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Bidirectional RNNs

Motivation:
• Want to include future context

• Could solve with time-delay for predictions, though need to
specify fixed context.

Assumes tight coupling between prediction at time t and input at
time t.
• e.g. speech-to-text, text-to-speech
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Bidirectional RNN - single layer
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Bidirectional RNN - two layers
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Bidirectional RNN - feature extraction
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Bidirectional RNN in TensorFlow

Is there a BidirectionalLSTMCell in TensorFlow?

1 # Create LSTM forward and backward layers with 10 state
neurons each↪→

2 forward_layer = layers.LSTM(10, return_sequences=True)
3 backward_layer = layers.LSTM(10, activation='relu',

return_sequences=True, go_backwards=True)↪→

4 bidirectional_layer = layers.Bidirectional(
5 forward_layer,
6 backward_layer=backward_layer,
7 merge_mode='concat')
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Encoder-decoder

For sequence-to-sequence problems with loose coupling between
sequences
• prediction at time t not directly related to input at time t.

Example: sentence translation
1. Encode the “meaning” of sentence in source language into

intermediate representation
2. Decode the “meaning” of the sentence into a representation in

the target language
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Encoder-decoder, shared RNN
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Encoder-decoder, separate RNN
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Encoder-decoder in TensorFlow I

Defined encoder, decoder and encode

1 # [batch_dim, time_dim, input_dim] == [1, 2, 3]
2 input_sequence = tf.constant([[[0.1, 0.3, 0.2], [-1.2, 0.4,

-0.3]]])↪→

3 batch_size = tf.shape(input_sequence)[0]
4 encoder_cell = layers.LSTMCell(10)
5 decoder_cell = layers.LSTMCell(10)
6

7 state = encoder_cell.get_initial_state(batch_size=batch_size,
dtype=tf.float32)↪→

8 # transpose time and batch axis before iterating
9 for x in tf.transpose(input_sequence, (1, 0, 2)):

10 output, state = encoder_cell(x, state)
11

12 final_encoder_state = state
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Encoder-decoder in TensorFlow I

Decoding

13 state = final_encoder_state
14 # assume 'init_symbol', 'f' and 'is_end_symbol' implemented

somewhere.↪→

15 ys = []
16 y = [init_symbol]
17 while True:
18 output, state = decoder_cell(y, state)
19 y = f(output)
20 ys.append(y)
21 # we assume batch size of 1 here
22 if is_end_symbol(y[0]):
23 break
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Encoder-decoder in TensorFlow II
Often don’t have to use Cell version in encoder.

1 input_sequence = tf.constant([[[0.1, 0.3, 0.2], [-1.2, 0.4,
-0.3]]])↪→

2 encoder = layers.LSTM(10, return_state=True)
3 decoder_cell = layers.LSTMCell(10)
4

5 out = encoder(input_sequence)
6 output, final_encoder_state = out[0], out[1:]
7

8 state = final_encoder_state
9 ys = []

10 y = [init_symbol]
11 while True:
12 output, state = decoder_cell(y, state)
13 y = f(output)
14 ys.append(y)
15 # we assume batch size of 1 here
16 if is_end_symbol(y[0]):
17 break
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Encoder-decoder conclusion

Assume N source and N target languages.
• Want to be able to translate between any two of them

• Possible to share encoder and decoder?
Newer models include attention
• The input to the decoder may then include the whole state

sequence of the encoder. This allows for e.g using bidirectional
RNN in encoder.
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Google’s Neural Machine Translation system (2016)
• Encoder-decoder framework, RNNs for both.
• Bottom encoder layer is bidirectional, decoder uses attention.
• Plenty of residual connections in both encoder and decoder.
• Design choices influenced by production needs.

Figure: Illustration from Wu, Yonghui, et al. "Google’s neural machine translation system:
Bridging the gap between human and machine translation." arXiv preprint arXiv:1609.08144 (2016)
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Recursive neural networks
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RNN Memory extensions
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Addressing: location vs content-based

Assume we have memory M with memory cells M1, . . . ,MJ .
• E.g. Mj ∈ Rn

How do we address memory?
Location
• Specify where to get information, e.g. index j ∈ {1, . . . , J}

• “Give me the content at memory cell 4”

• Direct addressing
Content
• Specify what kind of information through a query q

• “When did the french revolution start?”

• Indirect addressing
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Content-based addressing
• Memory M with memory cells M1, . . . ,MJ .

