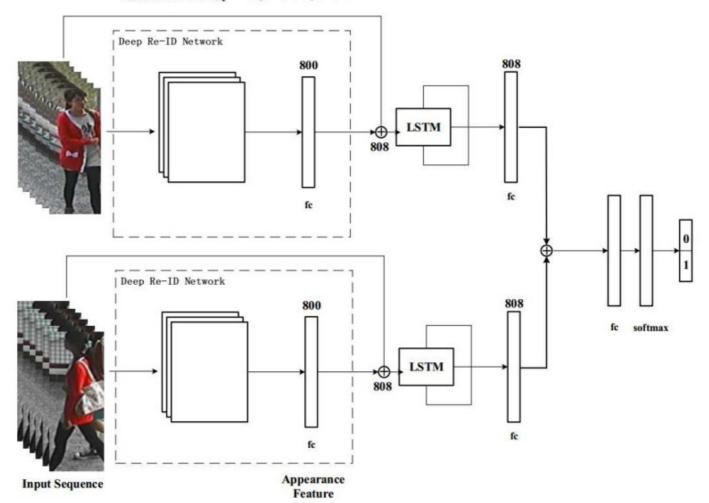
- Siamese CNNs
- Siamese LSTMs
- Affinity computation is often merged with feature extraction.



Siamese CNNs



Siamese LSTMs



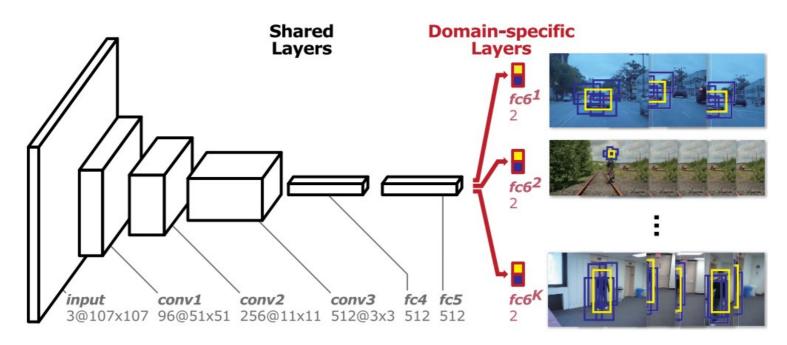
Motion and Velocity $(x, y, w, h, \dot{x}, \dot{y}, w, \dot{h})$

Deep Learning for Association

- Deep Learning is not widely used for association
- DL can be used for a related task Track management
 - Stop a track
 - Split a track
 - Start a new track
- Deep Reinforcement Learning is a candidate

Popular Deep Learning Based Tracking Systems

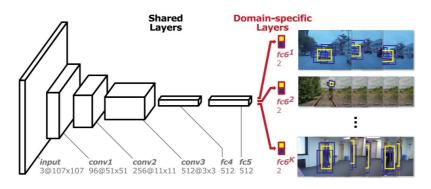
Multi-Domain Convolutional Net for Tracking (MDNet)



- Considers the problem of tracking of an arbitrary object.
- Object class in tracking can be a completely new class than in training
- Adaptation (re-training) in tracking is necessary
- Available data in tracking is limited
 - Make the trainable parts small
 - Shared layers are trained in the training phase (fine tuned in tracking phase).
 - Domain specific layers are trained in the tracking phase (from scratch).

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, Hyeonseob Nam and Bohyung Han, 2016

