
Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Recurrent Neural Networks

Eilif Solberg

TEK5040/TEK9040



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Outline

Introduction

Vanilla RNN

LSTM

Depth in RNN

Complexity of RNN

Conclusion



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Introduction



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

The dimension of time

• Inputs arrive in a sequence
• Actions performed one after another

Why process data serially?
• Need to respond immediately

• Limited bandwidth for “sensor” inputs

• Limited computational capability

• Limited storing capability

• More efficient to divide work into subtasks?



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

The dimension of time

• Inputs arrive in a sequence
• Actions performed one after another

Why process data serially?

• Need to respond immediately

• Limited bandwidth for “sensor” inputs

• Limited computational capability

• Limited storing capability

• More efficient to divide work into subtasks?



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

The dimension of time

• Inputs arrive in a sequence
• Actions performed one after another

Why process data serially?
• Need to respond immediately

• Limited bandwidth for “sensor” inputs

• Limited computational capability

• Limited storing capability

• More efficient to divide work into subtasks?



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

The dimension of time

• Inputs arrive in a sequence
• Actions performed one after another

Why process data serially?
• Need to respond immediately

• Limited bandwidth for “sensor” inputs

• Limited computational capability

• Limited storing capability

• More efficient to divide work into subtasks?



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

The dimension of time

• Inputs arrive in a sequence
• Actions performed one after another

Why process data serially?
• Need to respond immediately

• Limited bandwidth for “sensor” inputs

• Limited computational capability

• Limited storing capability

• More efficient to divide work into subtasks?



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

The dimension of time

• Inputs arrive in a sequence
• Actions performed one after another

Why process data serially?
• Need to respond immediately

• Limited bandwidth for “sensor” inputs

• Limited computational capability

• Limited storing capability

• More efficient to divide work into subtasks?



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

The dimension of time

• Inputs arrive in a sequence
• Actions performed one after another

Why process data serially?
• Need to respond immediately

• Limited bandwidth for “sensor” inputs

• Limited computational capability

• Limited storing capability

• More efficient to divide work into subtasks?



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset
can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs
is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but
the wrod as a wlohe.

• One character at a time?

• One word at a time?

• What if you were new to the language?

• What if all letters where mirrored?

• Will look at models that combine serial and parallel processing
for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset
can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs
is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but
the wrod as a wlohe.
• One character at a time?

• One word at a time?

• What if you were new to the language?

• What if all letters where mirrored?

• Will look at models that combine serial and parallel processing
for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset
can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs
is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but
the wrod as a wlohe.
• One character at a time?

• One word at a time?

• What if you were new to the language?

• What if all letters where mirrored?

• Will look at models that combine serial and parallel processing
for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset
can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs
is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but
the wrod as a wlohe.
• One character at a time?

• One word at a time?

• What if you were new to the language?

• What if all letters where mirrored?

• Will look at models that combine serial and parallel processing
for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset
can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs
is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but
the wrod as a wlohe.
• One character at a time?

• One word at a time?

• What if you were new to the language?

• What if all letters where mirrored?

• Will look at models that combine serial and parallel processing
for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

How do you process a sentence?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset
can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs
is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but
the wrod as a wlohe.
• One character at a time?

• One word at a time?

• What if you were new to the language?

• What if all letters where mirrored?

• Will look at models that combine serial and parallel processing
for sequence data



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Example applications

Example applications
• Machine translation
• Sentiment analysis
• Time series models
• Image captioning
• Language modeling in general, character and word based
• State representation in reinforcement learning

Categories
• Sequence-to-vector
• Vector-to-sequence
• Sequence-to-sequence
• Sequence-to-sequence of different lengths. . .



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Formal model

• Let st ∈ Rd represent our state at time t

• Let x t ∈ Rm denote the input at time t

• Let y t ∈ Rn denote the output at time t

In our model we have y t = f (st)
How do we update beliefs and plans? Models of the form

st = h(x t , st−1, y t−1)



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Formal model

• Let st ∈ Rd represent our state at time t

• Let x t ∈ Rm denote the input at time t

• Let y t ∈ Rn denote the output at time t

In our model we have y t = f (st)

How do we update beliefs and plans? Models of the form

st = h(x t , st−1, y t−1)



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Formal model

• Let st ∈ Rd represent our state at time t

• Let x t ∈ Rm denote the input at time t

• Let y t ∈ Rn denote the output at time t

In our model we have y t = f (st)
How do we update beliefs and plans?

