Text Sequence Processing

Narada Warakagoda

Topics

- Word Representations
- Sequence-to-sequence transformation
 - Recurrent networks
 - Convolutions networks
 - Self-attention (Transformers)
- Reinforcement Learning

Word Representations

Why Word Representations?

- Words are symbols
- Neural networks operate on numerical values

Trivial Approach

- One Hot encoding
 - Use the word index in vector form
- Example
 - Consider a vocabulary of 5 words

1	Man	[1,0,0,0,0]
2	Woman	[0,1,0,0,0]
3	Boy	[0,0,1,0,0]
4	Girl	[0,0,0,1,0]
5	House	[0,0,0,0,1]

Disadvantages

- Dimension of the representation vector would be very high for natural vocabularies
- All vectors are equally spread (vector similarity does not represent semantic similarity)

Better Approach

$$\mathbf{x}_i \in \mathbb{R}^{V \times 1}$$
, $\mathbf{h}_i \in \mathbb{R}^{d \times 1}$, $\mathbf{W} \in \mathbb{R}^{V \times d}$, $\mathbf{U} \in \mathbb{R}^{V \times d}$

· Projection:

$$\mathbf{h}_i = \mathbf{W}^T \mathbf{x}_i$$

· Second layer:

$$z_i = Uh_i$$

· Softmax:

$$P(y_i = j | \mathbf{x}_i) = \frac{\exp(z_i(j))}{\sum_k \exp(z_i(k))}$$

Issue1: High Dimension

- Project one-hot encoded vectors to a lower dimensional space (Reduce the dimension of the representation)
- Also known as embedding
- Linear projection = Multiplication by $\epsilon h_{1\times d} = x_{1\times V}W_{V\times d}$

Issue 2: Similar Words

- Force vector distance between similar words to be low
- How to quantify word similarity?

Quantifying Word Similarity

- A is "more similar" to B than C?
- A is "more similar" to C than B?

Quantifying Word Similarity

- Context of a word = Words occurring before and after within a predefined window
- Words that have similar contexts, should be represented by word vectors close to each other

Training Objective

Practical Details

Word Index	y	One Hot representation	\boldsymbol{x}	Word
1		0000001		
2		00000010		w_{t+1}
3		00000100		
4		00001000		w_{t-1}
5		00010000		$\overline{w_{t+2}}$
6		00100000		w_t
7		01000000		
8		10000000		w_{t-2}

Word Vector Visualization

(Mikolov et al., NAACL HLT, 2013)

Sequence-to-sequence Transforms

Seq2seq Transformation

Example Applications

- Summarization (extractive/abstractive)
- Machine translation
- Dialog systems /chatbots
- Text generation
- Question answering

Seq2seq Transformation

Solution: Apply a constant sized neural net module repeatedly on the data

Possible Approaches

- Recurrent networks
 - Apply the NN module in a serial fashion
- Convolutions networks
 - Apply the NN modules in a hierarchical fashion
- Self-attention (Transformers)
 - Direct interaction in the inputs

Processing Pipeline

Processing Pipeline

Architecture Variants

Encoder	Decoder	Attention
Recurrent net	Recurrent net	No
Recurrent net	Recurrent net	Yes
Convolutional net	Convolutional net	No
Convolutional net	Recurrent net	Yes
Convolutional net	Convolutional net	Yes
Fully connected net with self-attention	Fully connected net with self-attention	Yes

Possible Approaches

Recurrent networks

- Apply the NN module in a serial fashion
- Convolutions networks
 - Apply the NN modules in a hierarchical fashion
- Self-attention
 - Direct interaction in the inputs

RNN-decoder with RNN-encoder

Decoder vocabulary = {Much (\boldsymbol{w}_1) , Thanks (\boldsymbol{w}_2) , Very (\boldsymbol{w}_3) , < end $> (\boldsymbol{w}_4)$ }

RNN-dec with RNN-enc, Training

 $E = \log L = \log \left[p(\mathbf{y}_1 = w_2 | \mathbf{X}) \cdot p(\mathbf{y}_2 = w_3 | w_2, \mathbf{X}) \cdot p(\mathbf{y}_3 = w_1 | w_2, w_3, \mathbf{X}) \cdot p(\mathbf{y}_4 = w_4 | w_2, w_3, w_1, \mathbf{X}) \right]$

