Generative models for continuous random

variables: GAN and GAIL

Eilif Solberg

TEK5040/TEK9040

Outline

Introduction
Why model of data distribution?
Fitting a probability distribution

Generative Adverserial Networks (GAN)
Introduction
Training
TensorFlow example
Does it work?
Conditional GANs
Applications
Evaluation (not curriculum)
Challenges (not curriculum)

Generative Adverserial Imitation Learning (GAIL)
Introduction

Section 1

Introduction

Subsection 1

Why model of data distribution?

Why model of data distribution?

Analyzing data:
» Figure out the uncommon or rare elements
» Anomalies, outliers, errors

» Find typical elements / prototypes
Prediction:
» How likely is something to happen?

» RL: If we can create model for environment, don't have to
explore, but can just do planning.

Generalization: learning a familiy of conditional distributions.

» Recall classification: learned family of distributions Y| X with
shared parameters.

Why model of data distribution?

Analyzing data:
» Figure out the uncommon or rare elements
» Anomalies, outliers, errors

» Find typical elements / prototypes
Prediction:
» How likely is something to happen?
» RL: If we can create model for environment, don't have to
explore, but can just do planning.
Generalization: learning a familiy of conditional distributions.
» Recall classification: learned family of distributions Y| X with
shared parameters.

Both knowing how likely something is and being able to generate
samples can be useful depending on the situation.

Subsection 2

Fitting a probability distribution

Fitting a probability distribution

Given data points

~5.17,—1.01, —2.43, —6.01, —4.16,0.3, —7.85, —3.86, —0.47 . ..

» How do we fit a probability distribution?

Fitting a probability distribution

Given data points

~5.17,—1.01, —2.43, —6.01, —4.16,0.3, —7.85, —3.86, —0.47 . ..

» How do we fit a probability distribution?

» What do we mean by fitting a probability distribution?

Solution |

Define parametric family of functions, py, 6 € ©, and then find the
parameters that maximizes the likelihood of the data, or
equivalently, the log-likelihood

N

argmax, » _ log py(x)
i=1

https://en.wikipedia.org/wiki/Kullback%25E2%2580%2593Leibler_divergence

Solution |

Define parametric family of functions, py, 6 € ©, and then find the
parameters that maximizes the likelihood of the data, or
equivalently, the log-likelihood

N
argmax, » _ log py(x)
i=1
This minimizes the Kullback-Leibler divergence to the data
distribution, i.e. KL(pdata || Po)-

https://en.wikipedia.org/wiki/Kullback%25E2%2580%2593Leibler_divergence

Visualizing data distribution

Figure: Histogram for data

Visualizing data distribution

Figure: Histogram for data

» Normally distributed?

Fit distribution

Assuming normal distribution

1 Y N
L= Z;Xi, UzzNZ(Xi_ﬁ)2
=

=

Fit distribution

Assuming normal distribution

1 N 1
ﬁzN;x;, o—zzﬁz(x;—mz
1= 1=

—— fitted_dist

Fit distribution

Assuming normal distribution

1 N 1
fi= Z;X"’ azzﬁg(x,-—mz
1= 1=

=]

—— fitted_dist

Generally may require iterative procedure to maximize likelihood.

Solution 1l

» Define a random variable Z on R* for some k, e.g.
Z ~ N(0,1). Let p, denote distribution.

» Define G: Rk — RY

» Generate samples by

1. Draw z from p;.
2. Map z — G(2).

Solution Il continued

Advantages:
» Easy to generate samples
> Works even if X does not have density on RY.
» Can use complex functions, e.g. neural networks to represent
distribution
Disadvantages:
» Not straightforward to find likelihood of samples.

Solution Il continued

Advantages:
» Easy to generate samples
> Works even if X does not have density on RY.

» Can use complex functions, e.g. neural networks to represent
distribution

Disadvantages:
» Not straightforward to find likelihood of samples.
How do we fit G though?

