
TEK5040 Assignment, Meta Learning

Narada Warakagoda

September 28, 2020

NOTE: This assignment is optional. Therefore, no submission is required.
But you are strongly encouraged to perform the tasks in this assignment

1 Introduction

This assignment deals with meta learning with neural networks. More specifically it is cen-
tered around the implementation of matching networks published in Matching Networks for
One Shot Learning, Oriol Vinyals et.al. 2016.
The code is based on https://github.com/cnichkawde/MatchingNetwork

1.1 Package Contents

data.npy Data samples from Omniglot database
datanway.py Python script providing training and testing data
matchingnetwork.py Main Python/Tensorflow script implementing the matching network
matchnn.py Python/Tensorflow script implementing the cosine distance based matching
exercise.pdf This document describing the task

1.2 Operation

Thee Python/Tensorflow scripts have been provided: datanway.py, matchingnetwork.py
and matchnn.py. You are not required to study datanway.py as it will only provide train-
ing and testing data from a data set called Omniglot. You can run the code by issuing the
command:

python3 matchingnetwork.py

If you experience memory problems try to reduce the database size (trainsize and valsize)
in line 14 of matchingnetwork.py.

1

Figure 1: Matching network

If the script works correctly, you should see the typical Keras output of training and valida-
tion losses and it should run 10 epochs.

In the file matchingnetwork.py, lines 17-63, the meta-learning model (matching network)
is defined. Line 64 compiles the model, whereas line 79 fits the model to data, according to
the standard practise in Keras.

Lines 68-75 prints out the shapes of the data used for training and validation. You can
take a look at the shapes and try to understand the data structures being fed to the model
in training and validation (i.e. arguments to the function call model.fit).

In file matchnn.py, a custom layer (MatchCosine) is implemented by extending the base
class tensorflow.keras.layers.Layer. This layer performs cosine distance based match-
ing between support classes and target classes.

You are required to study the code in matchingnetwork.py and matchnn.py with reference
to the matching network given in Figure 1 and the procedure outlined below (for simplicity
we have removed the batch dimension in the procedure).

• Training: Use a meta-training set {Dtrain, Dtest}

1. Dtrain = {(xxx1, ccc1), (xxx2, ccc2), (xxx3, ccc3), (xxx4, ccc4), (xxx5, ccc5)}
2. Dtest = {(xxx, c)}
3. Compute gθ(xxxi), i = 1, 2, 3, 4, 5

4. Compute fθ(xxx)

2

5. Compute di = dcos(gθ(xxxi), fθ(xxx)) =
gTθ (xxxi)fθ(xxx)

|gθ(xxxi)||fθ(xxx)|
, i = 1, 2, 3, 4, 5

6. Compute a(xxxi,xxx) = di/
∑

j dj, i = 1, 2, 3, 4, 5

7. Compute ppp = [p(C = 1), p(C = 2), p(C = 3), p(C = 4), p(C = 5)]T =
∑5

i=1 a(xxxi,xxx)ccci

2 Task

1. Which data structures in the code contain the meta training set described by points 1
and 2 in the training procedure above? Be specific as much as possible.

2. Write the filename/line numbers of the code corresponding to each of the steps 3-7
above. Name which Tensorflow APIs are used in each case and explain briefly how
they are used.

3. Write an expression for the loss function used in the code with a description of the
symbols used.

4. Why is the sparse categorical loss function used in the code instead of the categorical
loss function?

5. In lines 54 and 55, two Lambda layers are used. What is the difference between these
two? What is the main use of Lambda layers?

6. Functions gθ(·) and fθ(·) share the same weights in this implementation. Explain how
this weight sharing has been achieved.

3