Decoder vocabulary = {Much (\boldsymbol{w}_1) , Thanks (\boldsymbol{w}_2) , Very (\boldsymbol{w}_3) , < end $> (\boldsymbol{w}_4)$ }

 \boldsymbol{h}_1

 $\mathbf{1}_{x_1}$ $\mathbf{1}_{x_2}$ $\mathbf{1}_{x_3}$ Tusen Takk <end>

Decoder

RNN-dec with RNN-enc, Decoding

Decoder vocabulary = {Much (\boldsymbol{w}_1) , Thanks (\boldsymbol{w}_2) , Very (\boldsymbol{w}_3) , < end > (\boldsymbol{w}_4) }

Greedy Decoding

 $\mathbf{y}_1 = \operatorname{argmax}_{w \in \{w_1, w_2, w_3, w_4\}} p(\mathbf{y}_1 = w | \mathbf{X})$

Encoder

Decoder

Decoding Approaches

Optimal decoding

Find $\mathbf{w} = \{w_1, w_2, w_3, w_4\}$ such that $p(w_1, w_2, w_3, w_4 | \mathbf{X})$ is maximum

- Greedy decoding
 - Easy
 - Not optimal
- Beam search
 - Closer to optimal decoder
 - Choose top N candidates instead of the best one at each step.

Beam Search Decoding

Straight-forward Extensions

RNN-decoder with RNN-encoder with Attention

Decoder vocabulary = {Much (\boldsymbol{w}_1) , Thanks (\boldsymbol{w}_2) , Very (\boldsymbol{w}_3) , < end $> (\boldsymbol{w}_4)$ }

Attention

- Context is given by $c_t = \sum_{j=1}^{T_x} \alpha_t(j) h_j$
- Attention weights $\alpha_t(j)$ are dynamic
- Generally defined by $\alpha_t(j) = \frac{\exp(e_t(j))}{\sum_{k=1}^{T_x} \exp(e_t(k))}$ $e_t(j) = f(\boldsymbol{s}_{t-1}, \boldsymbol{h}_j)$

where function f can be defined in several ways.

- Dot product $e_t(j) = \boldsymbol{s}_{t-1}^T \cdot \boldsymbol{h}_j$
- Weighted dot product $e_t(j) = \boldsymbol{s}_{t-1}^T \cdot \boldsymbol{W} \cdot \boldsymbol{h}_j$
- Use another MLP (eg: 2 layer) $e_t(j) = \boldsymbol{v}^T \cdot \tanh(\boldsymbol{W} \cdot [\boldsymbol{h}_j; \boldsymbol{s}_{t-1}])$

Attention

Example: Google Neural Machine Translation

Possible Approaches

- Recurrent networks
 - Apply the NN module in a serial fashion
- Convolutions networks

- Apply the NN modules in a hierarchical fashion
- Self-attention
 - Direct interaction in the inputs

Why Convolution

- Recurrent networks are serial
 - Unable to be parallelized
 - "Distance" between feature vector and different inputs are not constant
- Convolutions networks
 - Can be parallelized (faster)
 - "Distance" between feature vector and different inputs are constant

Distance to feature vector in conv nets

Context capture with Convolution Networks

Conv net, Recurrent net with Attention

$$d_i = W_d h_i + g_i$$

$$a_{i,j} = \frac{\exp(d_i \cdot z_j)}{\sum_{t=1}^{4} \exp(d_i \cdot z_t)}$$

$$c_i = \sum_{j=1}^4 a_{i,j} y_j$$

$$h_{i+1}, C_{i+1} = LSTM(c_i, h_i, g_i, C_i)$$

Two conv nets with attention

Gehring et.al, Convolutional Sequence to Sequence Learning, 2017

Possible Approaches

- Recurrent networks
 - Apply the NN module in a serial fashion
- Convolutions networks
 - Apply the NN modules in a hierarchical fashion
- Self-attention