MDNet Operation - Training

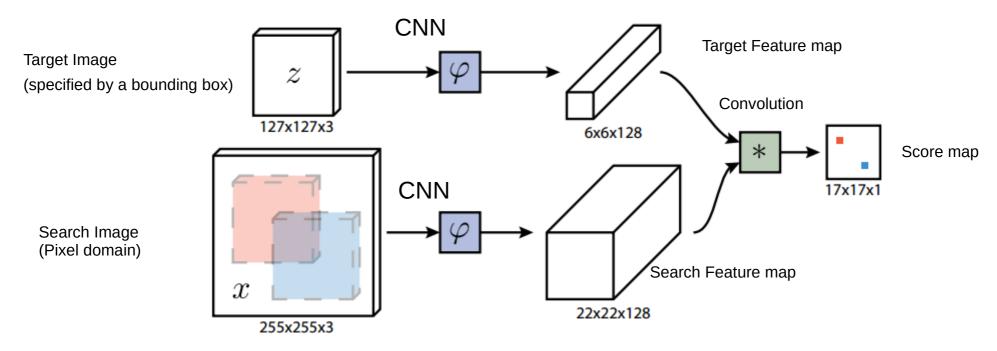


- Collect data from multiple domains
 - Images patches of objects (positive samples)
 - Image patches of background (negative samples)
- Train the system to classify the image patches
 - Positive samples to class 1
 - Negative samples to class 0
 - If the data sample belongs to domain D
 - Update the shared layer parameters in training
 - Update the classification head for domain D

MDNet Operation - Tracking

- 1. Remove all the domain specific heads
- 2. Add a new head (w) and initialize with random values
- 3. Take the test sequence and the start bounding box
- 4. Draw random patches around the start bounding box and categorize as positive samples (S+) and negative samples (S-)
 - S+ = samples which have overlaps with the start bounding box (eg: IoU > some threshold)
 - S- = Otherwise
- 5. Fine-tune shared layers and train (w) with S+ and S-
- 6. Let the current target x(t) be the image patch of the bounding box
- 7. From the next image draw N random patches in translation and scale using a Gaussian distribution whose mean is the position and scale of x(t)
- 8. Classify the random patches. Find the patch with the maximum probability x*(t)
- 9. If probability of $x^{*}(t) > 0.5$
 - Draw samples around x*(t)
 - Classify them as as S+ and S-
 - Add them to an online training set
- 10. If probability of $x^{*}(t) < 0.5$
 - Fine-tune shared layers and train w with the online training set
- 11. Let $x(t) = x^{*}(t)$ and go to step 7

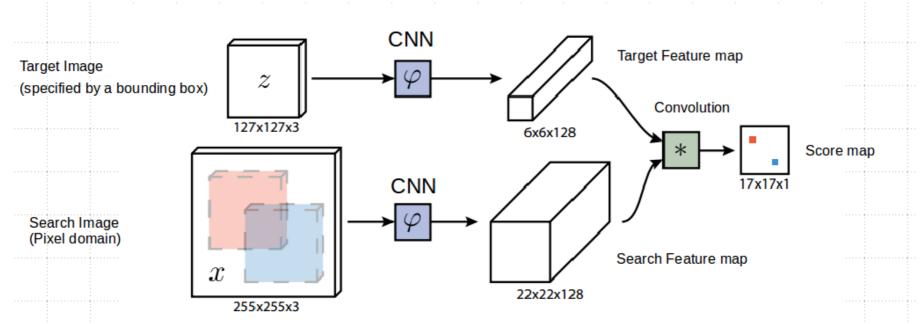
Fully Convolutional Siamese Network (SiamFC)



- Applied to Single Object Tracking (SOT)
- Arbitrary object tracking (i.e. object/object class to be tracked is not known a-priori)
 - Only the bounding box is given
- Trained to learn the similarity between the target image and the search image
- Fully Convolutional
 - Translations in pixel domain are uniquely corresponding to the translations in the feature domain
 - Usual convolutional network operations satisfy this, unless padding is used.

Fully-Convolutional Siamese Networks for Object Tracking, Luca Bertinetto et.al, 2016

SiamFC Training

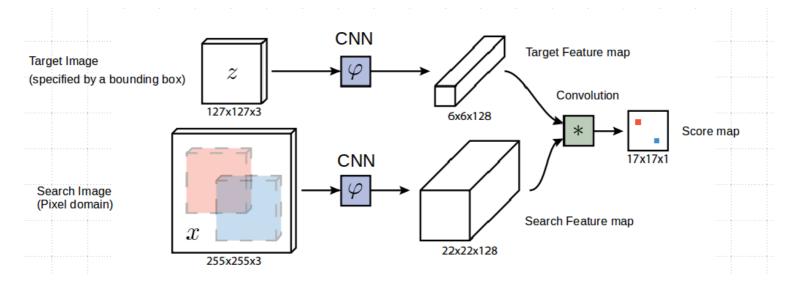


- Prepare a data set of image pairs taken from videos
 - Similar and different image pairs.
- Feed with each image pair and calculate the loss