Section 2

Generative Adverserial Networks (GAN)

Subsection 1

Introduction

Analogy

Real Dataset
(Authentic Wines)

25087

Noiso Vector GENERATOR Generated/Fake Data DISCRIMINATOR ' 2<®
(Forger’s (Forger) (Fake Wine) (Shop Owner)

Inspiration)

https://towardsdatascience.com/
demystifying-generative-adversarial-networks-c076d48db8f44

https://towardsdatascience.com/demystifying-generative-adversarial-networks-c076d8db8f44
https://towardsdatascience.com/demystifying-generative-adversarial-networks-c076d8db8f44

Adverserial networks

Generative Adversarial Nets (2014)

http://papers.nips.cc/paper/5423-generative-adversarial-nets

Adverserial networks

Generative Adversarial Nets (2014)
» Two networks: generator G and discriminator D.

» Discriminator: try to classify an input as real or fake
(generated), outputs probability in [0, 1], where 1 means real.

» Generator: try to fool discriminator

> Minimax game:

min max V(D, G) = By, 9108 D(x)] + Exep () [l08(1 — D(G(2)))]

http://papers.nips.cc/paper/5423-generative-adversarial-nets

Minimax solutoin

Let py be the density function of the distribution induced by G and
Pdata be the density of data distribution!. Optimal D is given by

* o pdata(X)
D) = () + pe ()

1We assume this exists here.

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence

Minimax solutoin

Let py be the density function of the distribution induced by G and
Pdata be the density of data distribution!. Optimal D is given by

* o pdata(X)
D) = () + pe ()

Inserting D* in minimax equation and rewriting leads to
mGin 2% JSD(pdata || pg) — log(4)

where JSD is the Jensen-Shannon divergence. The minimum value
is achieved at p; = pdata-

1We assume this exists here.

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence

Subsection 2

Training

GAN overview

=}

@

iy

Real images Sample o

w 5‘

ES

]

=

Discriminator

-
a

£ B g

E |— Generator | —»| Sample] 2

3 3]

S]

v =
4
https:

//developers.google.com/machine-learning/gan/generator

https://developers.google.com/machine-learning/gan/generator
https://developers.google.com/machine-learning/gan/generator

Discriminator loss (minibatch)

Assume discriminator D parametrized by 7.

_ (% Z |Og(D77(Xireal)) + % Z |og(]_ _ DW(Xifake))>
i=1 i=1

Discriminator loss (minibatch)

Assume discriminator D parametrized by 7.

1 . real 1 & fake
(= D 1oB(Dy(0) + 3 log(1 — Dy))
which can also be written as

(2> log(Dy()) + - S log(1 - D,(Gy(2)))
i=1 i=1

Discriminator loss (minibatch)

Assume discriminator D parametrized by 7.

1 . rea 1 = ke
(E z; log(Dy (x; ’)) + - z_; log(1 — Dn(Xif K))>
which can also be written as
- (l Zm: 08D, () + -~ zm: log(1 — Dy (Ga(2)))))
m /:1 n ! m I:1 n 1

Note: This is just the normal cross-entropy loss.

Generator loss (minibatch)

Negative of discriminator loss

% 3 log (D)) + % > log(1 — Dy(Gy(2)))

Generator loss (minibatch)

Negative of discriminator loss
1 & 1 &
— Y log(Dy(x; — Y log(1 — D, (Gy(z;
28D, (5)) + 1D log(1 = Dy(G2))
As generator cannot influence first term, we may simplify to

L3 log(1 — Dy (Go(z)))
i=1

Algorithm

Algorithm 1 GAN training, k is a hyperparameter (e.g. 1).

for number of training iterations do
for k steps do
Sample minibatch of m noise samples {z,, ..., z,,} from noise prior p.
Sample minibatch of m examples {xy,...,x,,} from data generating distribu-

tion pdata(X)-
Update the discriminator by ascending its stochastic gradient:

Va3 llog Dy () + log (1~ Dy (G (2))]-
end for

Sample minibatch of m noise samples {z;, ..., z,} from noise prior p;.
Update the generator by descending its stochastic gradient:

Vo> log(1- D, (6o (2)))
i=1

end for

Training |

z

Figure: Green: pg, black: pgata, blue: discriminator score.

Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets

Training Il

L4 N
......

|

Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets

Training [l

2N

Generative Adversarial Nets

http://papers.nips.cc/paper/5423-generative-adversarial-nets

Training IV

http://papers.nips.cc/paper/5423-generative-adversarial-nets

Subsection 3

TensorFlow example

TensorFlow example |

import numpy as np

from scipy.stats import norm

import tensorflow as tf

from matplotlib import pyplot as plt

AW N =

TensorFlow example |l

5 class Generator(tf.keras.Model):
6 def __init__(self):
7 super (Generator, self).__init__()
8 self.w = tf.Variable(1, dtype=tf.float32)
9 self.b = tf.Variable(0, dtype=tf.float32)
10
11 def call(self, z):
12 x = self.w*z + self.b
13 return x
14
15 class Discriminator (tf.keras.Model):
16 def __init__(self, hidden_units=8):
17 super (Discriminator, self).__init__()
18 self.dense = tf.keras.layers.Dense(hidden_units)
19 self.logits = tf.keras.layers.Dense(1,
<» kernel_initializer=tf.keras.initializers.zeros())
20
21 def call(self, x):
22 x = tf.expand_dims(x, axis=-1)
23 logits = self.logits(tf.nn.relu(self.dense(x)))
24 logits = tf.squeeze(logits, axis=-1)
25 p=1/ (1 + tf.math.exp(-logits))

26 return p

TensorFlow example Il

27
28
29
30
31
32
33
34

35
36
37
38
39
40

parameters true distribution
mu = -4
sigma = 2

def visualize(G, D):
interval = np.linspace(-10, 10, 100)
d_values = D(interval)
g_dist = norm.pdf(interval, loc=G.b.numpy(), scale=G.w.numpy(
))
true_dist = norm.pdf(interval, loc=mu, scale=sigma)
plt.plot(interval, true_dist, label="true_dist")
plt.plot(interval, g_dist, label="G_dist")
plt.plot(interval, d_values, label="D, p_true_data(x)")
plt.legend()
plt.show()

TensorFlow example 1V

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

N = 32
x = np.random.normal (loc=mu, scale=sigma, size=N)
indices = np.array(range(N))

G = Generator()
D = Discriminator()

D_learning_rate 0.1
G_learning_rate = 0.1
D_optimizer = tf.keras.optimizers.Adam(D_learning_rate)
G_optimizer = tf.keras.optimizers.Adam(G_learning_rate)

batch_size = 16

critic_iters = 1
iterations = 100
plot_interval = 1

TensorFlow example V

for iteration in range(iterations):
if iteration 7 plot_interval == 0: visualize(G, D)

discriminator update
for _ in range(critic_iters):
sample real data (from data distribution)
np.random. shuffle(indices)
real = x[indices[:batch_size]]
z = tf.random.normal (shape=[batch_size])
fake = G(z)
with tf.GradientTape() as tape:
loss_real = tf.reduce_mean(-tf.math.log(D(real)))
loss_fake = tf.reduce_mean(-tf.math.log(1-D(fake)))
D_loss = loss_real + loss_fake
grads = tape.gradient(D_loss, D.trainable_variables)
D_optimizer.apply_gradients(zip(grads, D.trainable_variables))

generator update
z = tf.random.normal (shape=[batch_size])
with tf.GradientTape() as tape:
G_loss = tf.reduce_mean(tf.math.log(1-D(G(z))))
grads = tape.gradient(G_loss, G.trainable_variables)
G_optimizer.apply_gradients(zip(grads, G.trainable_variables))

Subsection 4

Does it work?

4 years of GAN progress

2014

2015 2016

2017
The Malicious Use of Artificial Intelligence: Forecasting,
Prevention, and Mitigation

https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228

Does it end there?

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

Does it end there?

A Style-Based Generator Architecture for Generative Adversarial
Networks

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

Subsection 5

Conditional GANs

Conditional GANs

» Before: data were samples x1, x2, ..., XN
» Now: data are sample pairs (x1, c1), (x2, ©2), ..., (xn, cn)
» Generator and discriminator get ¢ as extra input:

> G(z,¢)
> D(x,c)

Subsection 6

Applications

Text-to-image

This bird has a This flower has
This bird is white yellow belly and overlapping pink
with some black on tarsus, grey back, pointed petals
its head and wings, wings, and brown surrounding a ring
and hasa long throat, nape with of short yellow
orange beak a black face filaments

C—
(a) StackGAN
Stage-1
64x64 \
images
(b) StackGAN ~—)
Stage-I1
256x256
images -

StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks

» (x, c) = (image, corresponding sentence)

u]

