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Topics

 Word Representations

* Sequence-to-sequence transformation
- Recurrent networks
- Convolutions networks
- Self-attention (Transformers)

* Reinforcement Learning



Word Representations



Why Word Representations?

* Words are symbols

* Neural networks operate on
numerical values



Trivial Approach

* One Hot encoding

- Use the word index in vector form

* Example
- Consider a vocabulary of 5 words

1 Man (1,0,0,0,0]
2 Woman [0,1,0,0,0]
3 Boy (G0 8 0
4 QGirl 0,0,0,1,0]
5 House [0,0,0,0,1]

* Disadvantages

- Dimension of the representation vector would be very high for natural
vocabularies

- All vectors are equally spread (vector similarity does not represent semantic
similarity)



Better Approach

Word
Ol I3 Vector F()
XK h; Z; P(yi|x;)

word(i) # W # U * Softmax # Pr(neighbour_word(i) | word(i))

X; € RVX1, h’_ = Rdm, W € RVXC]’, Ue RVXO‘

- Projection:
h;’ = WTX,'
- Second layer:
Z; = Uh,
- Softmax: -
exp(zi(/))

PV =I1) = S~z ()



Issuel: High Dimension

L1 _hl_
L9 h2
L3 # Projection .
: W :
ha

L V>d o

* Project one-hot encoded vectors to a lower dimensional space
(Reduce the dimension of the representation )

* Also known as embedding
* Linear projection = Multiplication by ¢ Nixa = X1xvWyxd



Issue 2: Similar Words

* Force vector distance between similar
words to be low

* How to quantify word similarity?



Quantifying Word Similarity
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e Alis "more similar” to B than C ?

* Ais "more similar” to Cthan B ?



Quantifying Word Similarity

. 2

The Cat Sat On The Mat

Wt—2 Wt—1 Wt W41 W42 W43

-« >
Context Window

Center Word

. 2

The Cat Sleep On The Mat

Wi—2 Wg—1 Wt Wiyl W42 W3

< »
Context Window

* Context of a word = Words occurring before and after
within a predefined window

* Words that have similar contexts, should be represented
by word vectors close to each other



Training Objective

Wy p(wt—z)

e Train F() to maxiit=11 1] Pwew)

t=1 —C<j<C,j#0



Practical Detalls

Word Index y g;?elgg; ation T Word

1 00000001

2 00000010 Wi41

3 00000100

4 00001000 Wi_1

5 00010000 W42
6 00100000 Wi

7 01000000

8 10000000 Wi—2

(00100000]

p(wi—2)

(00100000]

(00100000]

0 o = 2
!

t=1 —C<j<C,j#0

P(Wejlwi)

p(wii2)



Word Vector Visualization

WOMAN UEENS
AUNT Q

MAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

(Mikolov et al., NAACL HLT, 2013)



Sequence-to-seguence
Transforms



Seg2seq Transformation

I I I Variable length output
A
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|
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Example Applications

e Summarization
(extractive/abstractive)

 Machine translation

* Dialog systems /chatbots
» Text generation

* Question answeringx



Seg2seq Transformation

I I I Variable length output
A
|

Model

Model size should
be constant.

|
I I I IVariabIe length input

Solution: Apply a constant sized neural net module repeatedly

on the data



Possible Approaches

e Recurrent networks

* Apply the NN module in a serial fashion

e Convolutions networks

* Apply the NN modules in a hierarchical
fashion

e Self-attention (Transformers)

* Direct interaction in the inputs



Processing Pipeline

I I I Variable length output
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Processing Pipeline

Attention

1]
A

Decoder

A
11

Encoder

A
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Embedding
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Variable length output

Intermediate
representation

Variable length input

Variable length text



Architecture Variants

Recurrent net
Recurrent net

Convolutional
net

Convolutional
net

Convolutional
net

Fully connected

net with self-
attention

Recurrent net
Recurrent net

Convolutional
net

Recurrent net

Convolutional
net

Fully connected

net with self-
attention

No
Yes
No

Yes

Yes

Yes



Possible Approaches

» Recurrent networks (s

* Apply the NN module in a serial fashion

e Convolutions networks

* Apply the NN modules in a hierarchical
fashion

¢ Self-attention

* Direct interaction in the inputs



RNN-decoder with RNN-encoder

Decoder vocabulary = {Much (w;), Thanks (ws), Very (w3), < end > (wy)}

plyr =wil-) pyr =wsl|) pyr=ws|) py =wa|)

