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Topics

● Word Representations
● Sequence-to-sequence transformation 

– Recurrent networks

– Convolutions networks

– Self-attention (Transformers)

● Reinforcement Learning

  



Word Representations



Why Word Representations?

● Words are symbols
● Neural networks operate on 

numerical values



Trivial Approach
● One Hot encoding

– Use the word index in vector form

● Example
– Consider a vocabulary of 5 words

● Disadvantages
– Dimension of the representation vector would be very high for natural 

vocabularies
– All vectors are equally spread (vector similarity does not represent semantic 

similarity)



Better Approach
One hot

Word 
Vector

word(i)  Pr(neighbour_word(i) | word(i))  



Issue1: High Dimension

● Project one-hot encoded vectors to a lower dimensional space 
(Reduce the dimension of the representation )

● Also known as embedding
● Linear projection = Multiplication by a matrix 



Issue 2: Similar Words

● Force vector distance between similar 
words to be low

● How to quantify word similarity?



Quantifying Word Similarity

●  A is ”more similar” to B than C ? 
●  A is ”more similar” to C than B ?



Quantifying Word Similarity

● Context of a word = Words occurring before and after 
within a predefined window

● Words that have similar contexts, should be represented 
by word vectors close to each other



Training Objective

● Train            to maximize 



Practical Details
Word Index One Hot 

representation
Word

1 00000001

2 00000010

3 00000100

4 00001000

5 00010000

6 00100000

7 01000000

8 10000000



Word Vector Visualization



Sequence-to-sequence 
Transforms



Seq2seq Transformation

Model

Variable length input

Variable length output



Example Applications

● Summarization 
(extractive/abstractive)

● Machine translation
● Dialog systems /chatbots
● Text generation
● Question answering
●

●



Seq2seq Transformation

Model size should 
be constant.

Model

Variable length input

Variable length output

Solution: Apply a constant sized neural net module  repeatedly 
on the data 



Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention (Transformers) 
● Direct interaction in the inputs   



Processing Pipeline

Decoder

Variable length input

Variable length output

Encoder

Intermediate 
representation



Processing Pipeline 

Intermediate 
representation

Decoder

Variable length output

Variable length input

Encoder

Variable length text

Embedding

Attention



Architecture Variants

Encoder Decoder Attention

Recurrent net Recurrent net No

Recurrent net Recurrent net Yes

Convolutional 
net

Convolutional 
net

No

Convolutional 
net

Recurrent net Yes

Convolutional 
net

Convolutional 
net

Yes

Fully connected 
net with self-
attention

Fully connected 
net with self-
attention

Yes



Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention 
● Direct interaction in the inputs  



RNN-decoder with RNN-encoder

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

= RNN cell



RNN-dec with RNN-enc, Training

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

Ground Truths

Thanks Very Much <end>



RNN-dec with RNN-enc, Decoding

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Much Very

Encoder Decoder

Thanks Much Very <end>

Greedy Decoding



Decoding Approaches
● Optimal decoding

 
● Greedy decoding

● Easy

● Not optimal   

● Beam search
● Closer to optimal decoder

● Choose top N candidates instead of the 
best one at each step.   



Beam Search Decoding

Beam Width = 3



Straight-forward Extensions
Current state Next state

Current Input

RNN Cell

Current state Next state

Current Input

LSTM Cell

Next control stateCurrent  control 
state

Current state Next state

Current Input

Next stateCurrent state

Current state Next state

Current Input

Next stateCurrent state

Bidirectional Cell Stacked  Cell



RNN-decoder with RNN-encoder with Attention

Soft
max

Soft
max

Soft
max

Soft
max

Tusen Takk <end>

<start> Thanks Very Much

Encoder Decoder

= RNN cell

+

Context 



Attention
● Context is given by

● Attention weights            are dynamic 

● Generally defined by                                                 with  

where  function f can be defined in several ways.

● Dot product 

● Weighted dot product

● Use another MLP (eg: 2 layer) 

 

  



Attention

+

RNN Cell



Example:  Google Neural Machine Translation



Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention 
● Direct interaction in the inputs   



Why Convolution

● Recurrent networks are serial
● Unable to be parallelized

● “Distance” between feature vector and 
different inputs are not constant 

● Convolutions networks
● Can be parallelized (faster)

●  “Distance” between feature vector and 
different inputs are constant   



Distance to feature vector in conv nets
n

k

n
k

Contiguous convolution

Dilated convolution



Context capture with Convolution Networks
n

k n
n

1 2 3

Window 1

Window 3

Window 2

Constant 
number of 
layers



Conv net, Recurrent net with Attention

Gehring et.al. A Convolutional Encoder Model for Neural Machine Translation (2016)

