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Introduction
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Sample efficiency

• May be expensive to generate data

• Can we use data more than once?
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Stability
Problem:

• Bad updates impact the data we see

• Stability is difficult due to changes in distribution of
observations and rewards

• Targets often depend on the output of the network
• Targets may be changing even if distribution is not, e.g. with

TD-learning.
• State aliasing may lead prediction updates to also update

target

Goal:
• Would like algorithms that works most of the time

• Would like algorithms that work across environments with
minimal adjustment of hyperparameters

Will not look at: “Normalizing environments”
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Section 2

Deep Q-Networks (DQN)
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Papers

• Playing atari with deep reinforcement learning [1].
• Human-level control through deep reinforcement learning [2].
• Deep reinforcement learning with double q-learning [3].
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Atari 2600
Atari 2600 spill

Figure: Atari 2600

https://www.youtube.com/watch?v=ucRYLobga0g


Introduction Deep Q-Networks (DQN) Proximal Policy Optimization (PPO) Bibliography

Base update

DQN is a q-learning algorithm. We will start with our basic
q-learning update and introduce the proposed additions one at a
time.

Let qη be our current estimate of the optimal action-value function
q∗. Our base update is given by

η ← η + α
(
(rt+1 + γmax

a′
qη(st+1, a

′))− qη(st , at)
)
∇ηqη(st , at)

where we call (st , at , rt+1, st+1) a transition.
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Batch updates

Store several transitions and make batch update

η ← η + α
1
N

N∑
i=1

(
(r (i) + γmax

a′
qη(s ′(i), a′))− qη(s(i), a(i))

)
∇ηqη(s(i), a(i))

• N is our minibatch size and (s, a, r , s ′) is a transition in an
episode

Motivation:
• Batches often improve stability

• Better utilization of GPU
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Replay buffer

• Store transitions (st , at , rt+1, st+1) in replay buffer D.
• At each iteration we sample a minibatch from D which we

make updates based on.
• Discard older experience as it becomes out-of-date.

η ← η + α
1
N

N∑
i=1

(
(r (i) + γmax

a′
qη(s ′(i), a′))− qη(s(i), a(i))

)
∇ηqη(s(i), a(i))

Now (s(i), a(i), r (i), s ′(i)) ∼ D, no longer consecutive experience.

Serves two purposes:
• Sample efficiency: Several updates from the same experience
• Stability: Get less correlated data sampling from a larger

dataset
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“Fixed” target Q-network
Problem: Risk of state aliasing when using function approximators.
• Features qη extracts from consecutive states s and s ′ may be

almost identical.

• Recall prediction and targets are of the form

qη(s, a), r + γmax
a′

qη(s ′, a′)

Updating q(s, a) may affect q(s ′, a′) for different actions a′.
• Targets are moving - may end up chasing our own tail.

Solution:
• Keep a separate target network qη−

• Only occasionally update η− to match η

η ← η + α
1
N

N∑
i=1

(
(r (i) + γmax

a′
qη−(s ′(i), a′))− qη(s(i), a(i))

)
∇ηqη(s(i), a(i))
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Bias-reduction of Q
Problem: Targets are too optimistic
• Value estimate is maxa qη(s, a) = qη(s, argmaxaqη(s, a)).

• The reason that an action is chosen, is often because it is too
optimistic! (Winner’s curse)

• For a state s assume qπ(s, a) are zero for all a, and assume we
have an equal number of values qη(s, a) that are positive and
negative. Then qη(s, argmaxaqη(s, a)) > 0.
• So if a′ = argmaxaqη(s, a). Often

• qη(s, a′) > qπ(s, a′), even
• qη(s, a′) > qπ(s, argmaxaqπ(s, a))

• Note: Happens even though qη(s, a) is not too optimistic in
general.
• This is not just a problem to function approximation, but

q-learning in general.

https://en.wikipedia.org/wiki/Winner%2527s_curse
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Bias-reduction of Q II

Solution:

• Choose the action from our current policy network qη

• Still get value from evaluating target network qη− .

a′(i) = argmaxaqη(s ′(i), a)

η ← η + α
1
N

N∑
i=1

(
(r (i) + γqη−(s ′(i), a′(i)))− qη(s(i), a(i))

)
∇ηqη(s(i), a(i))
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Pseudocode