• query q ∈ Rd

• key function K , e.g. K : Rn → Rd

• matching function f , e.g. inner product function

αj = f (q,K (Mj))

What is the returned result of our query?

p = softmax(α)
v(q,M) = Mj with probability pj hard addressing

v(q,M) =
J∑

j=1

pjMj soft addressing

Where does the query vector q come from?
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RNN example with external memory - read operation

Perform query based on current state

qt = Q(r)(st)

Extract key for each memory cell

ktj = K (r)(Mt−1
j )

Calculate how well memory cell match query

αt
j = f (qt , ktj )

Get resulting vector r t by

pt = softmax(αt)

r t = v(qt ,Mt−1) =
J∑

j=1

ptjM
t−1
j
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RNN example with external memory - write operation

Need to decide what to write in addition to where
• Where can be decided as with read operation

• Separate functions Q(w) and K (w).

• What: e.g. function W

w t = W (st)

How to make update?

Mt
j = (1− pwj )M

t−1
j + pwj w

t overwrite

Mt
j = Mt−1

j + pwj w
t residual update

Exists corresponding hard update rules
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RNN example with external memory - how to use it

Update function:

st = h(x t , st−1, y t−1, r t−1)

Could also add directly to output function

y t = f (st , r t)
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External memory - multiple read/write heads

• E.g. define N query, key function pairs (Q(r)
1 ,K

(r)
1 ), . . . ,

(Q
(r)
N ,K

(r)
N )

• Concatenate all of the retrieved vectors, r t = (r t1 , . . . , r
t
n).

• Write operations, need to resolve possible conflicts in updates

• May use same matching function
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Attending to previous states I
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Attending to previous states II

st = h(x t , (s1, . . . , st−1), y t−1)

Do query with respect to “memory cells” (s1, . . . , st−1).

αt
i = f (Q(st−1, x t),K (s i ))

pt = softmax(αt)

s̃t−1 =
t−1∑
i=1

pti s
i

Then proceed with “previous state” s̃t−1

st = h(x t , s̃t−1, y t−1)
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Attending to previous states III
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Attention
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Motivation for attention

• Don’t get disctracted by irrelevant part of the input
• Use computational resources wisely
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Image captioning with RNN and content-based attention

Figure: Illustration from "Xu, Kelvin, et al. "Show, attend and tell: Neural image caption
generation with visual attention." International conference on machine learning. 2015."

• Content based addressing with 14× 14 conv features as
“memory”
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Self-attention setup

• Assume we have data x1, x2, . . . , xL ∈ Rn

• Define
• query function Q : Rn → Rd

• key function K : Rn → Rm

• value function V : Rn → Rk

• matching function g that scores matches between queries and
keys
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Single-head attention
For each x i

1. Perform a query against each x j and get attention scores by

αi ,j = g(Q(x i ),K (x j))

2. Apply e.g. softmax to get probabilities

pi ,j =
eαi,j∑
k e

αi,k

3. With soft attention take a weighted average

z i =
L∑

j=1

pi ,jx
j

4. Apply a function h such that to obtain x̃ i as

x̃ i = h(z i , x i )
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Single-head attention, with value function
For each x i

1. Perform a query against each x j and get attention scores by

αi ,j = g(Q(x i ),K (x j))

2. Apply e.g. softmax to get probabilities

pi ,j =
eαi,j∑
k e

αi,k

3. With soft attention take a weighted average

z i =
L∑

j=1

pi ,jV (x j)

4. Apply a function h such that to obtain x̃ i as

x̃ i = h(z i , x i )

zi =
∑L

j=1 pi, j {V(}xj{)}
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Multi-head attention, with value function

For m in 1, . . . ,M
1. Perform a query against each x j and get attention scores by

αm
i ,j = g(Qm(x

i ),Km(x
j))

2. Apply e.g. softmax to get probabilities

pmi ,j =
eα

m
i,j∑

k e
αm
i,k

3. With soft attention take a weighted average

z im =
L∑

j=1

pmi ,jVm(x
j)

Let z i = (z i1, . . . , z
i
M), then let x̃ i = h(z i , x i )
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Self-attention remarks

• May repeat self-attention transformation (with separate query,
key and value functions for each repetition) to create deeper
transformation.
• Processing is independent of ordering of input elements.

• If order of input data matters, we need to add positional
encoding

x i
pos

= f (x i , i)

e.g.

x i
pos

= (x i , p(i))

for some positional encoding function p and x1
pos, . . . , x

L
pos are

our positionally encoded input data.

• Computations scale quadratically with number of inputs
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Image classification with RNN and location-based attention

Pseudoalgorithm:

• Start with center/random glimpse1 with center l0

• For t = 1, . . . , τ
1. Extract glimpse with center at l t−1.
2. Extract features for location, e.g. with convnet
3. Update state of RNN
4. • if t < τ : predict next glimpse center l t

• else: Make prediction/classification based on lτ

• How to encode l t?

• Glimpse policy trained with reinforcement learning (policy
gradient)!

Usually extract some lower resolution crops as well.

1A glimpse is here defined as a crop of the image
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