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Why model of data distribution?



Why model of data distribution?

Analyzing data:
I Figure out the uncommon or rare elements

I Anomalies, outliers, errors

I Find typical elements / prototypes
Prediction:
I How likely is something to happen?
I RL: If we can create model for environment, don’t have to

explore, but can just do planning.
Generalization: learning a familiy of conditional distributions.
I Recall classification: learned family of distributions Y |X with

shared parameters.

Both knowing how likely something is and being able to generate
samples can be useful depending on the situation.
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Fitting a probability distribution

Given data points

−5.17,−1.01,−2.43,−6.01,−4.16, 0.3,−7.85,−3.86,−0.47 . . .

I How do we fit a probability distribution?

I What do we mean by fitting a probability distribution?
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Solution I

Define parametric family of functions, pθ, θ ∈ Θ, and then find the
parameters that maximizes the likelihood of the data, or
equivalently, the log-likelihood

argmaxθ
N∑

i=1

log pθ(xi )

This minimizes the Kullback-Leibler divergence to the data
distribution, i.e. KL(pdata ‖ pθ).

https://en.wikipedia.org/wiki/Kullback%25E2%2580%2593Leibler_divergence
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Visualizing data distribution

Figure: Histogram for data

I Normally distributed?
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Fit distribution
Assuming normal distribution

µ̂ =
1
N

N∑

i=1

xi , σ̂2 =
1
N

N∑

i=1

(xi − µ̂)2

Generally may require iterative procedure to maximize likelihood.
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Solution II

I Define a random variable Z on Rk for some k , e.g.
Z ∼ N (0, I ). Let pz denote distribution.

I Define G : Rk → Rd

I Generate samples by
1. Draw z from pz .
2. Map z → G (z).



Solution II continued

Advantages:
I Easy to generate samples
I Works even if X does not have density on Rd .
I Can use complex functions, e.g. neural networks to represent

distribution
Disadvantages:
I Not straightforward to find likelihood of samples.

How do we fit G though?
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Analogy

https://towardsdatascience.com/
demystifying-generative-adversarial-networks-c076d8db8f44

https://towardsdatascience.com/demystifying-generative-adversarial-networks-c076d8db8f44
https://towardsdatascience.com/demystifying-generative-adversarial-networks-c076d8db8f44


Adverserial networks

Generative Adversarial Nets (2014)

I Two networks: generator G and discriminator D.
I Discriminator: try to classify an input as real or fake

(generated), outputs probability in [0, 1], where 1 means real.
I Generator: try to fool discriminator
I Minimax game:

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z)))]

http://papers.nips.cc/paper/5423-generative-adversarial-nets
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Minimax solutoin

Let pg be the density function of the distribution induced by G and
pdata be the density of data distribution1. Optimal D is given by

D∗(x) =
pdata(x)

pdata(x) + pg (x)

Inserting D∗ in minimax equation and rewriting leads to

min
G

2 ∗ JSD(pdata ‖ pg )− log(4)

where JSD is the Jensen-Shannon divergence. The minimum value
is achieved at pg = pdata.

1We assume this exists here.

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence
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GAN overview

https:
//developers.google.com/machine-learning/gan/generator

https://developers.google.com/machine-learning/gan/generator
https://developers.google.com/machine-learning/gan/generator


Discriminator loss (minibatch)

Assume discriminator D parametrized by η.

−
( 1
m

m∑

i=1

log(Dη(x reali )) +
1
m

m∑

i=1

log(1− Dη(x fakei ))
)

which can also be written as

−
( 1
m

m∑

i=1

log(Dη(xi )) +
1
m

m∑

i=1

log(1− Dη(Gθ(zi )))
)

Note: This is just the normal cross-entropy loss.
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Generator loss (minibatch)

Negative of discriminator loss

1
m

m∑

i=1

log(Dη(xi )) +
1
m

m∑

i=1

log(1− Dη(Gθ(zi )))

As generator cannot influence first term, we may simplify to

1
m

m∑
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log(1− Dη(Gθ(zi )))
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Algorithm

Algorithm 1 GAN training, k is a hyperparameter (e.g. 1).

for number of training iterations do
for k steps do

Sample minibatch of m noise samples {z1, . . . , zm} from noise prior pz .
Sample minibatch of m examples {x1, . . . , xm} from data generating distribu-

tion pdata(x).
Update the discriminator by ascending its stochastic gradient:

∇η
1
m

m∑
i=1

[log Dη (xi ) + log (1− Dη (Gθ (zi )))] .

end for
Sample minibatch of m noise samples {z1, . . . , zm} from noise prior pz .
Update the generator by descending its stochastic gradient:

∇θ
1
m

m∑
i=1

log (1− Dη (Gθ (zi )))

end for



Training I

x

z

Figure: Green: pg , black: pdata, blue: discriminator score.

Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets


Training II

X

Z

Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets


Training III

X

Z

Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets


Training IV

X

Z

Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets
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TensorFlow example



TensorFlow example I

1 import numpy as np
2 from scipy.stats import norm
3 import tensorflow as tf
4 from matplotlib import pyplot as plt



TensorFlow example II

5 class Generator(tf.keras.Model):
6 def __init__(self):
7 super(Generator, self).__init__()
8 self.w = tf.Variable(1, dtype=tf.float32)
9 self.b = tf.Variable(0, dtype=tf.float32)

10

11 def call(self, z):
12 x = self.w*z + self.b
13 return x
14

15 class Discriminator(tf.keras.Model):
16 def __init__(self, hidden_units=8):
17 super(Discriminator, self).__init__()
18 self.dense = tf.keras.layers.Dense(hidden_units)
19 self.logits = tf.keras.layers.Dense(1,

kernel_initializer=tf.keras.initializers.zeros())↪→
20

21 def call(self, x):
22 x = tf.expand_dims(x, axis=-1)
23 logits = self.logits(tf.nn.relu(self.dense(x)))
24 logits = tf.squeeze(logits, axis=-1)
25 p = 1 / (1 + tf.math.exp(-logits))
26 return p



TensorFlow example III

27 # parameters true distribution
28 mu = -4
29 sigma = 2
30

31 def visualize(G, D):
32 interval = np.linspace(-10, 10, 100)
33 d_values = D(interval)
34 g_dist = norm.pdf(interval, loc=G.b.numpy(), scale=G.w.numpy( c

))
35 true_dist = norm.pdf(interval, loc=mu, scale=sigma)
36 plt.plot(interval, true_dist, label="true_dist")
37 plt.plot(interval, g_dist, label="G_dist")
38 plt.plot(interval, d_values, label="D, p_true_data(x)")
39 plt.legend()
40 plt.show()



TensorFlow example IV

41 N = 32
42 x = np.random.normal(loc=mu, scale=sigma, size=N)
43 indices = np.array(range(N))
44

45 G = Generator()
46 D = Discriminator()
47

48 D_learning_rate = 0.1
49 G_learning_rate = 0.1
50 D_optimizer = tf.keras.optimizers.Adam(D_learning_rate)
51 G_optimizer = tf.keras.optimizers.Adam(G_learning_rate)
52

53 batch_size = 16
54 critic_iters = 1
55 iterations = 100
56 plot_interval = 1



TensorFlow example V

57 for iteration in range(iterations):
58 if iteration % plot_interval == 0: visualize(G, D)
59

60 # discriminator update
61 for _ in range(critic_iters):
62 # sample real data (from data distribution)
63 np.random.shuffle(indices)
64 real = x[indices[:batch_size]]
65 z = tf.random.normal(shape=[batch_size])
66 fake = G(z)
67 with tf.GradientTape() as tape:
68 loss_real = tf.reduce_mean(-tf.math.log(D(real)))
69 loss_fake = tf.reduce_mean(-tf.math.log(1-D(fake)))
70 D_loss = loss_real + loss_fake
71 grads = tape.gradient(D_loss, D.trainable_variables)
72 D_optimizer.apply_gradients(zip(grads, D.trainable_variables))
73

74 # generator update
75 z = tf.random.normal(shape=[batch_size])
76 with tf.GradientTape() as tape:
77 G_loss = tf.reduce_mean(tf.math.log(1-D(G(z))))
78 grads = tape.gradient(G_loss, G.trainable_variables)
79 G_optimizer.apply_gradients(zip(grads, G.trainable_variables))



Subsection 4

Does it work?



4 years of GAN progress

The Malicious Use of Artificial Intelligence: Forecasting,
Prevention, and Mitigation

https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228


Does it end there?

A Style-Based Generator Architecture for Generative Adversarial
Networks

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948


Does it end there?