 $\ell(y, v) = \log(1 + \exp(-yv))$

- v is the corresponding value in the score map
- y is the label (+1 for similar images, -1 otherwise)
- Train the network to minimize the average loss

SiamFC Tracking

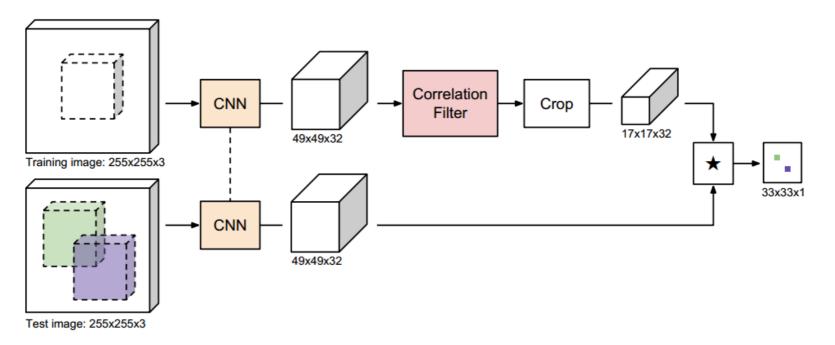


- 1) Get the initial target z (bounding box)
- 2) Prepare the search images
 - Get the next frame in video
 - Make several (3-5) copies and scale them with a predefined set of ratios
- 3) Run target and search images through the network and find the max score for each scale
- 4) Set the track location to be the location of the max score
- 5) Go to step 2 above and repeat

Strengths & Weaknesses of SiamFC

- Strengths
 - Fast (due to efficient matching)
 - No re-training at test-time (in tracking)
- Weaknesses
 - Differences in trainset and testset can lead to performance degradation
 - Handling scale invariance is not very good
 - When the background is filled with other objects (distractors), SiamFC is not robust

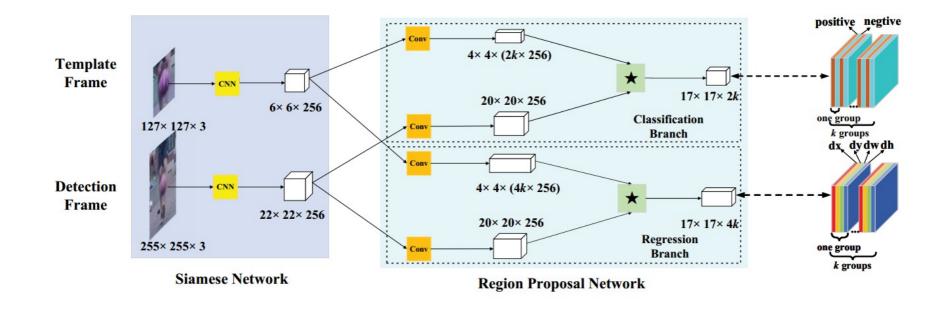
SiamFC with Correlation Filter



- Plain SiamFC is fixed in tracking
 - Differences in test set and train set can hurt the performance
- SiamFC with correlation filter adds an adaptable element (correlation filter) to the architecture
 - Correlation filter parameters are updated (re-trained) in tracking
 - Correlation filter is a linear operation with few parameters
 - Can be re-trained fast
 - Can be re-trained with few data samples.

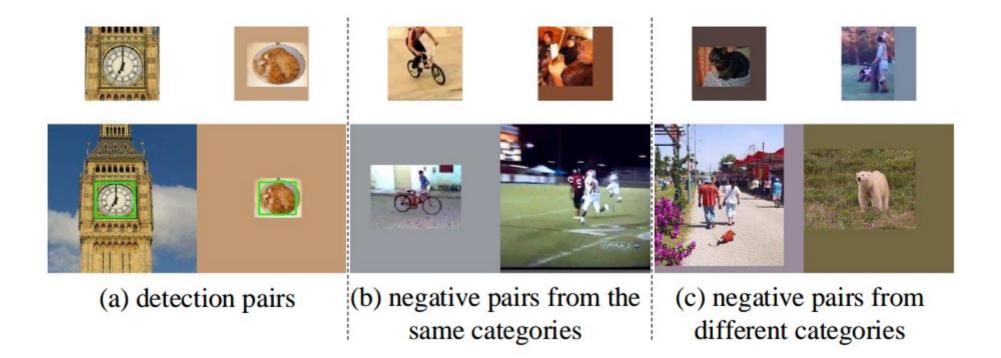
End-to-end representation learning for Correlation Filter based tracking, Jack Valmadre et.al, 2017

SiamFC RPN



- Improves scale invariance
- Instead of running search images of different scales, use a regional proposal network (RPN)
 - Regression: Predict the bounding box
 - Classification: Classification score for the bounding box
- Involved procedure for picking the track location.

