Text Sequence Processing

Narada Warakagoda

Topics

 Word Representations

* Sequence-to-sequence transformation
- Recurrent networks
- Convolutions networks
- Self-attention (Transformers)

* Reinforcement Learning

Word Representations

Why Word Representations?

* Words are symbols

* Neural networks operate on
numerical values

Trivial Approach

* One Hot encoding

- Use the word index in vector form

* Example
- Consider a vocabulary of 5 words

1 Man (1,0,0,0,0]
2 Woman [0,1,0,0,0]
3 Boy (G0 8 0
4 QGirl 0,0,0,1,0]
5 House [0,0,0,0,1]

* Disadvantages

- Dimension of the representation vector would be very high for natural
vocabularies

- All vectors are equally spread (vector similarity does not represent semantic
similarity)

Better Approach

Word
Ol I3 Vector F()
XK h; Z; P(yi|x;)

word(i) # W # U * Softmax # Pr(neighbour_word(i) | word(i))

X; € RVX1, h’_ = Rdm, W € RVXC]’, Ue RVXO‘

- Projection:
h;’ = WTX,'
- Second layer:
Z; = Uh,
- Softmax: -
exp(zi(/))

PV =I1) = S~z ()

Issuel: High Dimension

L1 _hl_
L9 h2
L3 # Projection .
: W :
ha

L V>d o

* Project one-hot encoded vectors to a lower dimensional space
(Reduce the dimension of the representation)

* Also known as embedding
* Linear projection = Multiplication by ¢ Nixa = X1xvWyxd

Issue 2: Similar Words

* Force vector distance between similar
words to be low

* How to quantify word similarity?

Quantifying Word Similarity

@09
o @

.
.,,, .\

/ - he
/ Z \ =N \
Q P -‘. N

e Alis "more similar” to B than C ?

* Ais "more similar” to Cthan B ?

Quantifying Word Similarity

. 2

The Cat Sat On The Mat

Wt—2 Wt—1 Wt W41 W42 W43

-« >
Context Window

Center Word

. 2

The Cat Sleep On The Mat

Wi—2 Wg—1 Wt Wiyl W42 W3

< »
Context Window

* Context of a word = Words occurring before and after
within a predefined window

* Words that have similar contexts, should be represented
by word vectors close to each other

Training Objective

Wy p(wt—z)

e Train F() to maxiit=11 1] Pwew)

t=1 —C<j<C,j#0

Practical Detalls

Word Index y g;?elgg; ation T Word

1 00000001

2 00000010 Wi41

3 00000100

4 00001000 Wi_1

5 00010000 W42
6 00100000 Wi

7 01000000

8 10000000 Wi—2

(00100000]

p(wi—2)

(00100000]

(00100000]

0 o = 2
!

t=1 —C<j<C,j#0

P(Wejlwi)

p(wii2)

Word Vector Visualization

WOMAN UEENS
AUNT Q

MAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

(Mikolov et al., NAACL HLT, 2013)

Sequence-to-seguence
Transforms

Seg2seq Transformation

I I I Variable length output
A
|

Model

|
I I I IVariabIe length input

Example Applications

e Summarization
(extractive/abstractive)

 Machine translation

* Dialog systems /chatbots
» Text generation

* Question answeringx

Seg2seq Transformation

I I I Variable length output
A
|

Model

Model size should
be constant.

|
I I I IVariabIe length input

Solution: Apply a constant sized neural net module repeatedly

on the data

Possible Approaches

e Recurrent networks

* Apply the NN module in a serial fashion

e Convolutions networks

* Apply the NN modules in a hierarchical
fashion

e Self-attention (Transformers)

* Direct interaction in the inputs

Processing Pipeline

I I I Variable length output
1

Decoder
A
I I I I Intermediate
representation
A
l
Encoder

0
I I I I Variable length input

Processing Pipeline

Attention

1]
A

Decoder

A
11

Encoder

A
A

Embedding

i
B

Variable length output

Intermediate
representation

Variable length input

Variable length text

Architecture Variants

Recurrent net
Recurrent net

Convolutional
net

Convolutional
net

Convolutional
net

Fully connected

net with self-
attention

Recurrent net
Recurrent net

Convolutional
net

Recurrent net

Convolutional
net

Fully connected

net with self-
attention

No
Yes
No

Yes

Yes

Yes

Possible Approaches

» Recurrent networks (s

* Apply the NN module in a serial fashion

e Convolutions networks

* Apply the NN modules in a hierarchical
fashion

¢ Self-attention

* Direct interaction in the inputs

RNN-decoder with RNN-encoder

Decoder vocabulary = {Much (w;), Thanks (ws), Very (w3), < end > (wy)}

plyr =wil-) pyr =wsl|) pyr=ws|) py =wa|)