Direct interaction in the inputs

Why Self-attention

- Recurrent networks are serial
 - Unable to be parallelized
 - "Distance" between feature vector and different inputs are not constant
- Self-attention networks
 - Can be parallelized (faster)
 - "Distance" between feature vector and different inputs does not depend on the input length

Transformer network with self-attention

Vasvani et.al, Attention is all you need, 2017

Multi-Head Attention

Scaled dot product attention

Query Keys Values

Input word vectors
$$m{X} = [m{x}_1, m{x}_2, \cdots, m{x}_n]^T$$
 Query $m{Q} = [m{q}_1, m{q}_2, \cdots, m{q}_n]^T$ Keys $m{K} = [m{k}_1, m{k}_2, \cdots, m{k}_n]^T$ Values $m{V} = [m{v}_1, m{v}_2, \cdots, m{v}_n]^T$ $m{Q} = m{X} m{W}^Q$ $m{K} = m{X} m{W}^K$ $m{V} = m{X} m{W}^V$

 $\boldsymbol{W}^{Q}, \boldsymbol{W}^{K}, \boldsymbol{W}^{V}$ Trainable weight vectors

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Encoder Self-attention

Encoder Self-Attention

 \boldsymbol{q}_1 \boldsymbol{k}_1 \boldsymbol{v}_1 \boldsymbol{x}_1

 \boldsymbol{q}_2 \boldsymbol{k}_2 \boldsymbol{v}_2

 \boldsymbol{x}_2

 \boldsymbol{q}_3 k_3 \boldsymbol{v}_3 \boldsymbol{x}_3

$$lpha_{1,1} = rac{\exp(oldsymbol{q}_1 oldsymbol{k}_1^T)}{\sum_j \exp(oldsymbol{q}_1 oldsymbol{k}_j^T)}$$

$$\alpha_{1,1} = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_1^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)} \qquad \alpha_{1,2} = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_2^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)} \qquad \alpha_{1,3} = \frac{\exp(\boldsymbol{q}_1 \boldsymbol{k}_3^T)}{\sum_j \exp(\boldsymbol{q}_1 \boldsymbol{k}_j^T)}$$

$$z_1 = \alpha_{1,1} v_1 + \alpha_{1,2} v_2 + \alpha_{1,3} v_3
 z_2 = \alpha_{2,1} v_1 + \alpha_{2,2} v_2 + \alpha_{2,3} v_3
 z_3 = \alpha_{3,1} v_1 + \alpha_{3,2} v_2 + \alpha_{3,3} v_3$$

Decoder Self-attention

- Almost same as encoder self attention
- But only leftward positions are considered.

Encoder-decoder attention

$$\alpha_{1,1} = \frac{\exp(\boldsymbol{q}_d \boldsymbol{k}_1^T)}{\sum_j \exp(\boldsymbol{q}_d \boldsymbol{k}_j^T)} \qquad \alpha_{1,2} = \frac{\exp(\boldsymbol{q}_d \boldsymbol{k}_2^T)}{\sum_j \exp(\boldsymbol{q}_d \boldsymbol{k}_j^T)} \qquad \alpha_{1,3} = \frac{\exp(\boldsymbol{q}_d \boldsymbol{k}_3^T)}{\sum_j \exp(\boldsymbol{q}_d \boldsymbol{k}_j^T)}$$

$$\mathbf{z}_d = \alpha_{1,1} \mathbf{v}_1 + \alpha_{1,2} \mathbf{v}_2 + \alpha_{1,3} \mathbf{v}_3$$

Overall Operation

Comparison of Seq2Seq Methods

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Famous Transformer Systems

- BERT (Bidirectional Encoder Representations from Transformers)
 - Based on Transformer Encoder block
 - Self-supervised learning approach and pretrained with
 - Masked Language model
 - Next sentence prediction
 - Several down-stream tasks (classification, QA etc.)
- GPT-2 (Generalized Pre-Training)
 - Based on Transformer Decoder block (Masked Self attention)
 - Self-supervised learning and pre-trained with
 - Next word prediction (given the previous prediction)
 - Several down-stream tasks (classification, similarity etc.)

