Generative models for continuous random variables: GAN and GAIL

Eilif Solberg

TEK5040/TEK9040

Outline

Introduction

Introduction

```
Why model of data distribution?
   Fitting a probability distribution
Generative Adverserial Networks (GAN)
   Introduction
   Training
   TensorFlow example
   Does it work?
   Conditional GANs
   Applications
   Evaluation (not curriculum)
   Challenges (not curriculum)
```

Generative Adverserial Imitation Learning (GAIL)

4 D > 4 P > 4 E > 4 E > 9 Q (P

Section 1

Introduction

Subsection 1

Why model of data distribution?

Why model of data distribution?

Analyzing data:

- Figure out the uncommon or rare elements
 - ► Anomalies, outliers, errors
- Find typical elements / prototypes

Prediction:

- How likely is something to happen?
- RL: If we can create model for environment, don't have to explore, but can just do planning.

Generalization: learning a familiy of conditional distributions.

Recall classification: learned family of distributions Y|X with shared parameters.

Why model of data distribution?

Analyzing data:

- Figure out the uncommon or rare elements
 - Anomalies, outliers, errors
- Find typical elements / prototypes

Prediction:

- How likely is something to happen?
- RL: If we can create model for environment, don't have to explore, but can just do planning.

Generalization: learning a familiy of conditional distributions.

Recall classification: learned family of distributions Y|X with shared parameters.

Both knowing how likely something is and being able to generate samples can be useful depending on the situation.

Subsection 2

Fitting a probability distribution

Fitting a probability distribution

Given data points

$$-5.17, -1.01, -2.43, -6.01, -4.16, 0.3, -7.85, -3.86, -0.47\dots$$

▶ How do we fit a probability distribution?

Fitting a probability distribution

Given data points

$$-5.17, -1.01, -2.43, -6.01, -4.16, 0.3, -7.85, -3.86, -0.47\dots$$

- ▶ How do we fit a probability distribution?
- What do we mean by fitting a probability distribution?

Solution I

Define parametric family of functions, p_{θ} , $\theta \in \Theta$, and then find the parameters that maximizes the *likelihood* of the data, or equivalently, the log-likelihood

$$\operatorname{argmax}_{\theta} \sum_{i=1}^{N} \log p_{\theta}(x_i)$$

Solution I

Define parametric family of functions, $p_{\theta}, \theta \in \Theta$, and then find the parameters that maximizes the *likelihood* of the data, or equivalently, the log-likelihood

$$\operatorname{argmax}_{\theta} \sum_{i=1}^{N} \log p_{\theta}(x_i)$$

This minimizes the Kullback-Leibler divergence to the data distribution, i.e. $KL(p_{data} \parallel p_{\theta})$.

Visualizing data distribution

Figure: Histogram for data

Visualizing data distribution

Figure: Histogram for data

► Normally distributed?

Fit distribution

Assuming normal distribution

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i, \qquad \hat{\sigma^2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Fit distribution

Assuming normal distribution

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i, \qquad \hat{\sigma^2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Fit distribution

Assuming normal distribution

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i, \qquad \hat{\sigma^2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Generally may require iterative procedure to maximize likelihood.

Solution II

- ▶ Define a random variable Z on \mathbb{R}^k for some k, e.g. $Z \sim \mathcal{N}(0, I)$. Let p_z denote distribution.
- ▶ Define $G: \mathbb{R}^k \to \mathbb{R}^d$
- ► Generate samples by
 - 1. Draw z from p_z .
 - 2. Map $z \to G(z)$.

Solution II continued

Advantages:

- ► Easy to generate samples
- ▶ Works even if X does not have density on \mathbb{R}^d .
- Can use complex functions, e.g. neural networks to represent distribution

Disadvantages:

▶ Not straightforward to find likelihood of samples.

Solution II continued

Advantages:

- ► Easy to generate samples
- ▶ Works even if X does not have density on \mathbb{R}^d .
- Can use complex functions, e.g. neural networks to represent distribution

Disadvantages:

Not straightforward to find likelihood of samples.

How do we fit *G* though?