= RNN cell

Tyo Ty, Ty Tys

<start> Thanks Very Much

Tusen Takk <end>

Encoder Decoder

RNN-dec with RNN-enc, Training

E =log L = log [p(y1 = ws|X) - plya = walwn, X) - plys = wifwp, w3, X) - plys = wyfwp, wy, 0, X))

Rl
S1 S2 S3

Desder ety = [V . T (0. Vo ()< 0> 03]

Tyo Ty, Ty Tys

<start> Thanks Very Much

Ground Truths

Tusen Takk <end>

Encoder Decoder

RNN-dec with RNN-enc, Decoding

Decoder vocabulary = {Much (w,), Thanks (w), Very (w3), < end > (w4) }

Thanks Much Very <end>

Greedy Decoding

Y1 = argmaxwé{w1,w2,w3,w4}p(y1 — w|X)

S5

Tyo Ty, Ty Tys

<start> Thanks Much Very

Tusen Takk <end>

Encoder Decoder

Decoding Approaches
* Optimal decoding

Find w = {wy, w2, w3, wy} such that p(wy, ws, ws, ws|X) is maximum

* Greedy decoding
 Easy
* Not optimal

« Beam search

* Closer to optimal decoder

 Choose top N candidates instead of the
best one at each step.

Beam Search Decoding

T=1 T=2 T=3
current proposed current proposed current proposed
hypotheses extensions hypotheses extensions hypotheses extensions

emphy
string

Straight-forward Extensions
t

Current state Next state —) N—
) Current control ' Next control state
state

Current state Next state

Current Input
Current Input

RNN Cell LSTM Cell
Current state Next state

Current state Next state

"

Current state Next state —)
Current state Next state
Current Input I Current Input
Bidirectional Cell Stacked Cell

RNN-decoder with RNN-encoder with Attention

Decoder vocabulary = {Much (w;), Thanks (ws), Very (w3), < end > (wy)}

plyr =wil-) pyr =wsl|) pyr=ws|) py =wa|)
. = RNN cell N

Context C¢

°
az(1)
pr

hi hs

Q¢ (3)

Tyo Ty, Ty Tys

<start> Thanks Very Much

Tusen Takk <end>

Encoder Decoder

At;cention

« Context is given by ¢ =) a:(j)h;

j=1

« Attention weights «:(j) are dynamic

- Generally defined by o(j) = xp(ex(d)) et(J) = f(8t-1,h;)

0 expled(k))

where function f can be defined in several ways.

o Dot product e:(j) =s{_,-h;

* Weighted dot product er(j) = i1 W -h;

« Use another MLP (eg: 2 layer) ei(j) =v” - tanh(W - [h;;5,_1])

Attention

Example: Google Neural Machine Translation

Encoder LSTMs

GPUB GPUS
Bélayers

GPU3

GPU2 GPU3
GPU2 GPUZ
GPUL GPU1

Possible Approaches

e Recurrent networks

* Apply the NN module in a serial fashion

* Convolutions networks -

* Apply the NN modules in a hierarchical
fashion

¢ Self-attention

* Direct interaction in the inputs

Why Convolution

e Recurrent networks are serial
 Unable to be parallelized

« “Distance” between feature vector and
different inputs are not constant

e Convolutions networks

 Can be parallelized (faster)

* “Distance” between feature vector and
different inputs are constant

Distance to feature vector in conv nets

Contiguous convolution

>

H B N
\1/.
]

/ Dilated convolution

Context capture with Convolution Networks

>

n

Window 1

>

Window 3

Conv net, Recurrent net with Attention

CNN-a CNN-c
<p> Die Katre schlief ein «<p> <p> Die Katze schlief ein <p>
Convolutional f
Encoder Networks Y
Y1 Y VE Va4
Attention Weights
Conditional
Input Computation
LSTM Decoder hi+1
w 0 h
[
o a g CZ C’H‘l fell
— exp(d, - z; = ,C... = Lh,9..C.
di _Wdhi +gi 4= 3 Ay C. =Za. Y. h”l’c‘“ LSTM(C!’hJ’gz’C;)
D exp(d, - z,) =
=1

Gehring et.al. A Convolutional Encoder Model for Neural Machine Translation (2016)

Two conv nets with attention

o ThEg SOgrenE L o
Embeddings — — ! .