- Machine Translation/Summarization
- Dialog Systems

•

Machine Translation/Summarization

Dialog Systems

lacktriangle

•

- Exposure bias
 - In training ground truths are used. In testing, generated word in the previous step is used to generate the next word.
 - Use generated words in training needs sampling : Non differentiable
- Maximum Likelihood criterion is not directly relevant to evaluation metrics
 - BLEU (Machine translation)
 - ROUGE (Summarization)
 - Use BLEU/ROUGE in training: Non differentiable

Sequence Generation as Reinforcement Learning

- Agent: The Recurrent Net
- State: Hidden layers, Attention weights etc.
- Action: Next Word
- Policy: Generate the next word (action) given the current hidden layers and attention weights (state)
- Reward: Score computed using the evaluation metric (eg: BLEU)

Maximum Likelihood Training (Revisit)

Log Likelihood =
$$\sum_{t=1}^{T} \log p_{\theta}(w_t^g | h_t)$$

Minimize the negative log likelihood

Reinforcement Learning Formulation

Reward =
$$r(w^s) = r(w_1^s, w_2^s, \dots, w_T^s)$$

Minimize the expected negative reward, $L(\theta) = -\mathbb{E}_{w^s \sim p_{\theta}} [r(w^s)]$ using REINFORCE algorithm

Reinforcement Learning Details

- Expected reward $L(\theta) = -\sum_{w} p_{\theta}(w)r(w)$
- We need the gradient $\nabla_{\theta}L(\theta) = -\sum_{w} r(w)\nabla_{\theta}p_{\theta}(w)$
- Need to write this as an expectation, so that we can evaluate it using samples. Use the log derivative trick: $\nabla_{\theta} L(\theta) = -\sum r(w) p_{\theta}(w) \nabla_{\theta} \log p_{\theta}(w)$

- This is an expectation $\nabla_{\theta} L(\theta) = -\mathbb{E}_{w^s \sim p_{\theta}} \left[r(w^s) \nabla_{\theta} \log p_{\theta}(w^s) \right]$
- Approximate this with sample mean

$$\nabla_{\theta} L(\theta) \approx -\frac{1}{N} \sum_{s=1}^{N} r(w^s) \nabla_{\theta} \log p_{\theta}(w^s)$$

In practice we use only one sample

$$\nabla_{\theta} L(\theta) \approx -r(w^s) \nabla_{\theta} \log p_{\theta}(w^s)$$

Reinforcement Learning Details

- Gradient $\nabla_{\theta} L(\theta) \approx -r(w^s) \nabla_{\theta} \log p_{\theta}(w^s)$
- This estimation has high variance. Use a baseline to combat this problem.

$$\nabla_{\theta} L(\theta) \approx -(r(w^s) - b)\nabla_{\theta} \log p_{\theta}(w^s)$$

- Baseline can be anything independent of $\,w^s\,$
- It can for example be estimated as the reward for word sequence generated using argmax at each cell. $b = r(\hat{w}_1, \hat{w}_2, \hat{w}_3, \dots, \hat{w}_T)$

- Machine Translation/Summarization
- Dialog Systems

•

Maximum Likelihood Dialog Systems

- Maximum Likelihood criterion is not directly relevant to successful dialogs
 - Dull responses ("I don't know")
 - Repetitive responses
- Need to integrate developer defined rewards relevant to longer term goals of the dialog

Dialog Generation as Reinforcement Learning

- Agent: The Recurrent Net
- State: Previous dialog turns
- Action: Next dialog utterance
- Policy: Generate the next dialog utterance (action) given the previous dialog turns (state)
- Reward: Score computed based on relevant factors such as ease of answering, information flow, semantic coherence etc.

Training Setup

Agent 1 Agent 2

Training Procedure

- From the viewpoint of a given agent, the procedure is similar to that of sequence generation
 - REINFORCE algorithm
- Appropriate rewards must be calculated based on current and previous dialog turns.
- Can be initialized with maximum likelihood trained models.

Adversarial Learning

Use a discriminator as in GANs to calculate the reward

Same training procedure based on REINFORCE for generator

