RNN extensions, Memory Addressing and Attention

Eilif Solberg

TEK5040/TEK9040

Outline

Composing RNNs

Bidirectional RNNs Encoder-decoder framework

Recursive neural networks

RNN Memory extensions

External memory
Attending to previous states

Attention

Content-based Self-attention Location-based Composing RNNs

•000000000000

Composing RNNs

Bidirectional RNNs

Motivation:

Want to include future context

Motivation:

- Want to include future context.
- Could solve with time-delay for predictions, though need to specify fixed context.

Motivation:

- Want to include future context
- Could solve with time-delay for predictions, though need to specify fixed context.

Assumes tight coupling between prediction at time t and input at time t.

• e.g. speech-to-text, text-to-speech

Bidirectional RNN - single layer

Bidirectional RNN - two layers

Bidirectional RNN - feature extraction

Bidirectional RNN in TensorFlow

Is there a BidirectionalLSTMCell in TensorFlow?

Bidirectional RNN in TensorFlow

Is there a BidirectionalLSTMCell in TensorFlow?

```
Create LSTM forward and backward layers with 10 state
       neurons each
   forward_layer = layers.LSTM(10, return_sequences=True)
   backward_layer = layers.LSTM(10, activation='relu',
       return_sequences=True, go_backwards=True)
   bidirectional_layer = layers.Bidirectional(
4
        forward_layer,
5
        backward_layer=backward_layer,
6
        merge_mode='concat')
```

For sequence-to-sequence problems with loose coupling between sequences

• prediction at time t not directly related to input at time t.

Encoder-decoder

For sequence-to-sequence problems with loose coupling between sequences

prediction at time t not directly related to input at time t.

Example: sentence translation

- 1. Encode the "meaning" of sentence in source language into intermediate representation
- 2. Decode the "meaning" of the sentence into a representation in the target language

Encoder-decoder, shared RNN

Encoder-decoder, separate RNN

Defined encoder, decoder and encode

```
# [batch_dim, time_dim, input_dim] == [1, 2. 3]
1
    input_sequence = tf.constant([[[0.1, 0.3, 0.2], [-1.2, 0.4,
    \rightarrow -0.3111)
    batch_size = tf.shape(input_sequence)[0]
    encoder_cell = layers.LSTMCell(10)
    decoder_cell = layers.LSTMCell(10)
5
6
    state = encoder_cell.get_initial_state(batch_size=batch_size,

    dtype=tf.float32)

    # transpose time and batch axis before iterating
    for x in tf.transpose(input_sequence, (1, 0, 2)):
9
      output, state = encoder_cell(x, state)
10
11
    final encoder state = state
12
```

Encoder-decoder in TensorFlow I

Decoding

```
state = final_encoder_state
13
    # assume 'init_symbol', 'f' and 'is_end_symbol' implemented
14

⇒ somewhere.

    vs = []
15
    y = [init_symbol]
16
    while True:
17
      output, state = decoder_cell(y, state)
18
      y = f(output)
19
      ys.append(y)
20
      # we assume batch size of 1 here
21
22
      if is_end_symbol(y[0]):
        break
23
```

Encoder-decoder in TensorFlow II

Often don't have to use Cell version in encoder.

```
input_sequence = tf.constant([[[0.1, 0.3, 0.2], [-1.2, 0.4,
    \rightarrow -0.3111)
    encoder = layers.LSTM(10, return_state=True)
    decoder_cell = layers.LSTMCell(10)
3
4
    out = encoder(input_sequence)
    output, final_encoder_state = out[0], out[1:]
6
    state = final encoder state
    vs = \Pi
    y = [init_symbol]
10
    while True:
11
      output, state = decoder_cell(y, state)
12
      y = f(output)
13
      vs.append(y)
14
      # we assume batch size of 1 here
15
      if is_end_symbol(y[0]):
16
        break
17
```

Assume N source and N target languages.

• Want to be able to translate between any two of them

Assume N source and N target languages.

- Want to be able to translate between any two of them
- Possible to share encoder and decoder?

Encoder-decoder conclusion

Assume N source and N target languages.

- Want to be able to translate between any two of them
- Possible to share encoder and decoder?

Newer models include attention

 The input to the decoder may then include the whole state sequence of the encoder. This allows for e.g using bidirectional RNN in *encoder*.

Google's Neural Machine Translation system (2016)

- Encoder-decoder framework, RNNs for both.
- Bottom encoder layer is bidirectional, decoder uses attention.
- Plenty of residual connections in both encoder and decoder.
- Design choices influenced by production needs.

Figure: Illustration from Wu, Yonghui, et al. "Google's neural machine translation system: Bridging the gap between human and machine translation." arXiv preprint arXiv:1609.08144 (2016)

Composing RNNs

Recursive neural networks

RNN Memory extensions

Assume we have memory M with memory cells M_1, \ldots, M_J .

