
Text Sequence Processing

Narada Warakagoda

Topics

● Word Representations
● Sequence-to-sequence transformation

– Recurrent networks

– Convolutions networks

– Self-attention (Transformers)

● Reinforcement Learning

Word Representations

Why Word Representations?

● Words are symbols
● Neural networks operate on

numerical values

Trivial Approach
● One Hot encoding

– Use the word index in vector form

● Example
– Consider a vocabulary of 5 words

● Disadvantages
– Dimension of the representation vector would be very high for natural

vocabularies
– All vectors are equally spread (vector similarity does not represent semantic

similarity)

Better Approach
One hot

Word
Vector

word(i) Pr(neighbour_word(i) | word(i))

Issue1: High Dimension

● Project one-hot encoded vectors to a lower dimensional space
(Reduce the dimension of the representation)

● Also known as embedding
● Linear projection = Multiplication by a matrix

Issue 2: Similar Words

● Force vector distance between similar
words to be low

● How to quantify word similarity?

Quantifying Word Similarity

● A is ”more similar” to B than C ?
● A is ”more similar” to C than B ?

Quantifying Word Similarity

● Context of a word = Words occurring before and after
within a predefined window

● Words that have similar contexts, should be represented
by word vectors close to each other

Training Objective

● Train to maximize

Practical Details
Word Index One Hot

representation
Word

1 00000001

2 00000010

3 00000100

4 00001000

5 00010000

6 00100000

7 01000000

8 10000000

Word Vector Visualization

Sequence-to-sequence
Transforms

Seq2seq Transformation

Model

Variable length input

Variable length output

Example Applications

● Summarization
(extractive/abstractive)

● Machine translation
● Dialog systems /chatbots
● Text generation
● Question answering
●

●

Seq2seq Transformation

Model size should
be constant.

Model

Variable length input

Variable length output

Solution: Apply a constant sized neural net module repeatedly
on the data

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention (Transformers)
● Direct interaction in the inputs

Processing Pipeline

Decoder

Variable length input

Variable length output

Encoder

Intermediate
representation

Processing Pipeline

Intermediate
representation

Decoder

Variable length output

Variable length input

Encoder

Variable length text

Embedding

Attention

Architecture Variants

Encoder Decoder Attention

Recurrent net Recurrent net No

Recurrent net Recurrent net Yes

Convolutional
net

Convolutional
net

No

Convolutional
net

Recurrent net Yes

Convolutional
net

Convolutional
net

Yes

Fully connected
net with self-
attention

Fully connected
net with self-
attention

Yes

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention
● Direct interaction in the inputs

RNN-decoder with RNN-encoder

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

= RNN cell

RNN-dec with RNN-enc, Training

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

Ground Truths

Thanks Very Much <end>

RNN-dec with RNN-enc, Decoding

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Much Very

Encoder Decoder

Thanks Much Very <end>

Greedy Decoding

Decoding Approaches
● Optimal decoding

● Greedy decoding

● Easy

● Not optimal

● Beam search
● Closer to optimal decoder

● Choose top N candidates instead of the
best one at each step.

Beam Search Decoding

Beam Width = 3

Straight-forward Extensions
Current state Next state

Current Input

RNN Cell

Current state Next state

Current Input

LSTM Cell

Next control stateCurrent control
state

Current state Next state

Current Input

Next stateCurrent state

Current state Next state

Current Input

Next stateCurrent state

Bidirectional Cell Stacked Cell

RNN-decoder with RNN-encoder with Attention

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

= RNN cell

+

Context

Attention
● Context is given by

● Attention weights are dynamic

● Generally defined by with

where function f can be defined in several ways.

● Dot product

● Weighted dot product

● Use another MLP (eg: 2 layer)

Attention

+

RNN Cell

Example: Google Neural Machine Translation

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention
● Direct interaction in the inputs

Why Convolution

● Recurrent networks are serial
● Unable to be parallelized

● “Distance” between feature vector and
different inputs are not constant

● Convolutions networks
● Can be parallelized (faster)

● “Distance” between feature vector and
different inputs are constant

Distance to feature vector in conv nets
n

k

n
k

Contiguous convolution

Dilated convolution

Context capture with Convolution Networks
n

k n
n

1 2 3

Window 1

Window 3

Window 2

Constant
number of
layers

Conv net, Recurrent net with Attention

Gehring et.al. A Convolutional Encoder Model for Neural Machine Translation (2016)