A Style-Based Generator Architecture for Generative Adversarial
Networks

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948


Subsection 5

Conditional GANs



Conditional GANs

I Before: data were samples x1, x2, . . . , xN
I Now: data are sample pairs (x1, c1), (x2, c2), . . . , (xN , cN)
I Generator and discriminator get c as extra input:

I G (z , c)
I D(x , c)



Subsection 6

Applications



Text-to-image

StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks
I (x, c) = (image, corresponding sentence)

https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1612.03242


Text-to-image II

This bird has wings that are black and has a white belly 

Stage-I  

images 

Stage-II  

images 

StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks

https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1612.03242


Image impainting

Figure: Conditional image Figure: L2 loss Figure: Sample with GAN
loss

Context Encoders: Feature Learning by Inpainting
I (x, c) = (image, image with missing data)

https://arxiv.org/abs/1604.07379


Super-resolution

Figure: Bicubic Figure: SRGAN Figure: original

Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network
I (x, c) = (image, lower resolution image)

https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1609.04802


CycleGAN: unpaired image-to-image translation

⋯ ⋯⋯

Paired Unpaired

Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks
I TensorFlow tutorial on CycleGan

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://www.tensorflow.org/tutorials/generative/cyclegan


CycleGAN

Zebras Horses

horse        zebra

zebra        horse

Summer Winter

summer        winter

winter        summer

Photograph Van Gogh CezanneMonet Ukiyo-e

Monet        Photos

Monet        photo

photo       Monet

Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593


CycleGAN: how?

X Y

G

F

DYDX

G

F
Ŷ

X Y( X Y
(

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX

ŷx̂x y

I Where is z?
Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593


CycleGAN: how?

I Two generators F and G , each with their own discriminator.
I Takes samples from other distribution as input, not z!

I Learn F such that x ∼ X , F (x) should be distributed as Y .
I Learn G such that y ∼ Y , G (y) should be distributed as X .
I Need additional constraints to get pairing that we need for

translation. Propose cycle-consistency:
I Losses on G (F (x))− x and F (G (y))− y
I In order to reconstruct the information must be retained in the

target domain, so should perhaps be a similar image?
I Likely some conflict between the different goals. . .

Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
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Evaluation (not curriculum)



Challenges in evaluation

I No likelihood to evaluate

I Look at discriminator?
I Optimal discriminator loss is 2 ∗ JSD(pdata, pg )− log(4) where

JSD is the Jensen-Shannon divergence.

I Discriminator likely imperfect

I A single number not enough? Quality vs diversity

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence
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Visual inspection

For image data we may look at images. . .
I Quality may be eaiser to evaluate then diversity



FID
I Extract features and estimate difference in distributions in

these.
I Assuming features are normally distributed (quite strong

assumption!), can measure Fréchet distance (also known as
Wasserstein-2 distance), which is given by

d2((m,C ), (mg ,Cg )) = ‖m −mg‖22 + trace(C + Cg − 2(CCg )1/2)

where (m,C ) and (mg ,Cg ) are the mean and covariance of the
features of the real and generated data respectively, and the trace
of a matrix is the sum of its diagonal elements.

I To make comparable: Use Inception architecture with weights
from http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz.
I Known as Fréchet Inception Distance (FID)

GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium

https://arxiv.org/abs/1512.00567
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500
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FID example

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

Figure: Blur
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Figure: Gaussian noise
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Figure: Mixed in ImageNet
images

I Empirically proved to correlate well(?) with visual inspection.
GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium

https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500


Subsection 8

Challenges (not curriculum)



Challenges

I Not obvous how to track progress or measure performance
I Training can be unstable due to interactions between G and D

I Input distribution of D changes over time
I Loss function of G changes over time

I Choice of optimizer is important
I Standard SGD not normally used, Adam popular

I Mode collapse - G only able to capture some of modes in data



Generator loss I

Let Dl denote the logits of D, i.e. D(x) = σ(Dl(x)) where σ is the
sigmoid function.

∇θ
1
m

m∑

i=1

log(1− D(Gθ(zi ))) =
1
m

m∑

i=1

D(Gθ(zi ))∇θDl(Gθ(zi ))

When generator is poor, may have D(Gθ(zi )) ≈ 0, and thus
gradients ≈ 0.