= RNN cell

Tyo Ty, Ty Tys

<start> Thanks Very Much

Tusen  Takk <end>

Encoder Decoder



RNN-dec with RNN-enc, Training

E =log L = log [p(y1 = ws|X) - plya = walwn, X) - plys = wifwp, w3, X) - plys = wyfwp, wy, 0, X))

Rl
S1 S2 S3

Desder ety = [V . T (0. Vo ()< 0> 03]

Tyo Ty, Ty Tys

<start> Thanks Very Much

Ground Truths

Tusen  Takk <end>

Encoder Decoder



RNN-dec with RNN-enc, Decoding

Decoder vocabulary = {Much (w,), Thanks (w), Very (w3), < end > (w4) }

Thanks Much  Very <end>

Greedy Decoding

Y1 = argmaxwé{w1,w2,w3,w4}p(y1 — w|X)

S5

Tyo Ty, Ty Tys

<start> Thanks Much Very

Tusen  Takk <end>

Encoder Decoder



Decoding Approaches
* Optimal decoding

Find w = {wy, w2, w3, wy} such that p(wy, ws, ws, ws|X) is maximum

* Greedy decoding
 Easy
* Not optimal

« Beam search

* Closer to optimal decoder

 Choose top N candidates instead of the
best one at each step.



Beam Search Decoding

T=1 T=2 T=3
current proposed current proposed current proposed
hypotheses  extensions hypotheses  extensions hypotheses extensions

emphy
string




Straight-forward Extensions
t

Current state Next state —) N—
) Current control ' Next control state
state

Current state Next state

Current Input
Current Input

RNN Cell LSTM Cell
Current state Next state

Current state Next state

"

Current state Next state —)
Current state Next state
Current Input I Current Input
Bidirectional Cell Stacked Cell




RNN-decoder with RNN-encoder with Attention

Decoder vocabulary = {Much (w;), Thanks (ws), Very (w3), < end > (wy)}

plyr =wil-) pyr =wsl|) pyr=ws|) py =wa|)
. = RNN cell N

Context C¢

°
az(1)
pr

hi  hs

Q¢ (3)

Tyo Ty, Ty Tys

<start> Thanks Very Much

Tusen  Takk <end>

Encoder Decoder



At;cention

« Context is given by ¢ =) a:(j)h;

j=1

« Attention weights «:(j) are dynamic

- Generally defined by o(j) = xp(ex(d)) et(J) = f(8t-1,h;)

0 expled(k))

where function f can be defined in several ways.

o Dot product e:(j) =s{_,-h;

* Weighted dot product er(j) = i1 W -h;

« Use another MLP (eg: 2 layer) ei(j) =v” - tanh(W - [h;;5,_1])



Attention




Example: Google Neural Machine Translation

Encoder LSTMs

GPUB GPUS
Bélayers

GPU3

GPU2 GPU3
GPU2 GPUZ
GPUL GPU1



Possible Approaches

e Recurrent networks

* Apply the NN module in a serial fashion

* Convolutions networks -

* Apply the NN modules in a hierarchical
fashion

¢ Self-attention

* Direct interaction in the inputs



Why Convolution

e Recurrent networks are serial
 Unable to be parallelized

« “Distance” between feature vector and
different inputs are not constant

e Convolutions networks

 Can be parallelized (faster)

* “Distance” between feature vector and
different inputs are constant



Distance to feature vector in conv nets

Contiguous convolution
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Context capture with Convolution Networks

>

n

Window 1

>

Window 3




Conv net, Recurrent net with Attention

CNN-a CNN-c
<p> Die Katre schlief ein «<p> <p> Die Katze schlief ein <p>
Convolutional f
Encoder Networks Y
Y1 Y VE Va4
Attention Weights
Conditional
Input Computation
LSTM Decoder hi+1
w 0 h
[
o a g CZ C’H‘l fell
— exp(d, - z; = ,C... = Lh,9..C.
di _Wdhi +gi 4= 3 Ay C. =Za. Y. h”l’c‘“ LSTM(C!’hJ’gz’C;)
D exp(d, - z,) =
=1

Gehring et.al. A Convolutional Encoder Model for Neural Machine Translation (2016)



Two conv nets with attention

o ThEg SOgrenE L o
Embeddings — — ! .