@
I

ut
i
N)
yel
)

https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1612.03242

Text-to-image |l

“This bird has wings that are black and has a white belly

StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks

https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1612.03242

Image impainting

Figure: Sample with GAN

Figure: Conditional image Figure: L2 loss los

Context Encoders: Feature Learning by Inpainting

» (x, c) = (image, image with missing data)

https://arxiv.org/abs/1604.07379

Super-resolution

Figure: Bicubic Figure: SRGAN Figure: original

Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network

» (x, c) = (image, lower resolution image)

https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1609.04802

CycleGAN: unpaired image-to-image translation

L \g (" S,
I e
J/ S
N S
\p/;J
cee 3
EE NN NN NN NN EEEEEEEEEEEEEE

Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks

» TensorFlow tutorial on CycleGan

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://www.tensorflow.org/tutorials/generative/cyclegan

CycleGAN

Monet £ Photos ras £ Hors Summer £ Winter

Monet — photo zebra —) horse

photo —>Monet horse —> zebra

Photograph Van Gogh Cezanne

Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN: how?

X Y

» Where is z7

Y

X

e

Y
_/'\Y

()

| a | galye
Dx Dy /\\F/ | \F//\

cycle-consistency
< loss

Unpaired Image-to-Image Translation using Cycle-Consistent

Adversarial Networks

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

CycleGAN: how?

» Two generators F and G, each with their own discriminator.
» Takes samples from other distribution as input, not z!

» Learn F such that x ~ X, F(x) should be distributed as Y.

» Learn G such that y ~ Y, G(y) should be distributed as X.
» Need additional constraints to get pairing that we need for
translation. Propose cycle-consistency:
» Losses on G(F(x)) —x and F(G(y))—y

» In order to reconstruct the information must be retained in the
target domain, so should perhaps be a similar image?

» Likely some conflict between the different goals. ..

Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

Subsection 7

Evaluation (not curriculum)

Challenges in evaluation

» No likelihood to evaluate

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence

Challenges in evaluation

» No likelihood to evaluate

» Look at discriminator?

» Optimal discriminator loss is 2 % JSD(pgata, Pg) — log(4) where
JSD is the Jensen-Shannon divergence.

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence

Challenges in evaluation

» No likelihood to evaluate

» Look at discriminator?

» Optimal discriminator loss is 2 % JSD(pgata, Pg) — log(4) where
JSD is the Jensen-Shannon divergence.

» Discriminator likely imperfect

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence

Challenges in evaluation

» No likelihood to evaluate

» Look at discriminator?

» Optimal discriminator loss is 2 % JSD(pgata, Pg) — log(4) where
JSD is the Jensen-Shannon divergence.

» Discriminator likely imperfect

> A single number not enough? Quality vs diversity

https://en.wikipedia.org/wiki/Jensen%25E2%2580%2593Shannon_divergence

Visual inspection

For image data we may look at images. ..

» Quality may be eaiser to evaluate then diversity

FID

» Extract features and estimate difference in distributions in
these.

» Assuming features are normally distributed (quite strong
assumption!), can measure Fréchet distance (also known as
Wasserstein-2 distance), which is given by

d*((m, C), (mg, Cg)) = |Im — mg”% + trace(C + Cg — 2(CCg)1/2)

where (m, C) and (my, C;) are the mean and covariance of the
features of the real and generated data respectively, and the trace
of a matrix is the sum of its diagonal elements.

https://arxiv.org/abs/1512.00567
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500

FID

» Extract features and estimate difference in distributions in
these.

» Assuming features are normally distributed (quite strong
assumption!), can measure Fréchet distance (also known as
Wasserstein-2 distance), which is given by

d*((m, C), (mg, Cg)) = |Im — mg”g + trace(C + Cg — 2(CCg)1/2)

where (m, C) and (my, C;) are the mean and covariance of the
features of the real and generated data respectively, and the trace
of a matrix is the sum of its diagonal elements.

» To make comparable: Use Inception architecture with weights
from http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz.

» Known as Fréchet Inception Distance (FID)

GANSs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium

https://arxiv.org/abs/1512.00567
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500

FID example

D
"B BECECEC

BEREBE

° T 7
3) disturbance level

T H T H
disturbance level disturbance level

Figure: Mixed in ImageNet
images

Figure: Blur Figure: Gaussian noise
» Empirically proved to correlate well(?) with visual inspection.

GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium

https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500

Subsection 8

Challenges (not curriculum)

Challenges

» Not obvous how to track progress or measure performance
» Training can be unstable due to interactions between G and D

» Input distribution of D changes over time
» Loss function of G changes over time

» Choice of optimizer is important
» Standard SGD not normally used, Adam popular

» Mode collapse - G only able to capture some of modes in data

Generator loss |

Let D, denote the logits of D, i.e. D(x) = o(Dj(x)) where o is the
sigmoid function.

Ve% Z log(1 — D(Gg %Z :))VaDi(Gy(z;))
i—1 P

When generator is poor, may have D(Gy(z;)) ~ 0, and thus
gradients ~ 0.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2010.02035
https://arxiv.org/abs/2010.02035

Generator loss |

Let D, denote the logits of D, i.e. D(x) = o(Dj(x)) where o is the
sigmoid function.

Vo> log(1 - D(Go(z) %2 (Go(20))VaDi(Go(2)
i=1

When generator is poor, may have D(Gy(z;)) ~ 0, and thus
gradients ~ 0. The original GAN paper recommends modified
generator loss

> 10g(Dy(Gil21)
i=1

to mitigate vanishing gradients issue.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2010.02035
https://arxiv.org/abs/2010.02035

Generator loss |

Let D, denote the logits of D, i.e. D(x) = o(Dj(x)) where o is the
sigmoid function.

Vg% Z log(1 — D(Gg Z D(Go(z;))VoDi(Gy(z;))
i—1

When generator is poor, may have D(Gy(z;)) ~ 0, and thus
gradients ~ 0. The original GAN paper recommends modified
generator loss

> 10g(Dy(Gil21)
i=1

to mitigate vanishing gradients issue. This does however introduce
other potential problems: Sample weighting as an explanation for
mode collapse in generative adversarial networks

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2010.02035
https://arxiv.org/abs/2010.02035

Loss function |l

Original GAN loss have some theoretical (and practical?) issues

1.0
— Density of real
08 — Density of fake
’ — GAN Discriminator
—— WGAN Critic
0.6
04
0.2
0.0 = ez neqirienes
~
-0.2 N Vanishing gradients
_— in regular GAN
—0.al—
sy 6 —4 -2 0 2 4 6 8

Wasserstein GAN

https://arxiv.org/abs/1701.07875

Loss function |l

Original GAN loss have some theoretical (and practical?) issues

1.0
— Density of real
08 — Density of fake
’ — GAN Discriminator
—— WGAN Critic
0.6
04
0.2
0.0 =" exnefrgiones —
-
-~ A
-0.2 N Vanishing gradients
_— in regular GAN
—0.al—
) —6 —4 -2 0 2 4 6 8

Wasserstein GAN
Note: regularizing discriminator can also mitigate problem.

https://arxiv.org/abs/1701.07875

Wasserstein loss

Wasserstein GAN discriminator loss:
1 m
- (G
(5 2 0l) ~ Dy Gz)

» Note that D, no longer outputs a probability, but any real
number is valid.

Wasserstein GAN generator loss:
1 m
= D.(Gy(z
—>" Dy(Gol2))

i=1

» Assumes some Lipschitz-constraints on D,,.

https://en.wikipedia.org/wiki/Wasserstein_metric
https://arxiv.org/abs/1701.07875

Wasserstein loss

Wasserstein GAN discriminator loss:
1 m
(G 2 0lx) = Dy(Golz)

» Note that D, no longer outputs a probability, but any real
number is valid.

Wasserstein GAN generator loss:
1 m
= D.(Gy(z
—>" Dy(Gol2))

i=1

» Assumes some Lipschitz-constraints on D,,.

» G now tries to minimize \Wasserstein distance between
generated distribution and data distribution.

Wasserstein GAN

https://en.wikipedia.org/wiki/Wasserstein_metric
https://arxiv.org/abs/1701.07875

Section 3

Generative Adverserial Imitation Learning (GAIL)

Subsection 1

Introduction

Why imitation learning?

Realtime Player Detection and Tracking

g ’ Human Operated Camera
— > - —
i §\ = q > -
e — o s 7|

[=

saunival

Learned Regressor

;‘%’\ %ﬁsﬁzp Research
Figure: Source: New Frontiers in Imitation Learning.