Section 2

Generative Adverserial Networks (GAN)

Subsection 1

Introduction

Analogy

https://towardsdatascience.com/demystifying-generative-adversarial-networks-c076d8db8f44

Adverserial networks

Generative Adversarial Nets (2014)

Adverserial networks

Generative Adversarial Nets (2014)

- ightharpoonup Two networks: generator G and discriminator D.
- ▶ Discriminator: try to classify an input as real or fake (generated), outputs probability in [0,1], where 1 means real.
- Generator: try to fool discriminator
- Minimax game:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{\mathsf{data}}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$$

Minimax solutoin

Let p_g be the density function of the distribution induced by G and p_{data} be the density of data distribution¹. Optimal D is given by

$$D^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}$$

¹We assume this exists here.

Minimax solutoin

Let p_g be the density function of the distribution induced by G and p_{data} be the density of data distribution¹. Optimal D is given by

$$D^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}$$

Inserting D^* in minimax equation and rewriting leads to

$$\min_{G} 2 * JSD(p_{\mathsf{data}} \parallel p_g) - \log(4)$$

where JSD is the Jensen-Shannon divergence. The minimum value is achieved at $p_g = p_{\text{data}}$.

¹We assume this exists here.

Subsection 2

Training

GAN overview

https:

//developers.google.com/machine-learning/gan/generator

Discriminator loss (minibatch)

Assume discriminator D parametrized by η .

$$-\Big(\frac{1}{m}\sum_{i=1}^{m}\log(D_{\eta}(x_{i}^{\mathit{real}}))+\frac{1}{m}\sum_{i=1}^{m}\log(1-D_{\eta}(x_{i}^{\mathit{fake}}))\Big)$$

Discriminator loss (minibatch)

Assume discriminator D parametrized by η .

$$-\Big(\frac{1}{m}\sum_{i=1}^{m}\log(D_{\eta}(x_{i}^{\textit{real}}))+\frac{1}{m}\sum_{i=1}^{m}\log(1-D_{\eta}(x_{i}^{\textit{fake}}))\Big)$$

which can also be written as

$$- \Big(\frac{1}{m} \sum_{i=1}^{m} \log(D_{\eta}(x_i)) + \frac{1}{m} \sum_{i=1}^{m} \log(1 - D_{\eta}(G_{\theta}(z_i))) \Big)$$

Discriminator loss (minibatch)

Assume discriminator D parametrized by η .

$$-\Big(\frac{1}{m}\sum_{i=1}^{m}\log(D_{\eta}(x_{i}^{\mathit{real}}))+\frac{1}{m}\sum_{i=1}^{m}\log(1-D_{\eta}(x_{i}^{\mathit{fake}}))\Big)$$

which can also be written as

$$- \Big(\frac{1}{m} \sum_{i=1}^{m} \log(D_{\eta}(x_{i})) + \frac{1}{m} \sum_{i=1}^{m} \log(1 - D_{\eta}(G_{\theta}(z_{i}))) \Big)$$

Note: This is just the normal cross-entropy loss.

Generator loss (minibatch)

Negative of discriminator loss

$$\frac{1}{m} \sum_{i=1}^{m} \log(D_{\eta}(x_{i})) + \frac{1}{m} \sum_{i=1}^{m} \log(1 - D_{\eta}(G_{\theta}(z_{i})))$$

Generator loss (minibatch)

Negative of discriminator loss

$$\frac{1}{m} \sum_{i=1}^{m} \log(D_{\eta}(x_i)) + \frac{1}{m} \sum_{i=1}^{m} \log(1 - D_{\eta}(G_{\theta}(z_i)))$$

As generator cannot influence first term, we may simplify to

$$\frac{1}{m}\sum_{i=1}^m\log(1-D_\eta(G_\theta(z_i)))$$

Algorithm

Algorithm 1 GAN training, k is a hyperparameter (e.g. 1).

for number of training iterations do

for k steps do

Sample minibatch of m noise samples $\{z_1,\ldots,z_m\}$ from noise prior p_z . Sample minibatch of m examples $\{x_1,\ldots,x_m\}$ from data generating distribution $p_{\mathsf{data}}(x)$.

Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\eta} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\eta} \left(x_{i} \right) + \log \left(1 - D_{\eta} \left(G_{\theta} \left(z_{i} \right) \right) \right) \right].$$

end for

Sample minibatch of m noise samples $\{z_1,\ldots,z_m\}$ from noise prior p_z . Update the generator by descending its stochastic gradient:

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D_{\eta}\left(G_{\theta}\left(z_{i}\right)\right)\right)$$

end for

Training I

Figure: Green: p_g , black: p_{data} , blue: discriminator score.

Generative Adversarial Nets

Training II

Generative Adversarial Nets

Training III

Generative Adversarial Nets

Training IV

Generative Adversarial Nets

Subsection 3

TensorFlow example

TensorFlow example I

- import numpy as np
- 2 from scipy.stats import norm
- 3 import tensorflow as tf
- 4 from matplotlib import pyplot as plt

TensorFlow example II

```
class Generator(tf.keras.Model):
5
      def __init__(self):
6
         super(Generator, self).__init__()
         self.w = tf.Variable(1, dtype=tf.float32)
8
         self.b = tf.Variable(0, dtype=tf.float32)
10
      def call(self, z):
11
        x = self.w*z + self.b
12
13
        return x
14
    class Discriminator(tf.keras.Model):
15
16
      def __init__(self, hidden_units=8):
         super(Discriminator, self).__init__()
17
18
         self.dense = tf.keras.layers.Dense(hidden_units)
         self.logits = tf.keras.layers.Dense(1,
19

→ kernel initializer=tf.keras.initializers.zeros())
20
      def call(self, x):
21
        x = tf.expand_dims(x, axis=-1)
22
         logits = self.logits(tf.nn.relu(self.dense(x)))
23
        logits = tf.squeeze(logits, axis=-1)
24
        p = 1 / (1 + tf.math.exp(-logits))
25
26
        return p
```

TensorFlow example III

```
# parameters true distribution
27
    min = -4
28
    sigma = 2
29
30
31
    def visualize(G, D):
      interval = np.linspace(-10, 10, 100)
32
      d_values = D(interval)
33
      g_dist = norm.pdf(interval, loc=G.b.numpy(), scale=G.w.numpy()
34
    ))
      true_dist = norm.pdf(interval, loc=mu, scale=sigma)
35
      plt.plot(interval, true_dist, label="true_dist")
36
      plt.plot(interval, g_dist, label="G_dist")
37
      plt.plot(interval, d_values, label="D, p_true_data(x)")
38
      plt.legend()
39
      plt.show()
40
```

TensorFlow example IV

```
N = 32
41
    x = np.random.normal(loc=mu, scale=sigma, size=N)
42
    indices = np.array(range(N))
43
44
    G = Generator()
45
    D = Discriminator()
46
47
    D_learning_rate = 0.1
48
    G_learning_rate = 0.1
49
    D_optimizer = tf.keras.optimizers.Adam(D_learning_rate)
50
    G_optimizer = tf.keras.optimizers.Adam(G_learning_rate)
51
52
    batch size = 16
53
    critic_iters = 1
54
55
    iterations = 100
56
    plot_interval = 1
```

TensorFlow example V

```
for iteration in range(iterations):
57
      if iteration % plot_interval == 0: visualize(G, D)
58
59
      # discriminator update
60
      for _ in range(critic_iters):
61
         # sample real data (from data distribution)
62
        np.random.shuffle(indices)
63
        real = x[indices[:batch size]]
64
        z = tf.random.normal(shape=[batch_size])
65
66
        fake = G(z)
         with tf.GradientTape() as tape:
67
68
           loss_real = tf.reduce_mean(-tf.math.log(D(real)))
           loss_fake = tf.reduce_mean(-tf.math.log(1-D(fake)))
69
70
           D loss = loss real + loss fake
         grads = tape.gradient(D_loss, D.trainable_variables)
71
        D_optimizer.apply_gradients(zip(grads, D.trainable_variables))
72
73
      # generator update
74
      z = tf.random.normal(shape=[batch_size])
75
      with tf.GradientTape() as tape:
76
        G_{loss} = tf.reduce_mean(tf.math.log(1-D(G(z))))
77
      grads = tape.gradient(G_loss, G.trainable_variables)
78
      G_optimizer.apply_gradients(zip(grads, G.trainable_variables))
79
```

Subsection 4

Does it work?