Cronwolution=s

o

Cialied % ?
Lirmear
LimiEs

| 1

z.| z,| z

SRt erviEoen

JL =2.0,;(z;+e))

=T

I
I

d i=12,34

Dot prochucts
a;1=1,234 j=123

h.
1l C2

hl.,l :1,2,3,4 | 1 =
o I}lﬂjp
L | || H | H I L I
== == = Sia stirmmean Fu Sia stimmen Zu
9, 9, 93 g4

P(g.18. .8 ,,...) =softmax(W(c._, +h_,))

Gehring et.al, Convolutional Sequence to Sequence Learning, 2017

Possible Approaches

e Recurrent networks

* Apply the NN module in a serial fashion

e Convolutions networks

* Apply the NN modules in a hierarchical
fashion

- Self-attention <

* Direct interaction in the inputs

Why Self-attention

 Recurrent networks are serial
 Unable to be parallelized

« “Distance” between feature vector and
different inputs are not constant

* Self-attention networks
 Can be parallelized (faster)

* “Distance” between feature vector and
different inputs does not depend on the input

length

Transformer network with self-attention

Output Probability of the
Probabilities A next words
|
~ Intermediate representation
((Foda Nom) >
Feed —
Forward)
-) | GEE T~ ' T
Multi-Head
Feed Attention —/ T
Forward 7 } Nx¢ >
Samm—
arm | -
Nx | —{Add & Norm) = - Q
asked o > S
Multi-Head Multi-Head e O]
Attention Attention o S (&)
At At &))
— J — c —> O
L
Positional b Positional D —
Encoding ¢ Encoding
Input Output —>
Embedding Embedding () T
| 1t Out!)utf-,
nputs S
(shifted right)
— Previous
| . | Wor
Vasvani et.al, Attention is all you need, 2017 ords

Multi-Head Attention

Multi-Head Attention

Linear l

Concat
i
Scaled Dot-Product
Attention

1 LR)
Lncar J{Lnear P {Lnar)
T T

V K Q

Scaled dot product attention

4 Input word vectors X = [x1,22, -+ ,2,]"
l+ atiE) ry Query Q — [Q17QZ7 e 7Qn:T
| Softvax Keys K = ki, k2, k,]"
4 _
Mask (opt.) | Values V = [vy,vq, -+ ,v,]T
l Scale Q= Xwe
_ K
[Mathul K =XW
t 1 V=XW"
Q K V
W WE WYV Trainable weight vectors
Query Keys Values

QKT

Var

Attention(Q, K, V') = softmax(

} Vv

Encoder Self-attention

o = Bl
1 1 I [
1 1 1 I

= — -

Encoder Self-Attention (kT) (q kT)
__exp(giky) __exp(giky oy — 5Pk
Z:l Z2 qs a1 Zj eXp(qlkf) Q1.2 Zj exp(qlk]T) Zj eXp(qlk;F)
1 2 ks m = m
I Xo I3
Z1 = (1,1V1 + (1 2V2 + (] 3V3
Z2 = (2 1V1 + Q2 2V2 + Q2 3V3
23 = 03,101 + 3,202 + Q3,303
1 To I3

21

22 23

Decoder Self-attention

e Almost same as encoder self
attention

* But only leftward positions are
considered.

(\/ﬁ

MaskedDecoder Self-Attentio

Encoder-decoder attention

Encoder Decoder
states state

Encoder-Decoder Attention

q1 g2 Q3 q4
ki ko ks kg

V1 V2 U3 Vg
T
- exp(qqkT) o — exp(qdkg)T s = exp(qaqks)T
© X exp(gak)) " >0, exp(qak]) > exp(gak])

Zg = 1,1V + Q1,202 + Q1 3V3

44

Overall Operation

N 0 v
Embeddings

& ¥ ¥ ¥ & ¥

Self Attention
Layer 1

8 8 3§ 8 —§ ¥

Self Attention
Layer 1

Decoder
Layer 1

Decoder
Layer 2

Output Word
Prediction

Selected
Output Word

OO oo ET
Embedding
= ~ Next
Previous Words Word

Neural machine translation, philipp Koehn

Comparison of Seq2Seq
Methods

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

Famous Transformer Systems

» BERT (Bidirectional Encoder Representations from Transformers)

- Based on Transformer Encoder block

- Self-supervised learning approach and pretrained with

* Masked Language model
* Next sentence prediction

- Several down-stream tasks (classification, QA etc.)

* GPT-2 (Generalized Pre-Training)

- Based on Transformer Decoder block (Masked Self attention)

- Self-supervised learning and pre-trained with

* Next word prediction (given the previous prediction)

- Several down-stream tasks (classification, similarity etc.)

BERT (Ours)

OpenAl GPT

Reinforcement Learning

Reinforcement Learning

Machine Translation/Summarization
Dialog Systems

Reinforcement Learning

{

Machine Translation/Summarization <ff\iﬁ

Dialog Systems

Why Reinforcement Learning

« Exposure bias

 In training ground truths are used. In testing,
generated word in the previous step is used to
generate the next word.