Cronwolution=s

o

Cialied % ?
Lirmear
LimiEs

| 1

z.| z,| z

SRt erviEoen

JL =2.0,;(z;+e))

=T

I
I

d i=12,34

Dot prochucts
a;1=1,234 j=123

h.
1l C2

hl.,l :1,2,3,4 | 1 =
o I}lﬂjp
L | || H | H I L I
== == = Sia stirmmean Fu Sia stimmen Zu
9, 9, 93 g4

P(g.18. .8 ,,...) =softmax(W(c._, +h_,))

Gehring et.al, Convolutional Sequence to Sequence Learning, 2017




Possible Approaches

e Recurrent networks

* Apply the NN module in a serial fashion

e Convolutions networks

* Apply the NN modules in a hierarchical
fashion

- Self-attention <

* Direct interaction in the inputs



Why Self-attention

 Recurrent networks are serial
 Unable to be parallelized

« “Distance” between feature vector and
different inputs are not constant

* Self-attention networks
 Can be parallelized (faster)

* “Distance” between feature vector and
different inputs does not depend on the input

length



Transformer network with self-attention

Output Probability of the
Probabilities A next words
|
~ Intermediate representation
( (Foda Nom ) >
Feed —
Forward )
- ) | GEE T~ ' T
Multi-Head
Feed Attention —/ T
Forward 7 } Nx¢ >
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arm | -
Nx | —{Add & Norm ) = - Q
asked o > S
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L
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Encoding ¢ Encoding
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Vasvani et.al, Attention is all you need, 2017 ords



Multi-Head Attention

Multi-Head Attention

Linear l

Concat
i
Scaled Dot-Product
Attention

1 LR )
Lncar J{Lnear P {Lnar)
T T

V K Q




Scaled dot product attention

4 Input word vectors X = [x1,22, -+ ,2,]"
l+ atiE) ry Query Q — [Q17QZ7 e 7Qn:T
| Softvax Keys K = ki, k2, k,]"
4 _
Mask (opt.) | Values V = [vy,vq, -+ ,v,]T
l Scale Q= Xwe
_ K
[ Mathul K =XW
t 1 V=XW"
Q K V
W WE WYV Trainable weight vectors
Query Keys Values

QKT

Var

Attention(Q, K, V') = softmax(

} Vv




Encoder Self-attention

o = Bl
1 1 I [
1 1 1 I

= — -

Encoder Self-Attention ( kT) (q kT)
__exp(giky) __exp(giky oy — 5Pk
Z:l Z2 qs a1 Zj eXp(qlkf) Q1.2 Zj exp(qlk]T) Zj eXp(qlk;F)
1 2 ks m = m
I Xo I3
Z1 = (1,1V1 + (1 2V2 + (] 3V3
Z2 = (2 1V1 + Q2 2V2 + Q2 3V3
23 = 03,101 + 3,202 + Q3,303
1 To I3

21

22 23



Decoder Self-attention

e Almost same as encoder self
attention

* But only leftward positions are
considered.

(\/ﬁ

MaskedDecoder Self-Attentio



Encoder-decoder attention

Encoder Decoder
states state

Encoder-Decoder Attention

q1 g2 Q3 q4
ki ko ks kg

V1 V2 U3 Vg
T
- exp(qqkT) o — exp(qdkg)T s = exp(qaqks )T
© X exp(gak)) " >0, exp(qak]) > exp(gak])

Zg = 1,1V + Q1,202 + Q1 3V3

44



Overall Operation

N 0 v
Embeddings

& ¥ ¥ ¥ & ¥

Self Attention
Layer 1

8 8 3§ 8 —§ ¥

Self Attention
Layer 1

Decoder
Layer 1

Decoder
Layer 2

Output Word
Prediction

Selected
Output Word

OO oo ET
Embedding
= ~  Next
Previous Words Word

Neural machine translation, philipp Koehn



Comparison of Seq2Seq
Methods

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)




Famous Transformer Systems

» BERT (Bidirectional Encoder Representations from Transformers)

- Based on Transformer Encoder block

- Self-supervised learning approach and pretrained with

* Masked Language model
* Next sentence prediction

- Several down-stream tasks (classification, QA etc.)

* GPT-2 (Generalized Pre-Training)

- Based on Transformer Decoder block (Masked Self attention)

- Self-supervised learning and pre-trained with

* Next word prediction (given the previous prediction)

- Several down-stream tasks (classification, similarity etc.)