Algorithm 1 Deep Q-learning with Experience Replay
1: Initialize (round-robin) replay memory D (partially) up to capacity N
2: Initialize action-value function qη with random weights.
3: Initialize target action-value function qη− with weights η− = η.
4: Let ht denote the history so far (o0, a0, r1, o1, . . . , rt , ot).
5: for episode = 1,M do
6: Initialize sequence with s0 = f (o0)
7: for t = 1,T do
8: With probability ε select a random action at
9: otherwise select at = maxa qη(st , a)
10: Execute action at in emulator and observe reward rt+1 and observation ot+1
11: Set st+1 = f (ht+1)
12: Store transition (st , at , rt+1, st+1) in D.
13: Sample random minibatch of transitions

(
sj , aj , rj+1, sj+1

)
from D

14: Set yj =
{

rj+1 for terminal sj+1
rj+1 + γqη− (sj+1, argmaxa′qη(sj+1, a

′)) for non-terminal sj+1

15: Perform a gradient descent step on
(
yj − qη(sj , aj )

)2 with respect to the
network parameters η.

16: Every C steps, set η− = η.
17: end for
18: end for
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Section 3

Proximal Policy Optimization (PPO)
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Papers

• Trust region policy optimization [4].
• Proximal policy optimization algorithms [5].
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Advantage
We define the advantage function dπ as

dπ(s, a) := qπ(s, a)− vπ(s)

Note that for a given state s the expected advantage is always 0

EA∼π(s)[dπ(s,A)] = EA∼π(s)[qπ(s,A)− vπ(s)]

= EA∼π(s)[qπ(s,A)]− vπ(s)

=
∑
a

π(a|s)qπ(s, a)− vπ(s)

= vπ(s)− vπ(s) = 0

Possible approximatations are e.g.
• Gt − vη(st)

• Rt+1 + γvη(St+1)− vη(st)

• qν(st , at)− vη(st)
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Actor-critic

Policy-gradient update:

θ ← θ + α
1
N

N∑
i=1

τ (i)−1∑
t=0

g
(i)
t ∇θ log πθ(a

(i)
t |s

(i)
t )

Actor-critic update:

θ ← θ + α
1
N

N∑
i=1

τ (i)−1∑
t=0

d̂
(i)
t ∇θ log πθ(a

(i)
t |s

(i)
t )

• d̂t ≈ qπθ(st , at)− vπθ(st), i.e. estimation of advantage of
taking action at from state st .
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Returns of a policy in terms of another

For two policies π and π̃

Eπ̃[G0] = Eπ[G0] + Eπ̃[
∞∑
t=0

γtdπ(St ,At)]

• G0: return of the episode, i.e. G0 =
∑∞

t=0 γ
tRt+1.

• Optimize left-hand side by optimizing Eπ̃[
∑∞

t=0 γ
tdπ(St ,At)]

with respect to π̃.

• Or? We will rewrite and simplify problem.
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Visitation frequencees

• Assume discrete state and action spaces

• Let ρπ be the unnormalized discounted visitation frequencies

ρπ(s) = Pπ(S0 = s) + γPπ(S1 = s) + γ2Pπ(S2 = s) + . . .

• S0 ∼ ρ0

• Actions are chosen according to π.

• This function often also called (discounted) occupancy
measure.
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Rewrite objective

Eπ̃[
∞∑
t=0

γtdπ(St ,At)] =
∞∑
t=0

∑
s

∑
a

Pπ̃(St = s,At = a)γtdπ(s, a)

=
∞∑
t=0

∑
s

∑
a

Pπ̃(St = s)π̃(a|s)γtdπ(s, a)

=
∞∑
t=0

∑
s

Pπ̃(St = s)
∑
a

π̃(a|s)γtdπ(s, a)

=
∑
s

∞∑
t=0

γtPπ̃(St = s)
∑
a

π̃(a|s)dπ(s, a)

=
∑
s

ρπ̃(s)
∑
a

π̃(a|s)dπ(s, a)

Increasing π̃(a|s) for positive advantages dπ(s, a) leads to
improvement?
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Policy iteration revisited

If for all states s ∑
a

π̃(a|s)dπ(s, a) >= 0

we are indeed guranteed that π̃ ≥ π.

Note that our derivations
imply the policy iteration theorem, where we defined our new policy
as

π̃(s) := argmaxaqπ(s, a) = argmaxadπ(s, a)

We will here look at stochastic parametrized families of policies
πθ, θ ∈ Θ.
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Ignoring change in state-visitation frequencies

Optimizing ∑
s

ρπ̃(s)
∑
a

π̃(a|s)dπ(s, a)

is too difficult due to complex effect of change in state-visitation
frequences.

