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Introduction

 What Is learning?

- Adjust model parameters according to data
 Why Is it challenging?

- We do not have enough data

- Learning takes time
- Learning demands computational resources

 What Is the remedy?
- Learn efficiently with as little data as possible



Learning buzzwords

Deep Learning

Supervised learning Unsupervised learning Reinforcement Iearning\\
_ _ _ Transfer learning _ _
Semi-supervised learning Curriculum learning
Self-supervised learning
Self taught learning Machine Learning Hebbian learning
Active learning Feature learning Metric learning

Multi-task learning Multi-modal learning
: /
Zero-shot learning -

Few-shot learning One-shot learning

Meta learning



Transfer Learning

e General definition:

- Using the knowledge gathered in one learning task
In another learning task

* In deep learning:
- Re-train a previously trained network with new data

 Advantage:

- Can train a large network with relatively small (new)
data set.



Possible Approaches

Original pretrained

Transfer learning last layer

-New data set is very small
-New data and original data from the same domain

-Different class structure

Transfer learning last two layers

-New data set is less small

-Same domain, different class structure
)



Possible Approaches

Original pretrained

gllll]y

Transfer learning all layers



Why Is Transfer Learning Possible?

* The network learns general feature
representations

* More general, more transferable?

more task specific features

more general features

more complex features

|
simpler features
gl



How Transferable are Features?

Experiment reported in How transferable are features in deep neural networks?,
Yosinkski et.al 2014

- Two pre-trained networks baseA and baseB

- Same architecture trained with data sets A and B
AnB = First n layers from baseA, rest are retrained with data set B

- AnB+ = Same approach but the whole network is re-trained

BnB= First n layers from baseB, rest are retrained with data set B
- BbB+ = Same approach but the whole network is retrained
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How Transferable are Features?
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How Transferable are Features?

5: Transfer + fine-tuning improves generalization

® C 0.64f

3: Fine-tuning recovers co-adapted interactions

0.62} 2: Performance drops

due to fragile
co-adaptation

4: Performance
drops due to
representation
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Multi-task Learning

» Sharing a single network for several different
tasks

 Enhanced regularization effect

~ Task specific parts

~ Shared part




Multi-task Learning Example

pose regression task

training error test error
Head

detector
Left upper

Box with human I . - . arm detector \l

body \
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¢ LOSS funCtiOn Ltot — )\rLregression Adeetection
» Detection task helps regression task

Heterogeneous Multi-task Learning for Human Pose Estimation with DeepConvolutional Neural Network, S. Li et.al 2014



Multi-modal (Cross-modal) Learning

« Several input types sharing a single task

Specific CNNs
% /é//// Y g/// %
[ L 1 |
Natural Images Sketches Clip Art Spatial Text Descriptions

Cross-Modal Scene Networks, Aytar et.al 2016



Active Learning

» Actively choose the samples in training
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https://www.datacamp.com/community/tutorials/active-learning, Stefan Hosein



https://www.datacamp.com/community/tutorials/active-learning

Active Learning Typical Procedure

—

Predict valuable
samples

|
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ﬁ:’} [ Human annotator J a

[ Labelled data }

G -,
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{ Unlabelled data

|

 The most important element of active learning Is
to predict which samples are the most “valuable”

ones



Predicting the “Valuable” Samples

» Learner can learn more from samples that are
difficult to classify now.

* Measures to identify difficult-to-classify samples
— Confidence Tlowest confidence = arg Min, p(y1|z)
- Classification margin et margin = argmin, [p(ysle) — p(ys|2)|
— ENtropy  muisnest entropy = argmax, — 3, p(yilz) log p(ysl)

— Variance

« Bayesian techniques (eg: Monte-Carlo dropout,
ensembles)

X

p(y1lr) > p(yalx) > - > pyn|z)



Self-supervised Learning

» Related to Transfer learning
 How to get a pre-trained model?

