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Abstract

The mode matching method is applied to the calculation of Bloch wave fields in photonic crystal slab
structures. The transmitted, reflected and diffracted waved are calculated for an incident plane wave.

1 Introduction

The motivation for the work reported below is the fact that we have coworkers who have fabricated and
characterized semiconductor membranes with a 2D-periodic pattern of air holes [1, 2], mebranes that often can
be modeled quite accurately by a two-dimensional photonic crystal (2D PC) slab [3]. . We would like to simulate
the transmission and reflection of harmonic optical plane waves by such PC slabs or films. Above the PC film,
there are incident, reflected, and diffracted waves, each with two possible polarizations. Inside the PC film, we
express the optical field as a series expansion of Bloch-wave solutions for the infinitely extruded 2D PC [3]. In
the procedure called mode matching, the amplitudes of the terms in the series expansion are adjusted so that
the electric and magnetic fields on the top and bottom of the PC film match the fields of the freely propagating
fields above and below. The method discussed here is an extension of the mode matching method used in
[4, 5, 6, 7] for computing the mode fields of optical waveguides. A structure analyzed with this implemetation
of the mode matching method is modeled by a sandwich of M “slices”numbered m = 1, 2...M . Each slice is
considered to be cut from a two-dimensional photonic crystal (2D PC) that is uniform and infinitely thick in
the direction perpendicular to the photonic crystal plane. Hence it is natural to attach the label m not only
to slice number m, but also to the infinitely extruded 2D PC that slice no. m is cut from. Also worth noting
is the fact that a homogeneous material may be considered to be a photonic crystal, having any desired crystal
period. A PC slab or film is a structure where all the slices making up the film have the same 2D PC lattice
structure and orientation.

2 Theory

Let us have the photonic crystal film in the x-y-plane. We call the x- and y-directions transverse and the
z-direction longitudinal. Then the slices are perpendicular to the z-axis, lying in the x-y-plane, as shown in
Fig.1, and both the lattice vectors of the PC and its reciprocal lattice vectors lie in the x-y-plane. We let both
z and m increase from the bottom up. Let c be the speed of light, ω the angular frequency, λ the corresponding
vacuum wavelength, and k the corresponding angular repetency, so that

k0 = ω/c = 2π/λ. (1)

Let x̂, ŷ and ẑ denote unit vectors in the x-, y- and z-directions, respectively, let t denote time, and let the
position be denoted

r = ~r + zẑ = xx̂+ yŷ + zẑ, (2)

In the above equation, and in the following, an arrow above a symbol, like in ~r = xx̂+ yŷ, is used to denote a
transverse vector, i.e., a vector in the x-y plane. A 2D photonic crystal is characterized by a relative permittivity

ε(m) (~r) = n(m) (~r)
2
, (3)

where n(m) (~r) is the refractive index. ε(m) (~r) and n(m) (~r) are both independent of z and periodic in the x-y
plane:

ε(m) (~r) = ε(m) (~r + Λxx̂) = ε(m) (~r + Λy ŷ) , (4)
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Figure 1: Simple 3-slice structure consisting of air, a photonic crystal (PC) slice, resting on a homogeneous
substrate. Four air holes are indicated in the PC, so two periods of the PC are shown in each direction.

for any position ~r in the x-y plane. In the general case, the structure of a 2D photonic crystal may be such
that x̂ and ŷ are not perpendicular, but let us limit our discussion to the case where they are perpendicular.
Then, we speak about the reciprocal plane, the plane where the transverse Block vectors (BVs) reside:

~k = kxx̂+ ky ŷ. (5)

In the reciprocal plane, we have the reciprocal lattice, characterized by the reciprocal lattice vectors,

~Gl,q = (2πl/Λx) x̂+ (2πq/Λy) ŷ, (6)

where l and q are integers. The region at the center of the reciprocal lattice, characterized by

−π/Λx < kx < π/Λx and − π/Λy < ky < π/Λy (7)

is of particular significance, and is called the first Brillouin zone. We know that we are always free to limit ~k
to be in the first Brillouin zone, and that for a given frequency, we may add any reciprocal lattice vector (6) to
~k without any change in the corresponding Bloch wave.

Let the top and bottom slices, no. 1 and no. M , be homogeneous and isotropic, so that we have simple
plane-wave solutions for the fields in those two slices. Let us consider the case where we have an incoming
propagating harmonic plane wave from the bottom, a wave with wave vector

k
(1)
in = ~kin + kz,inẑ = kx,inx̂+ ky,inŷ + kz,inẑ. (8)

The wavelength in slice number 1 is equal to 2π divided by the length of the wave vector k
(1)
in :

λ(1) = 2πc/
(
n(1)ω

)
= 2π/

∣∣∣k(1)in ∣∣∣ . (9)

where n(1) is the index of refraction of the homogeneous and isotropic material in the bottom slice. Let θin be
the angle between the z axis and the incoming wave vector k

(1)
in , and let us call this angle the angle of incidence.