* Use generated words in training needs sampling :
Non differentiable

« Maximum Likelihood criterion is not directly relevant
to evaluation metrics

e BLEU (Machine translation)
« ROUGE (Summarization)
« Use BLEU/ROUGE in training: Non differentiable

Sequence Generation as
Reinforcement Learning

 Agent: The Recurrent Net
« State: Hidden layers, Attention weights etc.
* Action: Next Word

* Policy: Generate the next word (action)
given the current hidden layers and
attention weights (state)

 Reward: Score computed using the
evaluation metric (eg: BLEU)

Maximum Likelihood Training
(Revisit)

hfl;‘fl = L;STTM(BO;S‘?h{]? C{]) hg, Cop = LSTI‘./I(’LU%, h‘l-_- Cl)
ho, co > P P —
BOS =——» —> —_— 8 — —
g
po(w|hi) wy po (w|hs) W2

T
Log Likelihood = Z log pg (w{|hy)

t=1

Minimize the negative log likelihood

Reinforcement Learning

Formulation
hfl;‘fl = LSTM(BOS?JFI{]?C{]) hg,ﬂg - LSTI‘KI(W?, h‘l-_- Cl)
h;],C{] —_— P o)
BOS =—p ——
po(w|h1) wi po (w|hz) w5
Reward = r(w®) = r(wj,ws, - ,wy)

Minimize the expected negative reward, L(0) = —Ey:vp, [r(w®)]
using REINFORCE algorithm

Reinforcement Learning Detalls
« Expected reward L(9>=—;pe(w)r<w)

« We need the gradient VeL()=—) r(w)Veps(w)

w

 Need to write this as an expectation, so that we
can evaluate it using samples. Use the log
derivative trick: VoL(0) = — Y r(w)ps(w) Vg log ps(w)

* This is an expectation VyL(0) = —Eys~p, [r(w®) Vg log pe(w®)]
« Approximate this with sample mean

VoL(0) ~ —— Z *)Vg log pe (w*)

* |In practice we use only one sample
VoL(0) = —r(w”)Vglog po(w”)

Reinforcement Learning Detalls

e Gradient VoL(0) =~ —r(w®)Vy log pe(w?®)

* This estimation has high variance. Use a
baseline to combat this problem.

VoL(0) = —(r(w®) — b)Ve log pg(w®)

* Baseline can be anything independent of w?®

It can for example be estimated as the reward

for word sequence generated using argmax at
each cell. b= r(wq,ws, w3, -, W)

W, c, = LSTM(BOS, bl ch) k¢ = LSTM(i, K,,c,)

| S -
hg, o —p 2

> —
BOS —p _,,’_ S
po(w|hy) i pe(w|hy) W

Reinforcement Learning

Machine Translation/Summarization
Dialog Systems ¢

Maximum Likelihood Dialog
Systems

Fme

<start> I

H

You?

How Are

Why Reinforcement Learning

« Maximum Likelihood criterion is not
directly relevant to successful dialogs

* Dull responses (“l don’'t know"”)
* Repetitive responses

* Need to integrate developer defined
rewards relevant to longer term goals
of the dialog

Dialog Generation as
Reinforcement Learning

 Agent: The Recurrent Net
« State: Previous dialog turns
* Action: Next dialog utterance

* Policy: Generate the next dialog utterance
(action) given the previous dialog turns (state)

« Reward: Score computed based on relevant
factors such as ease of answering,
Information flow, semantic coherence etc.

Training Setup

+

1

!

Decoder Decoder

e W

1

Encoder Encoder

Agent 1 Agent 2

Training Procedure

 From the viewpoint of a given agent, the
procedure is similar to that of sequence
generation

« REINFORCE algorithm

* Appropriate rewards must be calculated
based on current and previous dialog turns.

 Can be initialized with maximum likelihood
trained models.

Adversarial Learning

« Use a discriminator as in GANs to calculate the reward

« Same training procedure based on REINFORCE for

generator Y

i

1

H

X

X, Y}

Human Dialog

> Reward R(X,Y)

Discriminator

4

>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Seq2seq modeling
	Slide 18
	Main approach
	Slide 20
	Development
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Long range dependency capture with conv nets
	Slide 36
	Conv net, Recurrent net with Attention
	Slide 38
	Slide 39
	Slide 40
	FCN with self-attention
	Multi-Head Attention
	Scaled dot product attention
	Encoder Self-attention
	Decoder Self-attention
	Encoder-decoder attention
	Overall Operation
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

