Learning Concepts

Narada Warakagoda

Introduction

- What is learning?
 - Adjust model parameters according to data
- Why is it challenging?
 - We do not have enough data
 - Learning takes time
 - Learning demands computational resources
- What is the remedy?
 - Learn efficiently with as little data as possible

Learning buzzwords

Deep Learning

Supervised learning

Semi-supervised learning

Unsupervised learning

Transfer learning

Self-supervised learning

Machine Learning

Reinforcement learning

Curriculum learning

Hebbian learning

Active learning

Self taught learning

Feature learning

Metric learning

Multi-task learning

Multi-modal learning

Few-shot learning

One-shot learning

Zero-shot learning

Meta learning

Transfer Learning

- General definition:
 - Using the knowledge gathered in one learning task in another learning task
- In deep learning:
 - Re-train a previously trained network with new data
- Advantage:
 - Can train a large network with relatively small (new) data set.

Possible Approaches

Transfer learning last layer

Transfer learning last two layers

-New data set is very small -New data and original data from the same domain -Different class structure

-New data set is less small -Same domain, different class structure

Possible Approaches

Transfer learning all layers

New data is from a different domain than original data.

Eg: Optical images and sonar images.

Why is Transfer Learning Possible?

- The network learns general feature representations
- More general, more transferable?

How Transferable are Features?

- Experiment reported in *How transferable are features in deep neural networks?, Yosinkski et.al 2014*
 - Two pre-trained networks baseA and baseB
 - Same architecture trained with data sets A and B
- AnB = First n layers from baseA, rest are retrained with data set B
 - AnB+ = Same approach but the whole network is re-trained
- BnB= First n layers from baseB, rest are retrained with data set B
 - BbB+ = Same approach but the whole network is retrained

How Transferable are Features?

How Transferable are Features?

Multi-task Learning

- Sharing a single network for several different tasks
- Enhanced regularization effect

Multi-task Learning Example

- Loss function $L_{tot} = \lambda_r L_{regression} + \lambda_d L_{detection}$
- Detection task helps regression task

Multi-modal (Cross-modal) Learning

• Several input types sharing a single task

Active Learning

Actively choose the samples in training

Active Learning Typical Procedure

 The most important element of active learning is to predict which samples are the most "valuable" ones

Predicting the "Valuable" Samples

- Learner can learn more from samples that are difficult to classify now.
- Measures to identify difficult-to-classify samples
 - Confidence $x_{\text{lowest confidence}} = \arg \min_{x} p(y_1|x)$
 - Classification margin $x_{\text{lowest margin}} = \arg \min_{x} |p(y_1|x) p(y_2|x)|$
 - Entropy $x_{\text{highest entropy}} = \arg \max_x \sum_i p(y_i|x) \log p(y_i|x)$
 - Variance
 - Bayesian techniques (eg: Monte-Carlo dropout, ensembles)

Self-supervised Learning

- Related to Transfer learning
- How to get a pre-trained model?
 - Alt1: Use an existing big labeled database (eg: ImageNet) and supervised learning
 - Alt2: Use own unlabeled data and self-supervised learning
- Supervised vs Self-supervised learning
 - Supervised: $loss(D) = \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} loss(X_i, Y_i).$ Manually created labels
 - Self-Supervised

$$loss(D) = \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} loss(X_i, P_i).$$
 Automatically created labels

Pretext and Downstream Tasks

Pretext task is defined so that automatic generation of labels is possible

Self-supervised Visual Feature Learning withDeep Neural Networks: A SurveyLonglong Jing and Yingli Tian, 2019

Pretext Task Approaches

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
 Pretend there is a part of the input you don't know and predict that.

https://www.youtube.com/watch?v=7I0Qt7GALVk

Examples

- Eg 1 (ULMFiT):
 - Predict the next word given the previous words (pretext)
 - Predict sentiments for given sentences (down-stream)
- Eg 2: (BERT)
 - Predict a randomly masked word in a sentence (Pretext)
 - Question answering, language inference etc. (down-stream)
- Eg 3: (Exemplar-CNN)
 - Predict the class of distorted images (Pretext)
 - Image classification (down-stream)
- Eg 4: (JigSaw Puzzle)
 - Predict the correct order of image patches extracted using a 3x3 grid. (Pretext)
 - Image retrieval (Down-stream)
- Eg 5: (Colorization)
 - Predict the Color given the grayscale image (Pretext)
 - Image classification, detection and segmentation (down-stream)
- And many more

https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html https://amitness.com/2020/05/self-supervised-learning-nlp/ Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, A. Dosovitskiy et.al, 2015 Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, Mehdi Noroozi, Paolo Favaro, 2017

Metric Learning

- Learn a distance measure (metric) which reflects the semantic similarity
- In practice, we learn a transform $f(\cdot) \text{such that the Euclidean distance}$ reflects the similarity.