CNN-a CNN-c

1z 3z2z 4z 1y 2y 3y 4y

,1ia ,2ia ,3ia ,4ia

ig

ic
ih

ih

id

1ih

i d i id W h g

Two conv nets with attention

Gehring et.al, Convolutional Sequence to Sequence Learning, 2017

W WW W

Wd Wd Wd Wd

1z 3z2z

1,2,3,4id i

1e 2e 3e

, 1,2,3,4 1,2,3i ja i j

1c 2c 3c 4c

1g 2g 3g 4g

, 1,2,3,4ih i

Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical

fashion

● Self-attention
● Direct interaction in the inputs

Why Self-attention

● Recurrent networks are serial
● Unable to be parallelized

● “Distance” between feature vector and
different inputs are not constant

● Self-attention networks
● Can be parallelized (faster)

● “Distance” between feature vector and
different inputs does not depend on the input
length

Transformer network with self-attention

Inputs

Previous
Words

Probability of the
next words

Vasvani et.al, Attention is all you need, 2017

E
nc

od
er

D
ec

od
e r

Intermediate representation

Multi-Head Attention

Scaled dot product attention

Query Keys Values

Input word vectors

Query

Keys

Values

Encoder Self-attention

 Self Attention

Decoder Self-attention

• Almost same as encoder self
attention

• But only leftward positions are
considered.

Encoder-decoder attention

Encoder
states

Decoder
state

Overall Operation

Previous Words
Next
Word

Neural machine translation, philipp Koehn

Comparison of Seq2Seq
Methods

Famous Transformer Systems
● BERT (Bidirectional Encoder Representations from Transformers)

– Based on Transformer Encoder block

– Self-supervised learning approach and pretrained with
● Masked Language model
● Next sentence prediction

– Several down-stream tasks (classification, QA etc.)

● GPT-2 (Generalized Pre-Training)

– Based on Transformer Decoder block (Masked Self attention)

– Self-supervised learning and pre-trained with
● Next word prediction (given the previous prediction)

– Several down-stream tasks (classification, similarity etc.)

Reinforcement Learning

Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●

Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●

Why Reinforcement Learning
● Exposure bias

● In training ground truths are used. In testing,
generated word in the previous step is used to
generate the next word.

● Use generated words in training needs sampling :
Non differentiable

● Maximum Likelihood criterion is not directly relevant
to evaluation metrics
● BLEU (Machine translation)
● ROUGE (Summarization)
● Use BLEU/ROUGE in training: Non differentiable

Sequence Generation as
Reinforcement Learning

● Agent: The Recurrent Net
● State: Hidden layers, Attention weights etc.
● Action: Next Word
● Policy: Generate the next word (action)

given the current hidden layers and
attention weights (state)

● Reward: Score computed using the
evaluation metric (eg: BLEU)

Maximum Likelihood Training
(Revisit)

Minimize the negative log likelihood

Reinforcement Learning
Formulation

Minimize the expected negative reward,
using REINFORCE algorithm

Reinforcement Learning Details
● Expected reward

● We need the gradient

● Need to write this as an expectation, so that we
can evaluate it using samples. Use the log
derivative trick:

● This is an expectation

● Approximate this with sample mean

● In practice we use only one sample

Reinforcement Learning Details
● Gradient

● This estimation has high variance. Use a
baseline to combat this problem.

● Baseline can be anything independent of

● It can for example be estimated as the reward
for word sequence generated using argmax at
each cell.

Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●

Maximum Likelihood Dialog
Systems

How Are You?

I Am Fine

I Am<start>

Why Reinforcement Learning

● Maximum Likelihood criterion is not
directly relevant to successful dialogs
● Dull responses (“I don’t know”)
● Repetitive responses

● Need to integrate developer defined
rewards relevant to longer term goals
of the dialog

Dialog Generation as
Reinforcement Learning

● Agent: The Recurrent Net
● State: Previous dialog turns
● Action: Next dialog utterance
● Policy: Generate the next dialog utterance

(action) given the previous dialog turns (state)
● Reward: Score computed based on relevant

factors such as ease of answering,
information flow, semantic coherence etc.

Training Setup

Agent 1 Agent 2

DecoderDecoder

Encoder Encoder

Training Procedure

● From the viewpoint of a given agent, the
procedure is similar to that of sequence
generation
● REINFORCE algorithm

● Appropriate rewards must be calculated
based on current and previous dialog turns.

● Can be initialized with maximum likelihood
trained models.

Adversarial Learning
● Use a discriminator as in GANs to calculate the reward

● Same training procedure based on REINFORCE for
generator

Discriminator

Human Dialog

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Seq2seq modeling
	Slide 18
	Main approach
	Slide 20
	Development
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Long range dependency capture with conv nets
	Slide 36
	Conv net, Recurrent net with Attention
	Slide 38
	Slide 39
	Slide 40
	FCN with self-attention
	Multi-Head Attention
	Scaled dot product attention
	Encoder Self-attention
	Decoder Self-attention
	Encoder-decoder attention
	Overall Operation
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

