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Sample efficiency

® May be expensive to generate data

® Can we use data more than once?
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Stability

Problem:
® Bad updates impact the data we see

e Stability is difficult due to changes in distribution of
observations and rewards

® Targets often depend on the output of the network
® Targets may be changing even if distribution is not, e.g. with
TD-learning.
® State aliasing may lead prediction updates to also update
target
Goal:

® Would like algorithms that works most of the time

e Would like algorithms that work across environments with
minimal adjustment of hyperparameters

Will not look at: “Normalizing environments”
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Papers

® Playing atari with deep reinforcement learning [1].
® Human-level control through deep reinforcement learning [2].

® Deep reinforcement learning with double g-learning [3].
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Atari 2600

Figure: Atari 2600


https://www.youtube.com/watch?v=ucRYLobga0g
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Base update

DQN is a g-learning algorithm. We will start with our basic
g-learning update and introduce the proposed additions one at a
time.

Let g, be our current estimate of the optimal action-value function
g« Our base update is given by

=0+ a((res +7 max Gn(Se+1,a)) = Gy(se, ar)) Vi (e, ar)

where we call (s, at, rey1, Se+1) a transition.
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Batch updates

Store several transitions and make batch update

N

1 . . N o
n<nt N Z ((r(l) +7 max qn(s/('), ) - qn(s(l)a 3(')))vn%(5(l)a al")
i=1

® N is our minibatch size and (s, a, r,s’) is a transition in an
episode
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® N is our minibatch size and (s, a, r,s’) is a transition in an
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Batch updates

Store several transitions and make batch update

N
1 . . N N
n<nt N E ((r(l) +7 max qn(s/('), ) - qn(s(l)a 3(')))vn%(5(l)a a(l))
i=1

® N is our minibatch size and (s, a, r,s’) is a transition in an
episode
Motivation:

® Batches often improve stability

® Better utilization of GPU
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Replay buffer

e Store transitions (S, at, re+1, St+1) in replay buffer D.

e At each iteration we sample a minibatch from D which we
make updates based on.

e Discard older experience as it becomes out-of-date.

N
1 . . o N
e n+ag > (1 +ymaxay (s, 2)) — gy(s, 87)) Vg (s, 2
i=1

Now (s(i), ali), r(i),s’(i)) ~ D, no longer consecutive experience.
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Replay buffer

e Store transitions (S, at, re+1, St+1) in replay buffer D.

e At each iteration we sample a minibatch from D which we
make updates based on.

e Discard older experience as it becomes out-of-date.

N
1 . . N N
nentam S0 (19 +ymaxay(s9, 2)) - g,(s0,80)) v, g(s, 20)
i=1

Now (s(i), ali), r(i),s’(i)) ~ D, no longer consecutive experience.
Serves two purposes:
e Sample efficiency: Several updates from the same experience

e Stability: Get less correlated data sampling from a larger
dataset
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“Fixed" target Q-network
Problem: Risk of state aliasing when using function approximators.
® Features g, extracts from consecutive states s and s’ may be
almost identical.

® Recall prediction and targets are of the form
(s, a), r+ymaxgqy,(s’,a’)
a/

Updating q(s, a) may affect g(s’, a’) for different actions 4.
® Targets are moving - may end up chasing our own tail.
Solution:
® Keep a separate target network g, -
® Only occasionally update n~ to match 7

N
nent+a Z )+ ymaxq,- (s, &) — gy(s), &) Vg (s, &

= \
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Problem: Targets are too optimistic

® Value estimate is max, g, (s, a) = gy(s, argmax,qy(s, a)).
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Bias-reduction of Q

Problem: Targets are too optimistic

Value estimate is max, gy (s, a) = qy(s, argmax,qy(s, a)).

The reason that an action is chosen, is often because it is too
optimistic! (Winner's curse)

For a state s assume g(s, a) are zero for all a, and assume we
have an equal number of values g, (s, a) that are positive and
negative. Then g,(s,argmax,qy(s,a)) > 0.
So if &’ = argmax,q,(s, a). Often

® gy(s,a") > qgx(s,a’), even

® gy(s,a") > gx(s,argmax,qx(s, a))
Note: Happens even though g,(s, a) is not too optimistic in
general.