 $||f(\boldsymbol{x}_i) - f(\boldsymbol{x}_j)||^2 = [f(\boldsymbol{x}_i) - f(\boldsymbol{x}_j)]^T [f(\boldsymbol{x}_i) - f(\boldsymbol{x}_j)]$

- "Similarity" is expressed through side information
 - Eg1: x_i and x_j are similar if they can be linked (i.e. same class) and vice versa
 - Eg2: x_a is more similar to x_p than x_n if a and p can be linked while a and n cannot be linked
- A loss function can be defined for extracting similarity. Examples:
 - Contrastive loss: $L_c = \begin{cases} ||f(\mathbf{x}_i) - f(\mathbf{x}_j)||^2, & \text{if } \mathbf{x}_i, \mathbf{x}_j \in P \\ -||f(\mathbf{x}_i) - f(\mathbf{x}_j)||^2, & \text{if } \mathbf{x}_i, \mathbf{x}_j \in N \end{cases}$

- Triplet loss $L_t = \sum_{x_i \in A, x_j \in P, x_k \in N} \|f(x_i) - f(x_j)\|^2 - \|f(x_i) - f(x_k)\|^2$

Mahalanobis Metric (example)

- Consider P, Q and R
 - Q should be more similar to P than R (P and Q belongs to the same class)
 - But Euclidean distance d(P,Q) > d(P,R),
 - Correct this by scaling variance along each dimension

Mahalanobis distance/metric

$$D_m(P,Q) = \left\| \begin{bmatrix} x_P(1) \\ \sigma_1 \end{bmatrix}, \frac{x_P(2)}{\sigma_2} \end{bmatrix} - \begin{bmatrix} x_Q(1) \\ \sigma_1 \end{bmatrix}, \frac{x_Q(2)}{\sigma_2} \end{bmatrix} \right\|$$
$$= \left\| [x_P(1), x_P(2)] \begin{bmatrix} \frac{1}{\sigma_1} & 0 \\ 0 & \frac{1}{\sigma_2} \end{bmatrix} - [x_Q(1), x_Q(2)] \begin{bmatrix} \frac{1}{\sigma_1} & 0 \\ 0 & \frac{1}{\sigma_2} \end{bmatrix} \right\|$$
$$= \left\| \boldsymbol{x}_P^T \boldsymbol{\Sigma}^{-\frac{1}{2}} - \boldsymbol{x}_Q^T \boldsymbol{\Sigma}^{-\frac{1}{2}} \right\|$$

Metric Learning in Deep Learning

• Replace the linear transform with a neural net and train using a suitable loss

Metric Learning Summary

Deep metric learning, a survey, Kaya and Bilge, 2019

Meta Learning

- Also known as "Learning to Learn"
- It is about learning what a system learns in different tasks
- Then the meta learner can predict the system parameters for a new task (without going through full training).

Learning vs Meta-learning

- Learning algorithm (Learner)
 - Input: Training set $D_{\text{train}} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}$
 - **Output:** Parameters $\boldsymbol{\theta}$ of the model M
 - Objective: Performance on the test set $D_{\text{test}} = \{(\hat{\boldsymbol{x}}_i, \hat{\boldsymbol{y}}_i)\}$
- Meta-Learning algorithm (Meta-learner)
 - Input: Meta-training set $D_{\text{meta-train}} = \{(D_{\text{train}}^{(n)}, D_{\text{test}}^{(n)})\}$
 - **Output:** Parameters $\boldsymbol{\Theta}$ of the learner
 - Objective: Performance on the meta-test set $D_{\text{meta-test}} = \{(\hat{D}_{\text{train}}^{(m)}, \hat{D}_{\text{test}}^{(m)})\}$

Terminology

Optimization Objectives

• Formulation 1

$$\theta^{\star} = \arg \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \sum_{\boldsymbol{x}, \boldsymbol{y} \in D_{\text{test}}^{(n)}} p_{\theta}(\boldsymbol{y} | \boldsymbol{x}, D_{\text{train}}^{(n)})$$