- Altl: Use an existing big labeled database (eg: ImageNet) and

supervised learning

- Alt2: Use own unlabeled data and self-supervised learning

e Supervised vs Self-supervised learning

- Supervised:

N
1 - A
loss(D) = min N E_l loss(X;,Y;).

- Self-Supervised

N
loss(D) = min = ;21 loss(X;, P;).

Manually created labels

Automatically created labels



Pretext and Downstream Tasks

Supervised Dawnstream Task Training
Labeled Dataset

= Downstream
Task

Pretext task is defined so that automatic generation of labels is possible

Self-supervised Pretext Task Training
Unlabeled Dataset

Knowledge Transfer

Self-supervised Visual Feature Learning withDeep Neural Networks: A SurveylLonglong Jing and Yingli Tian, 2019



vy

Pretext Task Approaches

Predict any part of the input from any
other part.

Predict the Tuture from the past.

* |
Predict the future from the recent past. ' '

Predict the past from the present.

Predict the top from the bottom. m
Predict the occluded from the visible 1
Pretend there is a part of the input you « Past Future —

don’t know and predict that. Present Slide: LeCun

https://www.youtube.com/watch?v=710Qt7GALVk



Examples

Eg 1 (ULMFIT):
- Predict the next word given the previous words (pretext)

- Predict sentiments for given sentences (down-stream)

Eg 2: (BERT)

- Predict a randomly masked word in a sentence (Pretext)

- Question answering, language inference etc. (down-stream)

Eg 3: (Exemplar-CNN)
- Predict the class of distorted images (Pretext)
- Image classification (down-stream)

Eg 4: (JigSaw Puzzle)
- Predict the correct order of image patches extracted using a 3x3 grid. (Pretext)

Permutation Set
index permutation Reorder patches according to -
F

the selected permutation

- Image retrieval (Down-stream)

Eg 5: (Colorization)
- Predict the Color given the grayscale image (Pretext)
- Image classification, detection and segmentation (down-stream)

And many more

https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html

https://amitness.com/2020/05/self-supervised-learning-nip/
Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, A. Dosovitskiy et.al , 2015

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, Mehdi Noroozi, Paolo Favaro, 2017


https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html

Metric Learning

Learn a distance measure (metric) which reflects the semantic
similarity
In practice, we learn a transform f(-)such that the Euclidean distance
reflects the similarity.

1f () — f=)I? = [f () = fl)]" [f(2:) = fla))]
“Similarity” is expressed through side information

- EQl: x; and z; are similar if they can be linked (i.e. same class) and vice versa

- EgZ: X, is more similar to x, than x, if @ and p can be linked while ¢ and n cannot be linked

A loss function can be defined for extracting similarity. Examples:
- Contrastive loss: 0 - FIE i xix; € P
-l = fx)IP, i xi,x; €N

- Tripletloss  Li=2s.cam,cpzen 1f (@) = f@)? — £ (@) — f(zw)l?



I\/Iahalanobis Metric (example)

Mahalanobis metric learni ng diffusion maps
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« Consider P, Q and R

- Q should be more similar to P than R (P and Q belongs to the same
class)

- But Euclidean distance d(P,Q) > d(P,R),
- Correct this by scaling variance along each dimension
m==) Mahalanobis distance/metric

Dn(P,Q) = l“P_(l)xP_(Q)] _ [5’0@_(1)}"@_(2)]




Metric Learning in Deep Learning

* Replace the linear transform with a neural net
and train using a suitable loss

Patches Siamese network

e
-ﬂ
1 /4/ind

1f(@1) = fa2)]

Discriminative Learning of Deep Convolutional Feature Point Descriptors Simo-Serra et.al 2014



Metric Learning Summary

minimize the distance
maximize the distance
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e) Transformed data space

— Similarity
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d) Deep metric learning example*

Deep metric learning, a survey, Kaya and Bilge, 2019



Meta Learning

e Also known as “Learning to Learn”
* |tis about learning what a system learns in different tasks

 Then the meta learner can predict the system parameters for a new
task (without going through full training).