Models of the form

st = h(x t , st−1, y t−1)



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Formal model

• Let st ∈ Rd represent our state at time t

• Let x t ∈ Rm denote the input at time t

• Let y t ∈ Rn denote the output at time t

In our model we have y t = f (st)
How do we update beliefs and plans? Models of the form

st = h(x t , st−1, y t−1)



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN I

Figure: RNN model with initial state s, unrolled three time steps. The
output of f flowing to the next state at time t is the output y t .



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN II

Figure: RNN model, unrolled four time steps



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN III

Figure: RNN model, unrolled five time steps



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN IV - single output



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN V - single input



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN V - single input, single output



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN VI - no input



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Vanilla RNN



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Model

h(x , s, y) = a(Ux + Vs + Wy + b) (1)

where a is an activation function and
• U ∈ Rd×m

• V ∈ Rd×d

• W ∈ Rd×n

• b ∈ Rd

Note: Equation (1) equivalent to a(M[x , s, y ] + b) where
M = [U,V ,W ].



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Vanilla RNN Cell in TensorFlow

1 class VanillaRNNCell(tf.keras.layers.AbstractRNNCell):
2 def __init__(self, units):
3 super(VanillaRNNCell, self).__init__()
4 self.units = units
5 self.dense = layers.Dense(units)
6

7 @property
8 def state_size(self):
9 return self.units

10

11 # input and output already concatenated into 'x' (possibly
after preprocessing)↪→

12 def call(self, x, state):
13 # [batch_size, num_inputs] x [batch_size, units] ==>

[batch_size, num_inputs+units]↪→

14 c = tf.concat([x, state], axis=-1)
15 h = self.dense(c)
16 output = activations.tanh(h)
17 return output, output



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Vanilla RNN

Figure: Each node is an operation. Black square represents
concatenation, rest given from equation (1). a is an activiation function.
The bias is not depicted in the graph, you may assume that it is part of
the M operation. f is unspecified.



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Vanilla RNN

Figure: Each node is an operation. Black square represents
concatenation, rest given from equation (1).



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Preprocessing

Figure: RNN preprocessing of input

• Both input and output can be preprocessed!



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

LSTM



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Residual / skip connection
Helps us store information.

r t = a(Urx
t + Vr s

t−1 + Wry
t−1 + br )

st = st−1 + r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Residual / skip connection

r t = a(Urx
t + Vr s

t−1 + Wry
t−1 + br )

st = st−1 + r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN w/residual in TensorFlow

1 class RNNCell_v2(tf.keras.layers.AbstractRNNCell):
2 def __init__(self, units):
3 super(RNNCell_v2, self).__init__()
4 self.units = units
5 self.dense_r = layers.Dense(units)
6

7 @property
8 def state_size(self):
9 return self.units

10

11 def call(self, x, state):
12 c = tf.concat([x, state], axis=-1)
13 h = self.dense_r(c)
14 # Should we add 'state' before or after activation?
15 output = activations.tanh(h) + state # elementwise

multiplication↪→

16

17 return output, output



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Input gate
Controls write access.

i t = σ(Uix
t + Vi s

t−1 + Wiy
t−1 + bi )

st = st−1 + i t � r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Input gate

i t = σ(Uix
t + Vi s

t−1 + Wiy
t−1 + bi )

st = st−1 + i t � r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN w/input gate in TensorFlow

1 class RNNCell_v3(tf.keras.layers.AbstractRNNCell):
2 def __init__(self, units):
3 super(RNNCell_v3, self).__init__()
4 self.units = units
5 self.dense_r = layers.Dense(units)
6 self.dense_i = layers.Dense(units)
7

8 @property
9 def state_size(self):

10 return self.units
11

12 def call(self, x, state):
13 c = tf.concat([x, state], axis=-1)
14 r = activations.tanh(self.dense_r(c))
15 i = activations.sigmoid(self.dense_i(c))
16 output = i*r + state # elementwise multiplication
17

18 return output, output



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Forget gate
Lets us forget things that are no longer useful.

f t = σ(Uf x
t + Vf s

t−1 + Wf y
t−1 + bf )

st = f t � st−1 + i t � r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Forget gate

Figure: NOTE: The two f’s are not related to each other!