This is not just a problem to function approximation, but
g-learning in general.


https://en.wikipedia.org/wiki/Winner%2527s_curse
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Bias-reduction of Q Il

Solution:

® Choose the action from our current policy network g,

® Still get value from evaluating target network g,

aD = argmax, g, (s, a)

N
men+as 30 (0 +9a, (40, 70)) - g,(7,3)) 7,051, a0)
i=1
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Pseudocode

Algorithm 1 Deep Q-learning with Experience Replay

1: Initialize (round-robin) replay memory D (partially) up to capacity N

2: Initialize action-value function g, with random weights.

3: Initialize target action-value function g, with weights = = 1.

4: Let hy denote the history so far (oo, ao, 11,01, - - -, It, 0t).

5: for episode = 1, M do

6: Initialize sequence with sy = f(op)

7: fort=1,T do

8: With probability € select a random action a;

9: otherwise select a; = maxa gy (st, a)

10: Execute action a; in emulator and observe reward ryy1 and observation o;1
11: Set s¢11 = f(hey1)

12: Store transition (st, at, re+1, Se+1) in D.

13: Sample random minibatch of transitions (s;, aj, i1, sj+1) from D

) rit1 for terminal sj;1
14: Sety; = { I:j,ur]_ + 74, (sj+1, argmax, qn(sj+1,a’)) for non—termi#\al Sjt1
15: Perform a gradient descent step on (yj — qn(s), aj))2 with respect to the
network parameters 7).

16: Every C steps, set n= = 7.
17: end for
18: end for
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® Trust region policy optimization [4].

® Proximal policy optimization algorithms [5].
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Advantage
We define the advantage function d; as
dr(s,a) := gr(s,a) — vz(s)
Note that for a given state s the expected advantage is always 0
EANﬂ'(S)[dﬂ'(S7 A)] = EA~7r(s)[q7r(57 A) - Vﬂ'(s)]
= EANW(S)[qTF(SvA)] - Vﬂ'(s)
= Zﬂ-(a|5)q7r(s’ a) — va(s)

= Vz(s) —vx(s) =0

Possible approximatations are e.g.
L Gt — Vn(st)
® Rep1 4+ yvp(Ses1) — vy(se)

® qu(st,ar) — vy(st)
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Actor-critic

Policy-gradient update:

N r()—1

1 i i)y (i
0 9+ozN; tz_; gV log mg(al?|s)
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Actor-critic
Policy-gradient update:
1 N ()1
0« 6+ ozN z; tz; gt(')Vg log wg(ag')|sg'))
= e

Actor-critic update:

d g log ma(al"|s\)

N (-1
0+ 0+«
=1

==

1 t=
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Bibliography

Actor-critic
Policy-gradient update:
0 otat XN:T%? CESNRGING
PP g: Vologmg(a;’|st’)
Actor-critic update:
0 0+ar f:%fl dv,1 UEY
N2 2 oV ogmg(a;'|s; )

° d, ~ Gry(St, ar) — Vi, (St), i.e. estimation of advantage of
taking action a; from state s;.



Introduction Deep Q-Networks (DQN) Proximal Policy Optimization (PPO) Bibliography
000 0000000000 0O000e000000000000 o]

Returns of a policy in terms of another

For two policies 7 and 7

E#[Go] = Ex [Go]+E"[27 (St Ae)]
t=0
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® Gp: return of the episode, i.e. Gop =Y 727 Ret1.
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Returns of a policy in terms of another

For two policies 7 and 7

E+[Go] = E[Go]+E~[ZV (Se, Al
t=0

® Gp: return of the episode, i.e. Gop =Y 727 Ret1.

* Optimize left-hand side by optimizing Ex[Y 1o o7 dr(St, At)]
with respect to 7.
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Returns of a policy in terms of another

Introduction
000

For two policies 7 and 7

E+[Go] = E[Go]+E~[ZV (Se, Al
t=0

® Gp: return of the episode, i.e. Gop =Y 727 Ret1.
* Optimize left-hand side by optimizing Ex[Y 1o o7 dr(St, At)]
with respect to 7.

e Or? We will rewrite and simplify problem.