Learner \

__pMeta Learner

Meta-

Train
.r_/”” ta—train

Learner

o i
> A Learner <
e

Meta-
~ Test
f/mrm test

Generalizing from few examples with meta-learning Hugo Larochelle, 2018



Learning vs Meta-learning

e Learning algorithm (Learner)
e Input: Training set Dyain = {(Z;,9:)}

e Output: Parameters 8 of the model M

e Objective: Performance on the test set Dies, = {(Z,9;)}

 Meta-Learning algorithm (Meta-learner)

e Input: Meta-training set D oo train = {(Dgﬁim Dt(:gt)}
e Output: Parameters O of the learner

e Objective: Performance on the meta-test set Dyetatess = {( D DN

train? test



Terminology

Episode 1

Support Prediction/query

Episode 2

-- Episode 4
| .
Episode 3

-- Episode 5
1

Meta-training set

Meta-testing set



Optimization Objectives

e Formulation 1

0* = arg max—z Z pe(yl|z, ngi)m

n=1 I yEDtest

e Formulation 2

N
* 1k 1
[9 7¢ ] — arg N Z Z pg¢(9 D) ) y‘fl}')

— ( ) train
n=1 ayEDt:st



Possible Approaches

 Model dependent approaches

- Metric based
« Siamese networks
« Matching network
* Relation network
* Prototypical network

- RNN based

« Memory augmented neural network (MANN)
« LSTM meta learner

 Model independent approaches

- Optimization based
* Model Agnostic Meta-learning (MAML)
* Reptile



Siamese networks

L = —log(p;) if (x;,x) belongs to the same class
- —log(1—p;) if (x;,x) belongs to different classes

input 1 EO
,p robability
x [ o
i O 7 di 1
input 2 - /// istance i = — exp{—d,-}
! L d: z
O I
 Training embed 2
- Meta-training set
* Dyrain = {(x1,¢1). (X2, ¢3), (X3, €3), - -, (XN, cN)}
Drest‘ = {K,E}

- Make image pairs {(xy,x),(x2,%),- -+ . (XN, X)}
- Trained to optimize L= X;L;

 Testing
- Meta-testina set
* Dirain = {(%1,61), (X2, 82), (Xa,é3), -+, (X, EN)}

« and atest image ¥
- Make a set of image pairs {(%;, %), (X2,X), -+, (Xn,X)}

- Feed each image pair and register the output probability. Class of support set image which
outputs the highest probability is the class of the test image. ¢ = arg max p(%, X;)

Siamese Neural Networks for One-shot Image Recognition, G. Koch et. al 2015



Matching network

exp(cosine(f(x), g(x;))

a(X.x;) = T _
> =1 exp(cosine(f(x), g(x;))

p(0‘$1,$2,$3,$4,x) = Z?:l a(x’i7w>ci

 Training
- Meta-training set
Dtrain — {(xlacl)v (332,62), (933,(33), (174,64)}
* Dtest = {(.’II,C)}
* Train to maximize p(c|e1,Z2,E3,24,2) = Z?zl a(x;,x)c;
» Testing
- Meta-testing set
® Dtrain — {(32'1,&1), (5%27&2)7 (ﬁ3aé3)7 (@4764)}

* Dtest = {(ﬁaé)} . .
e Find argmaxy c; € p(e|z,zr k= 1,2,3,4) Matching networks for one shot learning. Oriol Vinyals et .al 2016



Relation network

 |ldea Is similar to matching network

o Similarity Is learned with a different network
architecture

Learning to compare: Relation network for few-shot learning, Flood Sung et al., 2018



LSTM Meta-learner

(Xl Yl) (Xg Yz) (X:{e Y:’,) (XTiYT)

to 01 1

—>

Learner - [._ v ) '-,_ (V. Lr)
. Hl . . 97 1 . B

Meta-learner

Learner is a neural network with parameters @

Meta-learner is an LSTM with parameters (/5

Data pairs from D,.;, are fed sequentially

At each iteration, meta-learner delivers better parameter set (9t+1 given previous
parameters Ht, learner loss £; and its gradient V .,.