4 years of GAN progress

The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation

Does it end there?

Does it end there?

A Style-Based Generator Architecture for Generative Adversarial Networks

Subsection 5

Conditional GANs

Conditional GANs

- ▶ Before: data were samples $x_1, x_2, ..., x_N$
- Now: data are sample pairs $(x_1, c_1), (x_2, c_2), \dots, (x_N, c_N)$
- ► Generator and discriminator get *c* as extra input:
 - ightharpoonup G(z,c)
 - \triangleright D(x,c)

Subsection 6

Applications

Text-to-image

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

(x, c) = (image, corresponding sentence)

Text-to-image II

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Image impainting

Figure: Conditional image

Figure: L2 loss

Figure: Sample with GAN loss

Context Encoders: Feature Learning by Inpainting

ightharpoonup (x, c) = (image, image with missing data)

Super-resolution

Figure: Bicubic

Figure: SRGAN

Figure: original

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

(x, c) = (image, lower resolution image)

CycleGAN: unpaired image-to-image translation

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

► TensorFlow tutorial on CycleGan

CycleGAN

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

CycleGAN: how?

\triangleright Where is z?

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

CycleGAN: how?

- ▶ Two generators *F* and *G*, each with their own discriminator.
 - Takes samples from other distribution as input, not z!
- ▶ Learn F such that $x \sim X$, F(x) should be distributed as Y.
- ▶ Learn G such that $y \sim Y$, G(y) should be distributed as X.
- Need additional constraints to get pairing that we need for translation. Propose cycle-consistency:
 - ▶ Losses on G(F(x)) x and F(G(y)) y
 - ▶ In order to reconstruct the information must be retained in the target domain, so should perhaps be a similar image?
 - Likely some conflict between the different goals...

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Subsection 7

Evaluation (not curriculum)

► No likelihood to evaluate

- No likelihood to evaluate
- Look at discriminator?
 - ▶ Optimal discriminator loss is $2 * JSD(p_{data}, p_g) log(4)$ where JSD is the Jensen-Shannon divergence.

- No likelihood to evaluate
- Look at discriminator?
 - ▶ Optimal discriminator loss is $2 * JSD(p_{data}, p_g) log(4)$ where JSD is the Jensen-Shannon divergence.
- Discriminator likely imperfect

- No likelihood to evaluate
- Look at discriminator?
 - ▶ Optimal discriminator loss is $2 * JSD(p_{data}, p_g) log(4)$ where JSD is the Jensen-Shannon divergence.
- Discriminator likely imperfect
- A single number not enough? Quality vs diversity

Visual inspection

For image data we may look at images...

Quality may be eaiser to evaluate then diversity

FID

- Extract features and estimate difference in distributions in these.
- Assuming features are normally distributed (quite strong assumption!), can measure Fréchet distance (also known as Wasserstein-2 distance), which is given by

$$d^{2}((m,C),(m_{g},C_{g})) = \|m-m_{g}\|_{2}^{2} + trace(C+C_{g}-2(CC_{g})^{1/2})$$

where (m, C) and (m_g, C_g) are the mean and covariance of the features of the real and generated data respectively, and the *trace* of a matrix is the sum of its diagonal elements.

FID

- Extract features and estimate difference in distributions in these.
- Assuming features are normally distributed (quite strong assumption!), can measure Fréchet distance (also known as Wasserstein-2 distance), which is given by

$$d^{2}((m,C),(m_{g},C_{g})) = \|m-m_{g}\|_{2}^{2} + trace(C+C_{g}-2(CC_{g})^{1/2})$$

where (m, C) and (m_g, C_g) are the mean and covariance of the features of the real and generated data respectively, and the *trace* of a matrix is the sum of its diagonal elements.

- ► To make comparable: Use Inception architecture with weights from http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz.
 - Known as Fréchet Inception Distance (FID)

GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium

FID example

Figure: Blur

Figure: Gaussian noise

Figure: Mixed in ImageNet images

Empirically proved to correlate well(?) with visual inspection.

GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium

Subsection 8

Challenges (not curriculum)

Challenges

- ▶ Not obvous how to track progress or measure performance
- ightharpoonup Training can be unstable due to interactions between G and D
 - ▶ Input distribution of *D* changes over time
 - Loss function of G changes over time
- Choice of optimizer is important
 - Standard SGD not normally used, Adam popular
- ▶ Mode collapse G only able to capture some of modes in data

Generator loss I

Let D_l denote the logits of D, i.e. $D(x) = \sigma(D_l(x))$ where σ is the sigmoid function.

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log(1 - D(G_{\theta}(z_i))) = \frac{1}{m} \sum_{i=1}^{m} D(G_{\theta}(z_i)) \nabla_{\theta} D_{I}(G_{\theta}(z_i))$$

When generator is poor, may have $D(G_{\theta}(z_i)) \approx 0$, and thus gradients ≈ 0 .

Generator loss I

Let D_l denote the logits of D, i.e. $D(x) = \sigma(D_l(x))$ where σ is the sigmoid function.

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log(1 - D(G_{\theta}(z_i))) = \frac{1}{m} \sum_{i=1}^{m} D(G_{\theta}(z_i)) \nabla_{\theta} D_{I}(G_{\theta}(z_i))$$

When generator is poor, may have $D(G_{\theta}(z_i)) \approx 0$, and thus gradients ≈ 0 . The original GAN paper recommends modified generator loss

$$-\frac{1}{m}\sum_{i=1}^{m}\log(D_{\eta}(G_{\theta}(z_{i})))$$

to mitigate vanishing gradients issue.

Generator loss I

Let D_l denote the logits of D, i.e. $D(x) = \sigma(D_l(x))$ where σ is the sigmoid function.

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log(1 - D(G_{\theta}(z_i))) = \frac{1}{m} \sum_{i=1}^{m} D(G_{\theta}(z_i)) \nabla_{\theta} D_I(G_{\theta}(z_i))$$

When generator is poor, may have $D(G_{\theta}(z_i)) \approx 0$, and thus gradients ≈ 0 . The original GAN paper recommends modified generator loss

$$-\frac{1}{m}\sum_{i=1}^{m}\log(D_{\eta}(G_{\theta}(z_i)))$$

to mitigate vanishing gradients issue. This does however introduce other potential problems: Sample weighting as an explanation for mode collapse in generative adversarial networks

Loss function II

Original GAN loss have some theoretical (and practical?) issues

Wasserstein GAN

Loss function II

Original GAN loss have some theoretical (and practical?) issues

Wasserstein GAN

Note: regularizing discriminator can also mitigate problem.

Wasserstein loss

Wasserstein GAN discriminator loss:

$$-(\frac{1}{m}\sum_{i=1}^m D_{\eta}(x_i) - D_{\eta}(G_{\theta}(z_i))$$

Note that D_{η} no longer outputs a probability, but any real number is valid.

Wasserstein GAN generator loss:

$$-\frac{1}{m}\sum_{i=1}^{m}D_{\eta}(G_{\theta}(z_{i}))$$

• Assumes some Lipschitz-constraints on D_{η} .

Wasserstein loss

Wasserstein GAN discriminator loss:

$$-(\frac{1}{m}\sum_{i=1}^m D_{\eta}(x_i) - D_{\eta}(G_{\theta}(z_i))$$

Note that D_{η} no longer outputs a probability, but any real number is valid.

Wasserstein GAN generator loss:

$$-\frac{1}{m}\sum_{i=1}^{m}D_{\eta}(G_{\theta}(z_{i}))$$

- ▶ Assumes some Lipschitz-constraints on D_{η} .
- ► *G* now tries to minimize Wasserstein distance between generated distribution and data distribution.

Section 3

Generative Adverserial Imitation Learning (GAIL)

Subsection 1

Introduction

Why imitation learning?

Figure: Source: New Frontiers in Imitation Learning.