Introduction Deep Q-Networks (DQN) Proximal Policy Optimization (PPO) Bibliography
000 0000000000 00000e00000000000 (e]

Visitation frequencees

® Assume discrete state and action spaces



Introduction Deep Q-Networks (DQN) Proximal Policy Optimization (PPO) Bibliography
000 0000000000 000008000000 00000 o]

Visitation frequencees

® Assume discrete state and action spaces

® Let p, be the unnormalized discounted visitation frequencies

pr(s) = Pr(So =) +vP(51 =5s) + ’yZPW(Sz =5s)+...



Introduction Deep Q-Networks (DQN) Proximal Policy Optimization (PPO) Bibliography
000 0000000000 000008000000 00000 o]

Visitation frequencees

Assume discrete state and action spaces
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Actions are chosen according to .
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Visitation frequencees

Assume discrete state and action spaces

Let p, be the unnormalized discounted visitation frequencies

pr(s) = Pr(So =) +vP(51 =5s) + ’szW(Sz =5s)+...

S0 ~ po
Actions are chosen according to .

This function often also called (discounted) occupancy
measure.
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Rewrite objective

E~[nytd (St,Ar)] = ZZZP (St = s, Ar = a)ydy (s, a)

t=0 s

_ZZZP S; = s)i(als)y dx(s, a)
t=0 s

_ZZP (S5t =s) Z (als)v'dx (s, a)
t=0 s

—ZZ’Y'D(St—S)Z (als)
s t=0

:Zpﬁ. s Zﬂ' aS)dﬂ-(57a)
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Rewrite objective

E~[nytd St’At]_ZZZ’D (St = s5,A; = a)y'd, (s, a)

t=0 s

—ZZZP (St = s)7(als)ydx(s, a)
t=0 s

o 5t =9) L el ‘el 2
t=0 s

—ZZ’}/P(St—s)Z (als)
s t=0

:Zpﬁ. s Zﬂ' aS)dﬂ-(S»a)

Increasing 7(als) for positive advantages d-(s, a) leads to
improvement?
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Policy iteration revisited

If for all states s

Zﬁ(a|s)d,r(s, a)>=0

a

we are indeed guranteed that 7 > 7.
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Policy iteration revisited

If for all states s
Zﬁ(a|s)dﬁ(s, a)>=0
a

we are indeed guranteed that & > 7. Note that our derivations
imply the policy iteration theorem, where we defined our new policy
as

7(s) := argmax,qr(s, a) = argmax,d,(s, a)
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Policy iteration revisited

If for all states s
Zﬁ(a|s)dﬁ(s, a)>=0
a

we are indeed guranteed that & > 7. Note that our derivations
imply the policy iteration theorem, where we defined our new policy
as

7(s) := argmax,qr(s, a) = argmax,d,(s, a)

We will here look at stochastic parametrized families of policies
g, 0 € O.
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lgnoring change in state-visitation frequencies

Optimizing
> pa(s) Y #(als)dx(s, a)

is too difficult due to complex effect of change in state-visitation
frequences.
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lgnoring change in state-visitation frequencies

Optimizing
> pa(s) Y #(als)dx(s, a)

is too difficult due to complex effect of change in state-visitation
frequences. Thus we define the simpler function

pr Z als)dr(s, a)



Proximal Policy Optimization (PPO)
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Optimizable Il

L(7) = Z pr(s) Z 7(als)dx(s, a)

—ZZVP (S5:=5s) Zﬂ(a| )dx (s, a)

s t=0
YRS 9) LERIAED
t=0 s
-3 pus) ¥w<a|s):§j:3vfdﬂ(s 2)
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Approximation
Can we optimize L(7)?
Approximate with sample