• Formulation 2

$$[\theta^{\star}, \phi^{\star}] = \arg \max_{\theta, \phi} \frac{1}{N} \sum_{n=1}^{N} \sum_{\boldsymbol{x}, \boldsymbol{y} \in D_{\text{test}}^{(n)}} p_{g_{\phi}(\theta, D_{\text{train}}^{(n)})}(\boldsymbol{y} | \boldsymbol{x})$$

Possible Approaches

- Model dependent approaches
 - Metric based
 - Siamese networks
 - Matching network
 - Relation network
 - Prototypical network
 - RNN based
 - Memory augmented neural network (MANN)
 - LSTM meta learner
- Model independent approaches
 - Optimization based
 - Model Agnostic Meta-learning (MAML)
 - Reptile

Siamese networks

- Training
 - Meta-training set
 - $D_{train} = \{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), (\mathbf{x}_3, c_3), \cdots, (\mathbf{x}_N, c_N)\}$
 - $D_{test} = {\mathbf{x}, c}$
 - Make image pairs $\{(\mathbf{x}_1, \mathbf{x}), (\mathbf{x}_2, \mathbf{x}), \cdots, (\mathbf{x}_N, \mathbf{x})\}$
 - Trained to optimize $L = \sum_i L_i$
- Testing
 - Meta-testing set
 - $\hat{D}_{train} = \{(\hat{\mathbf{x}}_1, \hat{c}_1), (\hat{\mathbf{x}}_2, \hat{c}_2), (\hat{\mathbf{x}}_3, \hat{c}_3), \cdots, (\hat{\mathbf{x}}_N, \hat{c}_N)\}$
 - and a test image $\hat{\mathbf{x}}$
 - Make a set of image pairs $\{(\hat{\mathbf{x}}_1, \hat{\mathbf{x}}), (\hat{\mathbf{x}}_2, \hat{\mathbf{x}}), \cdots, (\hat{\mathbf{x}}_N, \hat{\mathbf{x}})\}$
 - Feed each image pair and register the output probability. Class of support set image which outputs the highest probability is the class of the test image. $c = \arg \max p(\hat{\mathbf{x}}, \hat{\mathbf{x}}_i)$

Siamese Neural Networks for One-shot Image Recognition, G. Koch et. al 2015

Matching network

- Training
 - Meta-training set
 - $D_{\text{train}} = \{ (\boldsymbol{x}_1, \boldsymbol{c}_1), (\boldsymbol{x}_2, \boldsymbol{c}_2), (\boldsymbol{x}_3, \boldsymbol{c}_3), (\boldsymbol{x}_4, \boldsymbol{c}_4) \}$
 - $D_{\text{test}} = \{(x, c)\}$
 - Train to maximize $p(\boldsymbol{c}|\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3, \boldsymbol{x}_4, \boldsymbol{x}) = \sum_{i=1}^4 a(\boldsymbol{x}_i, \boldsymbol{x}) \boldsymbol{c}_i$
- Testing
 - Meta-testing set
 - $\hat{D}_{\text{train}} = \{ (\hat{\boldsymbol{x}}_1, \hat{\boldsymbol{c}}_1), (\hat{\boldsymbol{x}}_2, \hat{\boldsymbol{c}}_2), (\hat{\boldsymbol{x}}_3, \hat{\boldsymbol{c}}_3), (\hat{\boldsymbol{x}}_4, \hat{\boldsymbol{c}}_4) \}$
 - $\hat{D}_{\text{test}} = \{(\hat{x}, \hat{c})\}$
 - Find $\operatorname{arg\,max}_k c_k \in p(\hat{\boldsymbol{c}}|\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}}_k \ k = 1, 2, 3, 4)$

Matching networks for one shot learning. Oriol Vinyals et .al 2016

Relation network

- Idea is similar to matching network
- Similarity is learned with a different network architecture

LSTM Meta-learner

- Learner is a neural network with parameters heta
- Meta-learner is an LSTM with parameters ϕ
- Data pairs from $\mathsf{D}_{\text{train}}$ are fed sequentially
- At each iteration, meta-learner delivers better parameter set θ_{t+1} given previous parameters θ_t , learner loss \mathcal{L}_t and its gradient $\nabla \mathcal{L}_t$.
- Finally feed data from D_{test} and find a loss
- Loss is back-propagated through the both learner and meta-learner and both $\,\theta\,$ and $\,\phi\,$ can be updated.