• E.g. $M_j \in \mathbb{R}^n$

Assume we have memory M with memory cells M_1, \ldots, M_J .

• E.g. $M_j \in \mathbb{R}^n$

Composing RNNs

How do we address memory?

Assume we have memory M with memory cells M_1, \ldots, M_J .

• E.g. $M_j \in \mathbb{R}^n$

How do we address memory?

Location

- Specify where to get information, e.g. index $j \in \{1, ..., J\}$
 - "Give me the content at memory cell 4"

Assume we have memory M with memory cells M_1, \ldots, M_J .

• E.g. $M_j \in \mathbb{R}^n$

How do we address memory?

Location

- Specify where to get information, e.g. index $j \in \{1, ..., J\}$
 - "Give me the content at memory cell 4"
- Direct addressing

Assume we have memory M with memory cells M_1, \ldots, M_L

• E.g. $M_i \in \mathbb{R}^n$

How do we address memory?

Location

Composing RNNs

- Specify where to get information, e.g. index $j \in \{1, \dots, J\}$
 - "Give me the content at memory cell 4"
- Direct addressing

Content

- Specify what kind of information through a query q
 - "When did the french revolution start?"

Assume we have memory M with memory cells M_1, \ldots, M_J .

• E.g. $M_j \in \mathbb{R}^n$

How do we address memory?

Location

- Specify where to get information, e.g. index $j \in \{1, ..., J\}$
 - "Give me the content at memory cell 4"
- Direct addressing

Content

- Specify what kind of information through a query q
 - "When did the french revolution start?"
- Indirect addressing

• Memory M with memory cells M_1, \ldots, M_J .

- Memory M with memory cells M_1, \ldots, M_J .
- query $q \in \mathbb{R}^d$

- Memory M with memory cells M_1, \ldots, M_J .
- query $q \in \mathbb{R}^d$
- key function K, e.g. $K: \mathbb{R}^n \to \mathbb{R}^d$

- Memory M with memory cells M_1, \ldots, M_J .
- query $q \in \mathbb{R}^d$
- key function K, e.g. $K: \mathbb{R}^n \to \mathbb{R}^d$
- matching function f, e.g. inner product function

$$\alpha_j = f(q, K(M_j))$$

RNN Memory extensions

000000000

- Memory M with memory cells M_1, \ldots, M_J .
- query $q \in \mathbb{R}^d$
- key function K, e.g. $K: \mathbb{R}^n \to \mathbb{R}^d$
- matching function f, e.g. inner product function

$$\alpha_j = f(q, K(M_j))$$

What is the returned result of our query?

- Memory M with memory cells M_1, \ldots, M_J .
- query $q \in \mathbb{R}^d$
- key function K, e.g. $K: \mathbb{R}^n \to \mathbb{R}^d$
- matching function f, e.g. inner product function

$$\alpha_j = f(q, K(M_j))$$

What is the returned result of our query?

$$p = \operatorname{softmax}(lpha)$$
 $v(q, M) = M_j$ with probability p_j hard addressing $v(q, M) = \sum_{j=1}^J p_j M_j$ soft addressing

Content-based addressing

- Memory M with memory cells M_1, \ldots, M_J .
- query $q \in \mathbb{R}^d$
- key function K, e.g. $K: \mathbb{R}^n \to \mathbb{R}^d$
- matching function f, e.g. inner product function

$$\alpha_j = f(q, K(M_j))$$

What is the returned result of our query?

$$p = \operatorname{softmax}(lpha)$$
 $v(q, M) = M_j$ with probability p_j hard addressing $v(q, M) = \sum_{j=1}^J p_j M_j$ soft addressing

Where does the query vector q come from?

Composing RNNs

RNN example with external memory - read operation

RNN example with external memory - read operation Perform query based on current state

$$q^t = Q^{(r)}(s^t)$$

RNN example with external memory - read operation Perform guery based on current state

$$q^t = Q^{(r)}(s^t)$$

Extract key for each memory cell

$$k_j^t = K^{(r)}(M_j^{t-1})$$

$$q^t = Q^{(r)}(s^t)$$

Extract key for each memory cell

Composing RNNs

$$k_j^t = K^{(r)}(M_j^{t-1})$$

Calculate how well memory cell match guery

$$\alpha_j^t = f(q^t, k_j^t)$$

Perform guery based on current state

Composing RNNs

$$q^t = Q^{(r)}(s^t)$$

Extract key for each memory cell

$$k_i^t = K^{(r)}(M_i^{t-1})$$

Calculate how well memory cell match guery

$$\alpha_j^t = f(q^t, k_j^t)$$

Get resulting vector r^t by

$$p^t = \operatorname{softmax}(\alpha^t)$$

$$r^t = v(q^t, M^{t-1}) = \sum_{j=1}^J p_j^t M_j^{t-1}$$

Need to decide what to write in addition to where

Need to decide what to write in addition to where

- Where can be decided as with read operation
 - Separate functions $Q^{(w)}$ and $K^{(w)}$.