CNN-a CNN-c
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Two conv nets with attention

Gehring et.al, Convolutional Sequence to Sequence Learning, 2017

W WW W

Wd Wd Wd Wd
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Possible Approaches

● Recurrent networks
● Apply the NN module in a serial fashion

● Convolutions networks
● Apply the NN modules in a hierarchical 

fashion

● Self-attention 
● Direct interaction in  the inputs   



Why Self-attention

● Recurrent networks are serial
● Unable to be parallelized

● “Distance” between feature vector and 
different inputs are not constant 

● Self-attention networks
● Can be parallelized (faster)

●  “Distance” between feature vector and 
different inputs does not depend on the input 
length  



Transformer network with self-attention

Inputs

Previous 
Words

Probability of the 
next words

Vasvani et.al, Attention is all you need, 2017
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Intermediate representation



Multi-Head Attention



Scaled dot product attention

Query Keys Values

Input word vectors

Query

Keys

Values



Encoder Self-attention

 Self Attention



Decoder Self-attention

• Almost same as encoder self 
attention

• But only leftward positions are  
considered.



Encoder-decoder attention

Encoder 
states

Decoder 
state



Overall Operation

Previous Words
Next 
Word

Neural machine translation, philipp Koehn



Comparison of Seq2Seq 
Methods



Famous Transformer Systems
● BERT (Bidirectional Encoder Representations from Transformers)

– Based on Transformer Encoder block

– Self-supervised learning approach and pretrained with
● Masked Language model
● Next sentence prediction

– Several down-stream tasks (classification, QA etc.)

● GPT-2 (Generalized Pre-Training)

– Based on Transformer Decoder block (Masked Self attention)

– Self-supervised learning and pre-trained with
● Next word prediction (given the previous prediction)

– Several down-stream tasks (classification, similarity etc.)



Reinforcement Learning



Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●



Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●



Why Reinforcement Learning
● Exposure bias

● In training ground truths are used. In testing, 
generated word in the previous step is used to 
generate the next word.

● Use generated words in training needs sampling : 
Non differentiable 

● Maximum Likelihood criterion is not directly relevant 
to evaluation metrics 
● BLEU (Machine translation)
● ROUGE (Summarization)
● Use BLEU/ROUGE in training: Non differentiable



Sequence Generation as  
Reinforcement Learning  

● Agent:  The Recurrent Net
● State:  Hidden layers, Attention weights etc.
● Action: Next Word
● Policy: Generate the next word (action) 

given the current hidden layers and 
attention weights (state)

● Reward: Score computed using the 
evaluation metric (eg: BLEU)



Maximum Likelihood  Training 
(Revisit)

Minimize the negative  log likelihood 



Reinforcement Learning 
Formulation

Minimize the expected negative reward,                          
using REINFORCE algorithm 



Reinforcement Learning Details  
● Expected reward  

● We need the gradient  

● Need to write this as an expectation, so that we 
can evaluate it using samples. Use the log 
derivative trick: 

 

● This is an expectation 

● Approximate this with sample mean

● In practice we use only one sample  



Reinforcement Learning Details  
● Gradient  

● This estimation has high variance. Use a 
baseline to combat this problem.  

● Baseline can be anything independent of   

●  It can for example be estimated as the reward 
for word sequence generated using argmax at 
each cell.



Reinforcement Learning

● Machine Translation/Summarization
● Dialog Systems
●

●



Maximum Likelihood Dialog 
Systems

How Are You?

I Am Fine

I Am<start>



Why Reinforcement Learning

● Maximum Likelihood criterion is not 
directly relevant to successful dialogs 
● Dull responses (“I don’t know”)
● Repetitive responses

● Need to integrate developer defined 
rewards relevant to longer term goals 
of the dialog



Dialog Generation as  
Reinforcement Learning  

● Agent:  The Recurrent Net
● State:  Previous dialog turns
● Action: Next dialog utterance
● Policy: Generate the next dialog utterance 

(action) given the previous dialog turns (state)
● Reward: Score computed based on relevant 

factors such as ease of answering, 
information flow, semantic coherence etc. 



Training Setup

Agent 1 Agent 2

DecoderDecoder

Encoder Encoder



Training Procedure   

● From the viewpoint of a given agent, the 
procedure is similar to that of sequence 
generation 
● REINFORCE algorithm

● Appropriate rewards must be calculated 
based on current and previous dialog turns.

● Can be initialized with maximum likelihood 
trained models.



Adversarial Learning    
● Use a discriminator as in GANs to calculate the reward

● Same training procedure based on REINFORCE for 
generator 

Discriminator

Human Dialog
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