The original GAN paper recommends modified
generator loss

− 1
m

m∑

i=1

log(Dη(Gθ(zi )))

to mitigate vanishing gradients issue. This does however introduce
other potential problems: Sample weighting as an explanation for
mode collapse in generative adversarial networks

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2010.02035
https://arxiv.org/abs/2010.02035
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Loss function II

Original GAN loss have some theoretical (and practical?) issues

Wasserstein GAN

Note: regularizing discriminator can also mitigate problem.

https://arxiv.org/abs/1701.07875
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Wasserstein loss
Wasserstein GAN discriminator loss:

−(
1
m

m∑

i=1

Dη(xi )− Dη(Gθ(zi ))

I Note that Dη no longer outputs a probability, but any real
number is valid.

Wasserstein GAN generator loss:

− 1
m

m∑

i=1

Dη(Gθ(zi ))

I Assumes some Lipschitz-constraints on Dη.

I G now tries to minimize Wasserstein distance between
generated distribution and data distribution.

Wasserstein GAN

https://en.wikipedia.org/wiki/Wasserstein_metric
https://arxiv.org/abs/1701.07875
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I Note that Dη no longer outputs a probability, but any real
number is valid.

Wasserstein GAN generator loss:

− 1
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I Assumes some Lipschitz-constraints on Dη.

I G now tries to minimize Wasserstein distance between
generated distribution and data distribution.
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Why imitation learning?

Figure: Source: New Frontiers in Imitation Learning.

Smooth Imitation Learning for Online Sequence Prediction

http://www.yisongyue.com/talks/imitation_learning_general.pdf
https://arxiv.org/abs/1606.00968


Imitation learning by behaviour cloning

Figure: Source: Interactive Learning for Sequential Decisions and
Predictions

http://www.cs.cmu.edu/~sross1/publications/ross_phdthesis.pdf
http://www.cs.cmu.edu/~sross1/publications/ross_phdthesis.pdf


Equivalence of policy and occupancy measure

Previously defined ρπ as the unnormalized discounted visitation
frequencies

ρπ(s) =
∞∑

t=0

γtPπ(S0 = s)

Slightly abusing notation we define the occupancy measure as

ρπ(s, a) = π(a|s)
∞∑

t=0

γtPπ(S0 = s)

It turns out that if we have a policy π′ with the same occupancy
measure as for π, i.e. ρπ′ = ρπ, then π′ = π.
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GAIL

Generative Adversarial Imitation Learning (2016)
I To imitate a policy we may imitate state-action frequencies
I Data samples are (state, action) pairs from expert policy

I (s1, a1), (s2, a2), ..., (sN , aN)
I Note: not conditional GAN, xi = (si , ai )

I Generator is here a deterministic policy π(s)→ a. By
interacting with the environment we get generated/“fake”
state-action pairs (s1, a1)g , (s2, a2)g , . . . , (sN , aN)g .

I Discriminator takes state, action pairs and try to classify them
as real or fake.

https://arxiv.org/abs/1606.03476
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GAIL vs GAN

Differences from standard GAN:
I Sequential process
I Policy network don’t have directly control over samples,

interaction with (possibly stochastic) environment.
I Can’t train “generator” by backpropagating through

discriminator, instead trained with reinforcement learning with
discriminator feedback as reward signal. E.g. generator gets
high reward for samples the discriminator finds more real.

I Entropy loss term

Discriminator update is unchanged.
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GAIL algorithm

Algorithm 2 Generative adversarial imitation learning
1: Input: Expert trajectories τE ∼ πE , initial policy and discriminator parameters

θ0, η0
2: for i = 0, 1, 2, . . . do
3: Sample trajectories τi ∼ πθi
4: Update the discriminator parameters from ηi to ηi+1 with the gradient

Êτi [∇η log(Dη(s, a))] + ÊτE [∇η log(1− Dη(s, a))] (1)

5: Take a policy step from θi to θi+1, using the TRPO rule with cost function
log(Dηi+1 (s, a)). Specifically, take a KL-constrained natural gradient step with

Êτi [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ),

where Q(s̄, ā) = Êτi [log(Dηi+1 (s, a)) | s0 = s̄, a0 = ā]
(2)

6: end for

Note: TRPO is an RL algorithm, you may switch this out with e.g.
a PPO iteration (recall second RL lecture).

https://arxiv.org/abs/1502.05477
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