Smooth Imitation Learning for Online Sequence Prediction

Imitation learning by behaviour cloning

Figure: Source: Interactive Learning for Sequential Decisions and Predictions

Equivalence of policy and occupancy measure

Previously defined ρ_π as the unnormalized discounted visitation frequencies

$$\rho_{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t P_{\pi}(S_0 = s)$$

Equivalence of policy and occupancy measure

Previously defined ρ_π as the unnormalized discounted visitation frequencies

$$\rho_{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t P_{\pi}(S_0 = s)$$

Slightly abusing notation we define the occupancy measure as

$$\rho_{\pi}(s,a) = \pi(a|s) \sum_{t=0}^{\infty} \gamma^t P_{\pi}(S_0 = s)$$

Equivalence of policy and occupancy measure

Previously defined ρ_{π} as the unnormalized discounted visitation frequencies

$$\rho_{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t P_{\pi}(S_0 = s)$$

Slightly abusing notation we define the occupancy measure as

$$\rho_{\pi}(s,a) = \pi(a|s) \sum_{t=0}^{\infty} \gamma^t P_{\pi}(S_0 = s)$$

It turns out that if we have a policy π' with the same occupancy measure as for π , i.e. $\rho_{\pi'}=\rho_{\pi}$, then $\pi'=\pi$.

GAIL

Generative Adversarial Imitation Learning (2016)

- To imitate a policy we may imitate state-action frequencies
- Data samples are (state, action) pairs from expert policy
 - $(s_1, a_1), (s_2, a_2), ..., (s_N, a_N)$
 - Note: not conditional GAN, $x_i = (s_i, a_i)$

GAIL

Generative Adversarial Imitation Learning (2016)

- To imitate a policy we may imitate state-action frequencies
- Data samples are (state, action) pairs from expert policy
 - $(s_1, a_1), (s_2, a_2), ..., (s_N, a_N)$
 - Note: not conditional GAN, $x_i = (s_i, a_i)$
- ▶ Generator is here a deterministic policy $\pi(s) \to a$. By interacting with the environment we get generated/"fake" state-action pairs $(s_1, a_1)_g, (s_2, a_2)_g, \dots, (s_N, a_N)_g$.
- Discriminator takes state, action pairs and try to classify them as real or fake.

GAIL vs GAN

Differences from standard GAN:

- Sequential process
- Policy network don't have directly control over samples, interaction with (possibly stochastic) environment.
- Can't train "generator" by backpropagating through discriminator, instead trained with reinforcement learning with discriminator feedback as reward signal. E.g. generator gets high reward for samples the discriminator finds more real.
- Entropy loss term

GAIL vs GAN

Differences from standard GAN:

- Sequential process
- Policy network don't have directly control over samples, interaction with (possibly stochastic) environment.
- Can't train "generator" by backpropagating through discriminator, instead trained with reinforcement learning with discriminator feedback as reward signal. E.g. generator gets high reward for samples the discriminator finds more real.
- Entropy loss term

Discriminator update is unchanged.

GAIL algorithm

Algorithm 2 Generative adversarial imitation learning

- 1: Input: Expert trajectories $\tau_E \sim \pi_E$, initial policy and discriminator parameters θ_0, η_0
- 2: **for** $i = 0, 1, 2, \ldots$ **do**
- 3: Sample trajectories $\tau_i \sim \pi_{\theta_i}$
- 4: Update the discriminator parameters from η_i to η_{i+1} with the gradient

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_{\eta}\log(D_{\eta}(s,a))] + \hat{\mathbb{E}}_{\tau_{\mathcal{E}}}[\nabla_{\eta}\log(1-D_{\eta}(s,a))]$$
 (1)

5: Take a policy step from θ_i to θ_{i+1} , using the TRPO rule with cost function $\log(D_{\eta_{i+1}}(s,a))$. Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} \left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) Q(\mathbf{s}, \mathbf{a}) \right] - \lambda \nabla_{\theta} H(\pi_{\theta}),$$
where $Q(\bar{\mathbf{s}}, \bar{\mathbf{a}}) = \hat{\mathbb{E}}_{\tau_i} [\log(D_{\eta_{i+1}}(\mathbf{s}, \mathbf{a})) \mid s_0 = \bar{\mathbf{s}}, a_0 = \bar{\mathbf{a}}]$
(2)

6: end for

Note: TRPO is an RL algorithm, you may switch this out with e.g. a PPO iteration (recall second RL lecture).

