
TEK5040 Assignment, Bayesian Deep Learning

Narada Warakagoda

October 26, 2020

NOTE: This assignment is optional. Therefore, no submission is required.
But you are strongly encouraged to perform the tasks in this assignment

1 Introduction

This assignment deals with Bayesian deep learning with neural networks. You are going to
investigate Monte Carlo Dropout method and Variational Inference methods in this exercise.
The code is based on http://krasserm.github.io/2019/03/14/bayesian-neural-networks/

1.1 Package Contents

mc train test.py Tensorflow script for training and testing of Monte Carlo Dropout.
vi train test.py Tensorflow script for training and testing for Variational Inference
common.py Common routines and definitions, including data generation
densevariational.py Tensorflow script defining a layer supporting Variational inference
bayesian exercise.pdf This document describing the task

2 Operation

We use a simple regression task for evaluating Bayesian deep learning techniques. The train-
ing data set is generated using gen data() in common.py. Figure 1 shows the generated
training data which follow a noisy sinusoidal. The task is to predict values of y axis given
values of x-axis. We use Bayesian learning to generate the variance of the predicted values.

You can run mc train test.py in a Tensorflow environment to train and test the system
based on Monte Carlo Drop out. i.e. python3 mc train test.py. Make sure that you have
tensorflow probability installed using for example pip.

1

Figure 1: Training data

pip3 install tensorflow probability==x.x.x.

where x.x.x is the version which should be selected so that it matches your tensorflow

version (see https://github.com/tensorflow/probability/releases for version compat-
ibility).

Similarly you can run python3 vi train test.py for Variational Inference based training
and testing.

If the scripts work correctly, you should see the typical Keras output of training losses and
the progress bar of testing for 500 times. Further, it shows the predicted results in graphical
form.

3 Theory and Implementation

3.1 Monte Carlo Dropout

This is a very straight-forward implementation where dropout layers in the architecture
absorb the uncertainty. Dropout layers are used in testing as well to calculate the output
variance.

2

3.2 Variational Inference

We use Bayes by Backprop approach with the reprameterization trick. densevariational.py
implements a layer supporting these techniques. In the implementation, we assume the prior
probability of the parameters (weights and biases) of the network

p(w) =
∏
i

p(wi) =
∏
i

[
π1N (wi|0, σ1) + (1− π1)N (wi|0, σ2)

]
(1)

where N (wi|0, σ) is a normal (Gaussian) distribution with zero mean and variance σ for each
network parameter wi. Further, π1, σ1 and σ2 are fixed hyper-parameters.

We also assume that each network parameter has an associated variational distribution q(wi)
which is also assumed to be a normal (Gaussian) distribution N (wi|µi, σi). That is

q(w) =
∏
i

q(wi) =
∏
i

N (wi|µi, σi) (2)

The parameter vector of the variational distribution λ = (µi, σi), i = 1, 2, · · · , N , with N
being the number of parameters. As usual, we approximate the posterior network parameter
distribution p(w|D) with the variational distribution q(w) and aim to find the parameter
set λ which minimizes the KL distance between the posterior and variational distributions.

As described in the lecture, KL distance is minimized indirectly by maximizing the Evidence
Lower Bound (ELBO) which is given by

L̂(λ) =
1

S

S∑
s=1

[
ln p (www(λ,εεεs),D)− ln q (www(λ,εεεs), λ)

]
where each element of εεεs is drawn from a standard normal distribution and wwws = www(λ,εεεs)
represents the re-parameterization trick. The above expression can also be written as

−L̂(λ) =
1

S

S∑
s=1

[
ln q (wwws, λ)− ln p (D|wwws)− ln p (wwws)

]
(3)

Then we use back-propagation to minimize the loss −L̂(λ).

The first term and the last term of equation 3 is evaluated using equation 2 and equation 1
respectively. These terms are data independent and therefore they are added to the model
losses. The second term in equation 3 is data dependent and it is the negative log probability
of data for the given parameter vector wwws. This quantity is typically available after a forward
pass through the network.

4 Task

1. Run mc train test.py and comment on the variance of the output as depicted in the
generated figure. Hint: Note the difference in test and training set sizes.

3

2. Run vi train test.py and comment on the variance of the output. Compare it with
MC-dropout.

3. Find the line numbers of the code in densevariational.py which implements re-
parameterization-trick wwws = www(λ,εεεs).

4. Find the line numbers of the code in densevariational.py which adds the first and
the third loss components in equation 3 to the computational graph.

5. Find the line numbers of the code where the second loss component in equation 3 is
added to the computation graph.

6. Save the computational graph and inspect it with tensorboard.

7. vi train test.py is using a custom layer implemented in densevariational.py.
There are built-in layers provided by tensorflow probability which perform similar
types of variational inference. Two such layers are tfp.layers.DenseVariational

and tfp.layers.DenseFlipout. Reimplement the system using each of them and
compare the results with the custom implementation.

4