f t = σ(Uf x
t + Vf s

t−1 + Wf y
t−1 + bf )

st = f t � st−1 + i t � r t



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

RNN w/forget gate in TensorFlow

1 class RNNCell_v4(tf.keras.layers.AbstractRNNCell):
2 def __init__(self, units):
3 super(RNNCell_v4, self).__init__()
4 self.units = units
5 self.dense_r = layers.Dense(units)
6 self.dense_i = layers.Dense(units)
7 self.dense_f = layers.Dense(units)
8

9 @property
10 def state_size(self):
11 return self.units
12

13 def call(self, x, state):
14 c = tf.concat([x, state], axis=-1)
15 r = activations.tanh(self.dense_r(c))
16 i = activations.sigmoid(self.dense_i(c))
17 f = activations.sigmoid(self.dense_f(c))
18 output = i*r + f*state # elementwise multiplication
19 return output, output



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Output gate

Controls read access. Can be seen as an attention mechanism.

ot = σ(Uox
t + Vos

t−1 + Woy
t−1 + bo)

s̄t = ot � g(st)

• g is an activation function



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

LSTM in a slide

r t = a(Urx
t + Vr s̄

t−1 + Wry
t−1 + br )

i t = σ(Uix
t + Vi s̄

t−1 + Wiy
t−1 + bi )

f t = σ(Uf x
t + Vf s̄

t−1 + Wf y
t−1 + bf )

ot = σ(Uox
t + Vo s̄

t−1 + Woy
t−1 + bo)

st = f t � st−1 + i t � r t

s̄t = ot � a(st)

y t = f (s̄t)



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

LSTM in TensorFlow

1 class MyLSTMCell(tf.keras.layers.AbstractRNNCell):
2 def __init__(self, units):
3 super(MyLSTMCell, self).__init__()
4 self.units = units
5 self.dense_r = layers.Dense(units)
6 self.dense_i = layers.Dense(units)
7 self.dense_f = layers.Dense(units)
8 self.dense_o = layers.Dense(units)
9

10 def call(self, x, states):
11 s, hidden_s = states
12 c = tf.concat([x, s], axis=-1)
13 r = activations.tanh(self.dense_r(c))
14 i = activations.sigmoid(self.dense_i(c))
15 f = activations.sigmoid(self.dense_f(c))
16 o = activations.sigmoid(self.dense_o(c))
17 hidden_s = i*r + f*hidden_s
18 s = o*activations.tanh(hidden_s)
19 return s, [s, hidden_s]



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Differences to ’official’ implementation

• Special initialization scheme used by default.
• Can choose different activation functions.
• Can choose different implementations!
• Options for dropout, weight constraints and regularization++

See https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/python/keras/layers/recurrent.py for
more.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/layers/recurrent.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/layers/recurrent.py


Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Depth in RNN



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Multilayer perceptron

• Let h be a multilayer perceptron!
• If l layers, error propagation path will increase by factor l



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Stacking RNNs



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Complexity of RNN



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

What kind of complexity?

• Space: Memory usage
• Time: Number of serial steps
• Compute: FLOPs used

Shall look at how these scales with sequence length



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

What kind of complexity?

• Space: Memory usage
• Time: Number of serial steps
• Compute: FLOPs used

Shall look at how these scales with sequence length



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Complexity

Table: RNN complexity as a function sequence length

Memory Compute Serial steps
Inference O(1) O(T) O(T)
Training BPTT O(T) O(T) O(T)
Training BPTT h(x, y*) O(1) O(T) O(1)

• Note that complexity for training depends on training
algorithm!



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Complexity

Table: RNN complexity as a function sequence length

Memory Compute Serial steps
Inference O(1) O(T) O(T)
Training BPTT O(T) O(T) O(T)
Training BPTT h(x, y*) O(1) O(T) O(1)

• Note that complexity for training depends on training
algorithm!



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

A special case

• Only feed output to next time step (not state)
• During training we may use target values as input and thus

parallelize training

st = h(x t , y t−1)



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Conclusion



Introduction Vanilla RNN LSTM Depth in RNN Complexity of RNN Conclusion

Extensions:
• Next time!

Alternatives
• Convolutional neural networks
• Feedforward attentional networks

• Can also be combined


	Introduction
	Vanilla RNN
	LSTM
	Depth in RNN
	Complexity of RNN
	Conclusion