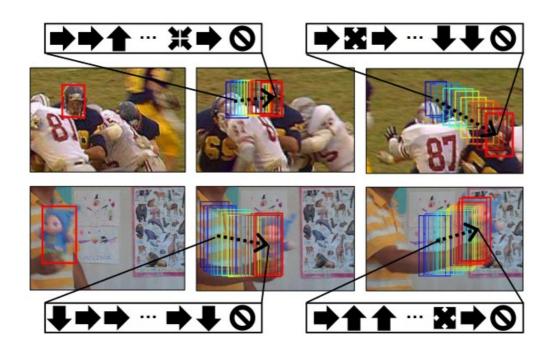
Distraction Aware Training



- Use a training database with
 - Augmented positive pairs
 - Semantically negative pairs

Distractor-aware Siamese Networks for Visual Object Tracking, Zheng Zhu et.al 2018

Action Desicion Network (ADNet)



- Detect objects by learning transitions to an initial bounding boxes
- Relatively light computation
- Better handling of scale and translation

ADNet Architecture



- Action a_t: One operation drawn from a set of 11 (*left, right, up, down, big-left, big-right, big-up, big-down, scale-up, scale-down, stop*)

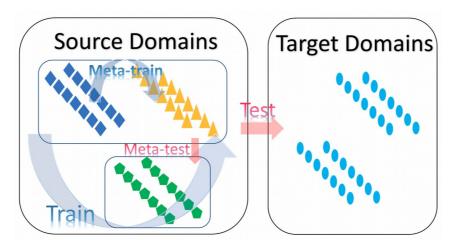
 [f (m a)]
- Environment (state transition)
- $\begin{bmatrix} f_p(p_t, a_t) \\ f_d(d_t, a_t) \end{bmatrix}$
- Reward: 1 if bounding box lands on the ground truth when action is *stop*, 0 otherwise

ADNet Operation

- Training (Two steps):
 - 1. Supervised training
 - Generate state-action pairs by taking random samples around the ground truths
 - Train the policy to map states to actions
 - 2. Reinforcement learning
 - Policy gradient based training for each image
 - Bounding box at **Stop** action is transferred to the next image
- Tracking (testing):
 - 1. Policy-environment interaction loop
 - 2. Online adaptation
 - Similar to the supervised training above
 - Currently predicted state (bounding box is used as the ground truth)

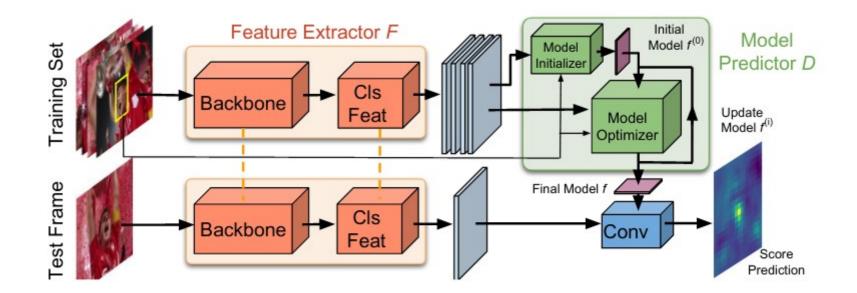
Tracking as Few Shot Learning

- A core problem of general visual tracking is "Class(es) of the object(s) to be tracked is (are) NOT known at training time"
- The tracker needs to adapt to new object classes after seeing few examples
- Tracking needs to solve a few-shot learning (meta-learning) problem.



Discriminative Model Prediction (DiMP)

- Contains meta-learning elements
- Upper branch estimates model parameters and transfers to the lower branch
- In tracking, the model parameters are adapted to the new classes and transferred to the lower class.



Learning Discriminative Model Prediction for Tracking Bhat G et.al, 2020