Model Agnostic Meta Learning (MAML)

- Optimization approach related to gradient descent
- Can be applied to any model
- Main idea:
 - Divide the meta-training set D_{train} into a set of tasks τ_i , $i = 1, 2, \cdots, N$
 - Update the model parameters, using the average of gradients over the tasks
 - The updated model parameter set is kept close to optimum model parameter set for each individual task.

Model-agnostic meta-learning for fast adaptation of deep networks, Chelsea Finn et al. 2017.

Reptile

- Very similar to MAML
- Averaging strategy is different
- Idea is to minimize the Euclidean distance between θ_i and $\theta'_{t,i}$ $i = 1, 2, \cdots, N$

$$\nabla \sum_{i=i}^{N} (\theta_t - \theta'_{t,i})^2 = 2 \sum_{i=1}^{N} (\theta_t - \theta'_{t,i})$$

One/Few Shot Learning

- Given a support set of one/few training examples of new classes, learn to classify a test input
 - K-class (k-way) one shot learning
 - one example per class and k classes
 - K-class (k-way) n-shot learning
 - n examples per class and k classes
- A straight-forward application of meta learning.

Zero Shot Learning

• Example: Given a semantic description, learn to classify an image

Okapi is "zebra-striped four legged animal with a brown torso and a deerlike face". Which of these images is of Okapi?

Zero-shot Learning Problem

- Given
 - Training set $D_{tr} = \{(\boldsymbol{x}_i, c_i^{tr}), i = 1, 2, \cdots, n\}$
 - Training example is $oldsymbol{x}_i$
 - Corresponding class label is c_i^{tr}
 - Class label is drawn from the **seen** training set classes $C_{tr} = \{c_i^{tr} \mid i = 1, 2, \dots, n_C^{tr}\}$
 - **Unseen** test set classes $C_{te} = \{c_i^{te} \mid i = 1, 2, \cdots, n_C^{te}\}$
 - Semantic/auxiliary representation vectors for each class in both training and test set $\{v_i^{tr}|i=1,2,\cdots,n_C^{tr}\} \cup \{v_j^{te} \mid j=1,2,\cdots,n_C^{te}\}$
 - Training and testing classes are disjoint $C_{tr} \cap C_{te} = \emptyset$
- Find
 - A function which maps test input examples into the corresponding class $f: \mathbf{x}_i^{te} \rightarrow c_i^{te}$

Semantic Representation

- Attribute description:
 - Example
 - Attributes: small, cute, furry, horns
 - Dog=[1,1,1,0], Bull=[0,1,1,1]
- Word co-occurrence count
- Word embedding vectors
 - Trained vector representations for each class name

Zero-shot Learning Approaches-1

- Training:
 - For each training example $(\boldsymbol{x}_i, c_i^{tr})$, get the semantic representation vector (or category vector) \boldsymbol{v}_i^{tr} corresponding to the class c_i^{tr} .
 - Train a network $f(\cdot)$ to map \boldsymbol{x}_i to \boldsymbol{v}_i^{tr} .
- Testing:
 - Get the test input \boldsymbol{x}^{te} and map it to the semantic representation vector $\boldsymbol{v}^{te} = f(\boldsymbol{x}^{te})$
 - Find the nearest neighbour to \pmb{v}^{te} and call it \pmb{v}^{\star}
 - Return the corresponding class c^\star to \boldsymbol{v}^\star

Zero-shot Learning Approaches-2

• Training:

- For each training example $(\boldsymbol{x}_i, c_i^{tr})$, get the semantic representation vector (or category vector) \boldsymbol{v}_i^{tr} corresponding to the class c_i^{tr} .
- Train a network $f(\cdot, \cdot)$ to map $(\boldsymbol{x}_i, \boldsymbol{v}_i^{tr})$ to a similarity value E.
- Testing:
 - Get the test input \boldsymbol{x}^{te} and couple it with semantic representation vector \boldsymbol{v}_i^{te} corresponding to each of the possible classes c_i^{te} . This will create $\{(\boldsymbol{x}^{te}, \boldsymbol{v}_i^{te}) | i = 1, 2, \cdots, n_C^{te}\}$
 - For each pair $(\boldsymbol{x}^{te}, \boldsymbol{v}^{te}_i)$ find $E_i = f(\boldsymbol{x}^{te}, \boldsymbol{v}^{te}_i)$.
 - Return the corresponding class to maximum ${\cal E}_i$