Need to decide what to write in addition to where

- Where can be decided as with read operation
 - Separate functions $Q^{(w)}$ and $K^{(w)}$.
- What: e.g. function W

$$w^t = W(s^t)$$

Need to decide what to write in addition to where

- Where can be decided as with read operation
 - Separate functions $Q^{(w)}$ and $K^{(w)}$.
- What: e.g. function W

$$w^t = W(s^t)$$

How to make update?

Need to decide what to write in addition to where

- Where can be decided as with read operation
 - Separate functions $Q^{(w)}$ and $K^{(w)}$.
- What: e.g. function W

$$w^t = W(s^t)$$

How to make update?

Composing RNNs

$$M_j^t = (1 - p_j^w)M_j^{t-1} + p_j^w w^t$$
 overwrite $M_j^t = M_j^{t-1} + p_j^w w^t$ residual update

Exists corresponding hard update rules

Update function:

Composing RNNs

$$s^{t} = h(x^{t}, s^{t-1}, y^{t-1}, r^{t-1})$$

RNN example with external memory - how to use it

Update function:

Composing RNNs

$$s^{t} = h(x^{t}, s^{t-1}, y^{t-1}, r^{t-1})$$

Could also add directly to output function

$$y^t = f(s^t, r^t)$$

Composing RNNs

- E.g. define N query, key function pairs $(Q_1^{(r)}, K_1^{(r)}), \ldots,$ $(Q_{N}^{(r)}, K_{N}^{(r)})$
 - Concatenate all of the retrieved vectors, $r^t = (r_1^t, \dots, r_n^t)$.

External memory - multiple read/write heads

- E.g. define N query, key function pairs $(Q_1^{(r)}, K_1^{(r)}), \ldots, (Q_N^{(r)}, K_N^{(r)})$
 - Concatenate all of the retrieved vectors, $r^t = (r_1^t, \dots, r_n^t)$.
- Write operations, need to resolve possible conflicts in updates

Composing RNNs

External memory - multiple read/write heads

- E.g. define N query, key function pairs $(Q_1^{(r)}, K_1^{(r)}), \ldots,$ $(Q_{N}^{(r)}, K_{N}^{(r)})$
 - Concatenate all of the retrieved vectors, $r^t = (r_1^t, \dots, r_n^t)$.
- Write operations, need to resolve possible conflicts in updates
- May use same matching function

Attending to previous states I

Attending to previous states I

Composing RNNs

RNN Memory extensions 0000000000

$$s^t = h(x^t, (s^1, \dots, s^{t-1}), y^{t-1})$$

Attending to previous states II

$$s^t = h(x^t, (s^1, \dots, s^{t-1}), y^{t-1})$$

Do query with respect to "memory cells" (s^1, \ldots, s^{t-1}) .

$$egin{aligned} & lpha_i^t = f(Q(s^{t-1}, x^t), K(s^i)) \\ & p^t = \operatorname{softmax}(lpha^t) \\ & ilde{s}^{t-1} = \sum_{i=1}^{t-1} p_i^t s^i \end{aligned}$$

Attending to previous states II

$$s^t = h(x^t, (s^1, \dots, s^{t-1}), y^{t-1})$$

Do query with respect to "memory cells" (s^1, \ldots, s^{t-1}) .

$$lpha_i^t = f(Q(s^{t-1}, x^t), K(s^i))$$
 $p^t = \operatorname{softmax}(\alpha^t)$
 $\tilde{s}^{t-1} = \sum_{i=1}^{t-1} p_i^t s^i$

Then proceed with "previous state" \tilde{s}^{t-1}

$$s^{t} = h(x^{t}, \tilde{s}^{t-1}, y^{t-1})$$

Attending to previous states III

Attention

Motivation for attention

- Don't get disctracted by irrelevant part of the input
- Use computational resources wisely

Image captioning with RNN and content-based attention

Figure: Illustration from "Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International conference on machine learning. 2015."

Attention

Figure: Illustration from "Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International conference on machine learning. 2015."

• Content based addressing with 14×14 conv features as "memory"

Composing RNNs

Figure: Illustration from "Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International conference on machine learning. 2015."