« Finally feed data from D, and find a loss

« Loss is back-propagated through the both learner and meta-learner and both @
and ¢ can be updated.

Optimization as a Model for Few-Shot Learning, Sachin Ravi and Hugo Larochelle, 2017.



Model Agnostic Meta Learning
(MAML)

« Optimization approach related to gradient descent
e Can be applied to any model

 Main idea:
— Divide the meta-training set D,,,;, into a set of tasks 7, i=1,2,---,N

- Update the model parameters, using the average of gradients over the tasks

- The updated model parameter set is kept close to optimum model
parameter set for each individual task.

Model-agnostic meta-learning for fast adaptation of deep networks, Chelsea Finn et al. 2017.



Reptile

* Very similar to MAML
* Averaging strategy Is different

e |dea is to minimize the Euclidean distance
between 6¢; and 6;; i=1,2,--- N

V Zé\iz‘(et _ 6’1,5,7:)2 =2 Ziﬂet _ 922)

On First-Order Meta-Learning Algorithms. Alex Nichol et. al. 2018



One/Few Shot Learning

* Given a support set of one/few training examples of
new classes, learn to classify a test input

- K-class (k-way) one shot learning
* one example per class and k classes

- K-class (k-way) n-shot learning
* n examples per class and k classes

» A straight-forward application of meta learning.

e

Foh N
0o P \

oro 7
Support set (Training) query set (Training) Support set (Testing)  Test input

https://sorenbouma.github.io/blog/oneshot/



Zero Shot Learning

 Example: Given a semantic description, learn to
classify an image

Okapi is ” zebra-striped four legged animal with a brown torso and a deer-
like face”. Which of these images is of Okapi?

Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs, Wang et.al 2018



Zero-shot Learning Problem

e Given

- Training set Dy, = {(z;,c"), i=1,2,--- ,n}
e Training example is Z;
« Corresponding class label is ¢}

e Class label is drawn from the seen training set classes ¢, ={c"|i=12- n%

- Unseen test set classes Ci ={c|i=1,2,--- ,nfs

- Semantic/auxiliary representation vectors for each class in
both training and test set {v"ji =1,2,--- n&lu{vic| j=1,2,-- ,nis

- Training and testing classes are disjoint ¢,. N C,. = 0
* Find

- A function which maps test input examples into the
corresponding class f:ztc — cie



Semantic Representation

« Attribute description:

- Example
« Attributes: small, cute, furry, horns
« Dog=[1,1,1,0], Bull=[0,1,1,1]

« Word co-occurrence count

» Word embedding vectors
- Trained vector representations for each class name
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Zero-shot Learning Approaches-1

e Training:

— For each training example (z;,c!"), get the semantic representation vector (or

category vector) v!" corresponding to the class c!.

— Train a network f(-) to map z; to v’

o Testing:
— Get the test input ' and map it to the semantic representation vector v'* = f(z')
— Find the nearest neighbour to v* and call it v*

— Return the corresponding class ¢* to v*




Zero-shot Learning Approaches-2

e Training:

— For each training example (z;,c!"), get the semantic representation vector (or

category vector) v corresponding to the class ¢!,

— Train a network f(-.-) to map (z;.v'") to a similarity value E .
e Testing:

— Get the test input £ and couple it with semantic representation vector v¢ cor-
responding to each of the possible classes ¢i. This will create {(z',v!®)| i =
1,2,--+  ni&

— For each pair (&', v!®) find E; = f(z',v'®).

— Return the corresponding class to maximum E;

Maximum
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