BERT (Ours)

OpenAl GPT




Reinforcement Learning



Reinforcement Learning

Machine Translation/Summarization
Dialog Systems



Reinforcement Learning

{

Machine Translation/Summarization <ff\iﬁ

Dialog Systems



Why Reinforcement Learning

« Exposure bias

 In training ground truths are used. In testing,
generated word in the previous step is used to
generate the next word.

* Use generated words in training needs sampling :
Non differentiable

« Maximum Likelihood criterion is not directly relevant
to evaluation metrics

e BLEU (Machine translation)
« ROUGE (Summarization)
« Use BLEU/ROUGE in training: Non differentiable



Sequence Generation as
Reinforcement Learning

 Agent: The Recurrent Net
« State: Hidden layers, Attention weights etc.
* Action: Next Word

* Policy: Generate the next word (action)
given the current hidden layers and
attention weights (state)

 Reward: Score computed using the
evaluation metric (eg: BLEU)



Maximum Likelihood Training
(Revisit)

hfl;‘fl = L;STTM(BO;S‘?h{]? C{]) hg, Cop = LSTI‘./I(’LU%, h‘l-_- Cl)
ho, co > P P —
BOS =——» —> —_— 8 — —
g
po(w|hi) wy po (w|hs) W2

T
Log Likelihood = Z log pg (w{|hy)

t=1

Minimize the negative log likelihood



Reinforcement Learning

Formulation
hfl;‘fl = LSTM(BOS?JFI{]?C{]) hg,ﬂg - LSTI‘KI(W?, h‘l-_- Cl)
h;],C{] —_— P o )
BOS =—p ——
po(w|h1) wi po (w|hz) w5
Reward = r(w®) = r(wj,ws, - ,wy)

Minimize the expected negative reward, L(0) = —Ey:vp, [r(w®)]
using REINFORCE algorithm



Reinforcement Learning Detalls
« Expected reward L(9>=—;pe(w)r<w)

« We need the gradient  VeL()=—) r(w)Veps(w)

w

 Need to write this as an expectation, so that we
can evaluate it using samples. Use the log
derivative trick: VoL(0) = — Y r(w)ps(w) Vg log ps(w)

* This is an expectation VyL(0) = —Eys~p, [r(w®) Vg log pe(w®)]
« Approximate this with sample mean

VoL(0) ~ —— Z *)Vg log pe (w*)

* |In practice we use only one sample
VoL(0) = —r(w”)Vglog po(w”)



Reinforcement Learning Detalls

e Gradient VoL(0) =~ —r(w®)Vy log pe(w?®)

* This estimation has high variance. Use a
baseline to combat this problem.

VoL(0) = —(r(w®) — b)Ve log pg(w®)

* Baseline can be anything independent of w?®

It can for example be estimated as the reward

for word sequence generated using argmax at
each cell. b= r(wq,ws, w3, -, W)

W, c, = LSTM(BOS, bl ch) k¢ = LSTM(i, K,,c,)

| S -
hg, o —p 2

> —
BOS —p _,,’_ S
po(w|hy) i pe(w|hy) W




Reinforcement Learning

Machine Translation/Summarization
Dialog Systems ¢




Maximum Likelihood Dialog
Systems

Fme

<start> I

H

You?

How Are



Why Reinforcement Learning

« Maximum Likelihood criterion is not
directly relevant to successful dialogs

* Dull responses (“l don’'t know"”)
* Repetitive responses

* Need to integrate developer defined
rewards relevant to longer term goals
of the dialog



Dialog Generation as
Reinforcement Learning

 Agent: The Recurrent Net
« State: Previous dialog turns
* Action: Next dialog utterance

* Policy: Generate the next dialog utterance
(action) given the previous dialog turns (state)

« Reward: Score computed based on relevant
factors such as ease of answering,
Information flow, semantic coherence etc.



Training Setup

+

1

!

Decoder Decoder

e W

1

Encoder Encoder

Agent 1 Agent 2



Training Procedure

 From the viewpoint of a given agent, the
procedure is similar to that of sequence
generation

« REINFORCE algorithm

* Appropriate rewards must be calculated
based on current and previous dialog turns.

 Can be initialized with maximum likelihood
trained models.



Adversarial Learning

« Use a discriminator as in GANs to calculate the reward

« Same training procedure based on REINFORCE for

generator Y

i

1

H

X

X, Y}

Human Dialog

> Reward R(X,Y)

Discriminator

4

>
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