TEK5040 Assignment, Meta Learning

Narada Warakagoda
September 28, 2020

NOTE: This assignment is optional. Therefore, no submission is required.
But you are strongly encouraged to perform the tasks in this assignment

1 Introduction

This assignment deals with meta learning with neural networks. More specifically it is cen-
tered around the implementation of matching networks published in Matching Networks for
One Shot Learning, Oriol Vinyals et.al. 2016.

The code is based on https://github.com/cnichkawde/MatchingNetwork

1.1 Package Contents

data.npy Data samples from Omniglot database

datanway . py Python script providing training and testing data

matchingnetwork.py Main Python/Tensorflow script implementing the matching network
matchnn.py Python/Tensorflow script implementing the cosine distance based matching
exercise.pdf This document describing the task

1.2 Operation

Thee Python/Tensorflow scripts have been provided: datanway.py, matchingnetwork.py
and matchnn.py. You are not required to study datanway.py as it will only provide train-
ing and testing data from a data set called Omniglot. You can run the code by issuing the
command:

python3 matchingnetwork.py

If you experience memory problems try to reduce the database size (trainsize and valsize)
in line 14 of matchingnetwork.py.



plelzi,zo,x5,24,2) = 31, alzi,z)e;

Figure 1: Matching network

If the script works correctly, you should see the typical Keras output of training and valida-
tion losses and it should run 10 epochs.

In the file matchingnetwork.py, lines 17-63, the meta-learning model (matching network)
is defined. Line 64 compiles the model, whereas line 79 fits the model to data, according to
the standard practise in Keras.

Lines 68-75 prints out the shapes of the data used for training and validation. You can
take a look at the shapes and try to understand the data structures being fed to the model
in training and validation (i.e. arguments to the function call model.fit).

In file matchnn.py, a custom layer (MatchCosine) is implemented by extending the base
class tensorflow.keras.layers.Layer. This layer performs cosine distance based match-
ing between support classes and target classes.

You are required to study the code in matchingnetwork.py and matchnn.py with reference
to the matching network given in Figure 1 and the procedure outlined below (for simplicity
we have removed the batch dimension in the procedure).

e Training: Use a meta-training set { Dirain, Diest }

. Dirain = {(z1,€1), (2, €2), (X3,€3), (4, ¢4), (X5,¢5)}
. Dtest - {(1,'70)}
. Compute go(z;), i =1,2,3,4,5

N N

. Compute fy(z)



T (. )
5. Compute d; = deos(go(x;), fo(x)) = %, 1=1,2,3,4,5

6. Compute a(z;,x) =d;/>_;d;, i=1,2,3,4,5
7. Computep = [p(C = 1),p(C = 2),p(C = 3),p(C =4),p(C =5)|T = Z?:l a(z;, )c;

Task

. Which data structures in the code contain the meta training set described by points 1
and 2 in the training procedure above? Be specific as much as possible.

. Write the filename/line numbers of the code corresponding to each of the steps 3-7
above. Name which Tensorflow APIs are used in each case and explain briefly how
they are used.

. Write an expression for the loss function used in the code with a description of the
symbols used.

. Why is the sparse categorical loss function used in the code instead of the categorical
loss function?

. In lines 54 and 55, two Lambda layers are used. What is the difference between these
two? What is the main use of Lambda layers?

. Functions gy(-) and fp(-) share the same weights in this implementation. Explain how
this weight sharing has been achieved.