Self-attention setup

- Assume we have data $x^1, x^2, \dots, x^L \in \mathbb{R}^n$
- Define
 - query function $Q: \mathbb{R}^n \to \mathbb{R}^d$
 - key function $K: \mathbb{R}^n \to \mathbb{R}^m$
 - value function $V: \mathbb{R}^n \to \mathbb{R}^k$
 - ullet matching function g that scores matches between queries and keys

For each x^i

Composing RNNs

1. Perform a query against each x^{j} and get attention scores by

$$\alpha_{i,j} = g(Q(x^i), K(x^j))$$

2. Apply e.g. softmax to get probabilities

$$p_{i,j} = \frac{e^{\alpha_{i,j}}}{\sum_k e^{\alpha_{i,k}}}$$

3. With soft attention take a weighted average

$$z^i = \sum_{j=1}^L p_{i,j} x^j$$

4. Apply a function h such that to obtain \tilde{x}^i as

$$\tilde{x}^i = h(z^i, x^i)$$

Single-head attention, with value function

For each xi

Composing RNNs

1. Perform a query against each x^{j} and get attention scores by

$$\alpha_{i,j} = g(Q(x^i), K(x^j))$$

2. Apply e.g. softmax to get probabilities

$$p_{i,j} = \frac{e^{\alpha_{i,j}}}{\sum_k e^{\alpha_{i,k}}}$$

3. With soft attention take a weighted average

$$z^i = \sum_{j=1}^L p_{i,j} V(x^j)$$

4. Apply a function h such that to obtain \tilde{x}^i as

$$\tilde{x}^i = h(z^i, x^i)$$

Multi-head attention, with value function

For m in $1, \ldots, M$

Composing RNNs

1. Perform a query against each x^{j} and get attention scores by

$$\alpha_{i,j}^m = g(Q_m(x^i), K_m(x^j))$$

2. Apply e.g. softmax to get probabilities

$$p_{i,j}^m = \frac{e^{\alpha_{i,j}^m}}{\sum_k e^{\alpha_{i,k}^m}}$$

3. With soft attention take a weighted average

$$z_m^i = \sum_{j=1}^L p_{i,j}^m V_m(x^j)$$

Let $z^i = (z_1^i, \dots, z_M^i)$, then let $\tilde{x}^i = h(z^i, x^i)$

Self-attention remarks

- May repeat self-attention transformation (with separate query, key and value functions for each repetition) to create deeper transformation.
- Processing is independent of ordering of input elements.
 - If order of input data matters, we need to add positional encoding

$$x_{pos}^i = f(x^i, i)$$

e.g.

$$x_{pos}^i = (x^i, p(i))$$

for some positional encoding function p and $x_{pos}^1, \dots, x_{pos}^L$ are our positionally encoded input data.

Computations scale quadratically with number of inputs

Pseudoalgorithm:

¹A glimpse is here defined as a crop of the image $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle$

RNN Memory extensions

Pseudoalgorithm:

Composing RNNs

• Start with center/random glimpse¹ with center I^0

Pseudoalgorithm:

Composing RNNs

- Start with center/random glimpse¹ with center I⁰
- For $t = 1, ..., \tau$
 - 1. Extract glimpse with center at I^{t-1} .
 - 2. Extract features for location, e.g. with convnet
 - 3. Update state of RNN
 - if $t < \tau$: predict next glimpse center I^t
 - else: Make prediction/classification based on I^{τ}

Pseudoalgorithm:

- Start with center/random glimpse¹ with center I⁰
- For $t = 1, ..., \tau$
 - 1. Extract glimpse with center at I^{t-1} .
 - 2. Extract features for location, e.g. with convnet
 - 3. Update state of RNN
 - if $t < \tau$: predict next glimpse center I^t
 - else: Make prediction/classification based on I^{τ}
- How to encode I^t?

Pseudoalgorithm:

- Start with center/random glimpse¹ with center I⁰
- For $t = 1, ..., \tau$
 - 1. Extract glimpse with center at I^{t-1} .
 - 2. Extract features for location, e.g. with convnet
 - 3. Update state of RNN
 - 4. if $t < \tau$: predict next glimpse center I^t
 - else: Make prediction/classification based on I^{τ}
- How to encode I^t?
- Glimpse policy trained with reinforcement learning (policy gradient)!

¹A glimpse is here defined as a crop of the image < □ > < ₱ > < ₹ > < ₹ > ₹ ≥ < ₹ < ? < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > <

Pseudoalgorithm:

- Start with center/random glimpse¹ with center I⁰
- For $t = 1, ..., \tau$
 - 1. Extract glimpse with center at I^{t-1} .
 - 2. Extract features for location, e.g. with convnet
 - 3. Update state of RNN
 - if $t < \tau$: predict next glimpse center I^t
 - else: Make prediction/classification based on I^{τ}
- How to encode I^t?
- Glimpse policy trained with reinforcement learning (policy) gradient)!

Usually extract some lower resolution crops as well.