Thus we define the simpler function

L(π̃) =
∑
s

ρπ(s)
∑
a

π̃(a|s)dπ(s, a)
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Optimizable II

L(π̃) :=
∑
s

ρπ(s)
∑
a

π̃(a|s)dπ(s, a)

=
∑
s

∞∑
t=0

γtPπ(St = s)
∑
a

π̃(a|s)dπ(s, a)

=
∞∑
t=0

∑
s

Pπ(St = s)
∑
a

π̃(a|s)γtdπ(s, a)

=
∞∑
t=0

∑
s

Pπ(St = s)
∑
a

π(a|s)
π̃(a|s)

π(a|s)
γtdπ(s, a)

=
∞∑
t=0

∑
s

∑
a

Pπ(St = s)π(a|s)
π̃(a|s)

π(a|s)
γtdπ(s, a)

= Eπ
[ ∞∑
t=0

π̃(At |St)
π(At |St)

γtdπ(St ,At)
]
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Approximation
Can we optimize L(π̃)?

Approximate with sample

L(π̃) ≈ 1
N

N∑
i=1

τ (i)−1∑
t=0

π̃(a
(i)
t |s

(i)
t )

π(a
(i)
t |s

(i)
t )

γt d̂
(i)
t

• Let Ê denote the empirical distribution, then the problem may
be restated as

max
π̃

Ê
[ π̃(at |st)
π(at |st)

γt d̂t
]

• Note: We have ignored the factor
∑N

i=1 τ
(i)/N , as it does not

affect solution.
• Note: Going forward we will ignore the factor γt as well.

Might argue that we care equally about Eπ̃[Gt ] for any t rather
than just Eπ̃[G0]. γ still influences solution through the return.
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Conservative policy updates

• Don’t change policy too much as we are only approximating.
• Sample new “dataset” regularly

• Policy iteration algorithm
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PPO - objective

πθ, θ ∈ Θ. Let θold be the parameters of the policy we have
sampled from.
Define

ut(θ) =
πθ(at |st)
πθold(at |st)

Let clip(x , lower, upper) := min(max(x , lower), upper), then define
the surrogate objective as

LPPO(θ) = Ê [min(ut(θ)d̂t , clip(ut(θ), 1− ε, 1 + ε)d̂t)]

where ε is a hyperparameter, e.g. ε = 0.2.
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LPPO(θ) = Ê [min(ut(θ)d̂t , clip(ut(θ), 1− ε, 1 + ε)d̂t)]

where ε is a hyperparameter, e.g. ε = 0.2.



Introduction Deep Q-Networks (DQN) Proximal Policy Optimization (PPO) Bibliography

PPO - intuition

LPPO(θ) = Ê [min(ut(θ)d̂t , clip(ut(θ), 1− ε, 1 + ε)d̂t)]

where ε is a hyperparameter, e.g. ε = 0.2.

• The first term is the same as our surrogate objective from
above

• The second term removes incentive to move too far away from
πθold .

• Take minumum to get pessimistic bound
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Policy evaluation

• So far looked at policy improvement step. Need policy
evaluation as well.

• May use any of the techniques we have learned for estimation
of value functions.

As an example may fit value function vη by e.g. minimizing loss

l(η) =
1
2

(gt − vη(st)
2
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Simultaneous policy evaluation and improvement

To be able to share parameters between value function and policy
function, we may combine policy evaluation and policy
improvement steps, at each step optimizing

L = Ê [LPPOt (θ)− c (gt − vη(st))2]

• LPPOt is an element in LPPO .
• c > 0 is a hyperparameter.

• Differentiate L both with respect to η and θ.
• η and θ may now actually overlap.
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Pseudocode

Algorithm 2 PPO, Actor-Critic Style
Initialize value network vη with random weights.
Initialize policy network πθ with random weights.
Initialize θold = θ.
for iteration = 1, 2, . . . do

for i = 1,N do
Run policy πθold in environment (possibly limit time steps)
Compute advantage estimates d̂1, . . . , d̂τ (i)

end for
Set surrogate objective L based on the sampled data.
Optimize surrogate L wrt. η and θ, for K epochs and
minibatch size M ≤

∑N
i=1 τ

(i).
θold ← θ.

end for
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