Smooth Imitation Learning for Online Sequence Prediction

http://www.yisongyue.com/talks/imitation_learning_general.pdf
https://arxiv.org/abs/1606.00968

Imitation learning by behaviour cloning

Expert Trajectories Dataset

Test Execution Supervised Learning

Figure: Source: Interactive Learning for Sequential Decisions and
Predictions

http://www.cs.cmu.edu/~sross1/publications/ross_phdthesis.pdf
http://www.cs.cmu.edu/~sross1/publications/ross_phdthesis.pdf

Equivalence of policy and occupancy measure

Previously defined p, as the unnormalized discounted visitation
frequencies

px(s) = Z’VtPﬂ(SO =s)
t=0

Equivalence of policy and occupancy measure

Previously defined p, as the unnormalized discounted visitation
frequencies

oo
px(s) = Z’VtPﬂ(SO =5s)
t=0
Slightly abusing notation we define the occupancy measure as

pr(s,a) = m(als) nytPﬂ(So =s)

t=0

Equivalence of policy and occupancy measure

Previously defined p, as the unnormalized discounted visitation
frequencies

oo
px(s) = Z’VtPﬂ(SO =5s)
t=0
Slightly abusing notation we define the occupancy measure as

px(s,a) =m(als) Y 7' Pr(So = s)
t=0

It turns out that if we have a policy 7’ with the same occupancy
measure as for 7, i.e. p = pr, then 7’ = 7.

GAIL

Generative Adversarial Imitation Learning (2016)
> To imitate a policy we may imitate state-action frequencies
» Data samples are (state, action) pairs from expert policy

> (s1,21), (525 32); -, (Sw, an)
> Note: not conditional GAN, x; = (s;, a;)

https://arxiv.org/abs/1606.03476

GAIL

Generative Adversarial Imitation Learning (2016)

> To imitate a policy we may imitate state-action frequencies
» Data samples are (state, action) pairs from expert policy

> (s1,a1),(s2,32), -, (sn; an)

> Note: not conditional GAN, x; = (s;, a;)

» Generator is here a deterministic policy m(s) — a. By
interacting with the environment we get generated /“fake”
state-action pairs (s1,a1)g, (52, a2)g, - - -, (SN, an)g-

» Discriminator takes state, action pairs and try to classify them
as real or fake.

https://arxiv.org/abs/1606.03476

GAIL vs GAN

Differences from standard GAN:
» Sequential process

» Policy network don't have directly control over samples,
interaction with (possibly stochastic) environment.

» Can't train “generator” by backpropagating through
discriminator, instead trained with reinforcement learning with
discriminator feedback as reward signal. E.g. generator gets
high reward for samples the discriminator finds more real.

» Entropy loss term

GAIL vs GAN

Differences from standard GAN:
» Sequential process

» Policy network don't have directly control over samples,
interaction with (possibly stochastic) environment.

» Can't train “generator” by backpropagating through
discriminator, instead trained with reinforcement learning with
discriminator feedback as reward signal. E.g. generator gets
high reward for samples the discriminator finds more real.

» Entropy loss term

Discriminator update is unchanged.

GAIL algorithm

Algorithm 2 Generative adversarial imitation learning

1: Input: Expert trajectories 7¢ ~ mg, initial policy and discriminator parameters

6o, 10
2: fori=0,1,2,... do
3: Sample trajectories 7; ~ g,
4: Update the discriminator parameters from 7; to 71 with the gradient
Er,[Vy log(Dy (s,)] + Erg [V log(1 — Dy (s, a))] (1)
5: Take a policy step from 6; to 60,11, using the TRPO rule with cost function

log(Dy),,, (s, a)). Specifically, take a KL-constrained natural gradient step with

IAET,. [V logmg(als)Q(s, a)] — AVgH(mp), @)

where Q(3,3) = i, [log(Dn,. 4 (s,a)) |50 =5,a0 = 3]

6: end for

Note: TRPO is an RL algorithm, you may switch this out with e.g.
a PPO iteration (recall second RL lecture).

https://arxiv.org/abs/1502.05477

	Introduction
	Why model of data distribution?
	Fitting a probability distribution

	Generative Adverserial Networks (GAN)
	Introduction
	Training
	TensorFlow example
	Does it work?
	Conditional GANs
	Applications
	Evaluation (not curriculum)
	Challenges (not curriculum)

	Generative Adverserial Imitation Learning (GAIL)
	Introduction