Bibliography

e Let £ denote the empirical distribution, then the problem may

be restated as

A |:7?(at|5t),ytc']t}

max E
T 7T(31_-|St)
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Approximation
Can we optimize L(7)?
Approximate with sample

e Let £ denote the empirical distribution, then the problem may
be restated as

E[%(aﬂst) tc']t}

maX
7 W(at|5t)

® Note: We have ignored the factor Z,N:l () /N | as it does not
affect solution.

e Note: Going forward we will ignore the factor v* as well.
Might argue that we care equally about E;[G;] for any t rather
than just Ez[Go]. ~y still influences solution through the return.
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Conservative policy updates

® Don't change policy too much as we are only approximating.
® Sample new “dataset” regularly
® Policy iteration algorithm
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PPO - objective

m, 0 € ©. Let 0,4 be the parameters of the policy we have
sampled from.
Define

770(31_“‘51_“)

uelf) = T0ga(3t[5t)
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PPO - objective

m, 0 € ©. Let 0,4 be the parameters of the policy we have
sampled from.
Define

we(at\st)

uelf) = T0ga(3t[5t)

Let clip(x, lower, upper) := min(max(x, lower), upper), then define
the surrogate objective as

LPPO(0) = E[min(ue(0)d:, clip(ue(0),1 — €, 1 + €)d;)]

where ¢ is a hyperparameter, e.g. € = 0.2.
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PPO - intuition

LPPO(6) = E[min(ue(0)dy, clip(ue(0),1 — €,1 + €)d})]

where € is a hyperparameter, e.g. € = 0.2.
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PPO - intuition

LPPO(6) = E[min(ue(0)dy, clip(ue(0),1 — €,1 + €)d})]

where € is a hyperparameter, e.g. € = 0.2.

® The first term is the same as our surrogate objective from
above
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PPO - intuition

LPPO(6) = E[min(ue(0)dy, clip(ue(0),1 — €,1 + €)d})]

where € is a hyperparameter, e.g. € = 0.2.

® The first term is the same as our surrogate objective from
above

® The second term removes incentive to move too far away from

Thopq -
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PPO - intuition

LPPO(6) = E[min(ue(0)dy, clip(ue(0),1 — €,1 + €)d})]

where € is a hyperparameter, e.g. € = 0.2.
® The first term is the same as our surrogate objective from
above

® The second term removes incentive to move too far away from

Thopq -

® Take minumum to get pessimistic bound
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Policy evaluation

® So far looked at policy improvement step. Need policy
evaluation as well.
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® So far looked at policy improvement step. Need policy
evaluation as well.

® May use any of the techniques we have learned for estimation
of value functions.
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Policy evaluation

® So far looked at policy improvement step. Need policy
evaluation as well.

® May use any of the techniques we have learned for estimation
of value functions.

As an example may fit value function v, by e.g. minimizing loss

(1) = 5 (ge = va(se)?
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Simultaneous policy evaluation and improvement

To be able to share parameters between value function and policy
function, we may combine policy evaluation and policy
improvement steps, at each step optimizing

L= E[L{7O(0) — c (gt — vy(st))’]

o LPPO | PPO.

is an element in

® ¢ > 0is a hyperparameter.
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Simultaneous policy evaluation and improvement

To be able to share parameters between value function and policy
function, we may combine policy evaluation and policy
improvement steps, at each step optimizing

L= E[L{7O(0) — c (gt — vy(st))’]

| PPO

LPPO is an element in

¢ > 0 is a hyperparameter.

Differentiate L both with respect to 1 and 6.

1 and # may now actually overlap.



Proximal Policy Optimization (PPO)
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Pseudocode

Algorithm 2 PPO, Actor-Critic Style

Initialize value network v, with random weights.
Initialize policy network 7y with random weights.
Initialize 6,49 = 0.

for iteration =1,2,... do

fori=1N do
Run policy 7y, ,in environment (possibly limit time steps)
Compute advantage estimates di, ..., c?T(,-)

end for

Set surrogate objective L based on the sampled data.
Optimize surrogate L wrt. n and 6, for K epochs and
minibatch size M < Z,N:l (),
90|d «— 0.

end for




Section 4
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