Then
cos θin = kz,in/

∣∣∣k(1)in ∣∣∣ = kz,inλ
(1)/ (2π) , (10)

In the bottom slice, the x and y components of the E-field (the transverse components) may be written

~E(1) (~r, z, t) = Re
[
~E
(1)
l,q;p

(
~k, ω

)
exp

(
i~k · ~r + ik

(1)
l,q

(
~k, ω

)
z − iωt

)]
, (11)

and correspondingly for the H-field. The subscript p represents the two possible polarizations for the incoming
wave, i.e., p = H for the polarization with nonzero Hz (transverse electric or TE waves), or p = E for
the polarization with nonzero Ez (TM waves). The subscripts l and q are integers identifying the various
plane-wave solutions that satisfy the Bloch-wave (BW) boundary conditions that are common to all slices of
the PC film structure:

~E(1) (~r − Λxx̂, z, t) exp (ikxΛx) = ~E(1) (~r, z, t) = ~E(1) (~r − Λy ŷ, z, t) exp (ikyΛy) . (12a)
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Regardless of what the 2D PC lattice structure of the PC film is, we can extend the lattice into an adjoining
homogeneous slice, and for a plane wave in the homogeneous slice to satisfy (12a), k(1)l,q must satisfy

k
(1)
l,q

(
~k, ω

)2
=
(
n(1)ω/c

)2
−
(
~k + ~Gl,q

)2
, (13)

where ~Gl,q must be a reciprocal-lattice vector (6). We do not need the subscript p on k
(1)
l,q for a homogeneous

and isotropic slice, since k(1)l,q is the same for both polarizations.
Within each slice of the PC film structure we have BW solutions for the fields, where the transverse com-

ponents of the E-field in slice no. m may be written

~E(m) (~r, z, t) = Re
[
~E
(m)
l,q;p

(
~k, ω, ~r

)
exp

(
i~k · ~r + ik

(m)
l,q;p

(
~k, ω

)
z − iωt

)]
, (14)

and correspondingly for the H-field. For a 2D PC in general, the triplet (l, q; p) may be considered just a label

distinguishing the various BWs, and a natural ordering of BWs is based on the real part of k(m)l,q;p

(
~k, ω

)2
, as

discussed in detail in [8]. For any BW, the fields ~E(m)l,q;p

(
~k, ω, ~r

)
and ~H

(m)
l,q;p

(
~k, ω, ~r

)
are periodic functions of the

position ~r in the x-y-plane, and the Bloch wave has a wave vector called the Bloch vector (BV),

k
(m)
l,q;p

(
~k, ω

)
= ~k + k

(m)
l,q;p

(
~k, ω

)
ẑ. (15)

2.1 Metamaterial

In a PC membrane made of a transparent material, ε(m) is positive and real, and for low frequencies, there
are always two BWs with different polarizations, waves with real kz = k

(m)
0,0;p, representing propagation in the

z direction. Each of these two BWs behaves like a plane wave in a homogeneous material, with a wavelength
equal to 2π divided by the length of the corresponding Bloch vector k

(m)
0,0;p :

λ
(m)
0,0;p

(
~k, ω

)
= 2π/

∣∣∣k(m)0,0;p

∣∣∣ = 2π/

√
k2x + k2y + k

(m)
0,0;p

(
~k, ω

)2
. (16)

Even if the material that the PC membrane is made of is isotropic, an air hole pattern results in anisotropy, so
that λ(m)0,0;E is in general not equal to λ

(m)
0,0;H . To allow us to speak of low frequency, the dimensions of the unit

cell of the PC must be much smaller than the wavelength of the two lowest-order BWs:

max (Λx,Λy)� λ
(m)
0,0;p/2. (17)

The low-frequency limit is also called a metamaterial. In a metamaterial, we do not need to consider any of
the possible higher-order Bloch waves in any of the 2D PC slices making up the PC film, and waves propagate
in each slice as if it were made of an anisotropic homogeneous material.

2.2 Diffraction

When the field inside the PC film is generated by an incoming plane wave, the transverse Bloch vector ~k is
given by the wave vector of the incoming plane wave, as explained above. For a given frequency and ~k, the

z-component kz = k
(m)
l,q;p

(
~k, ω

)
of a specific BV must be calculated for each BW in slice no. m by solving

Maxwells equations in 2D PC no. m.
If both of the periods Λx and Λy are smaller than or equal to half a wavelength,

max (Λx,Λy) 6 λ(1)/2, (18)

we have a purely reflecting (also called nondiffracting) film, where there is only one reflected and one transmitted
wave for each incoming wave. The reflected wave propagates downwards and has wave vector

k
(1)
refl = ~kin − kz,inẑ = kx,inx̂+ ky,inŷ − kz,inẑ. (19)

For a nondiffracting film, ~kin is always in the first Brillouin zone. If the film is diffracting, there may be several
diffracted waves propagating away from the film, in addition to the directly reflected and transmitted waves.
Furthermore, it is possible for the incoming waves to have a propagation directions such that ~kin is not in the
first Brillouin zone. If that is the case, we can always find a reciprocal lattice vector ~Gin such that

~k = ~kin − ~Gin (20)

is in the first Brillouin zone.
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2.3 Evanescent Bloch Waves

We know that if we have a plane interface between a low-index and a high-index material, we can have propa-
gating fields on the high-index side and evanescent fields (exponentially decaying) on the low-index side of the
interface. Eq. (13) shows that in the transparent and homogenous bottom slice, there is a limited number of

BWs that are propagating (with real k(1)l,q
(
~k, ω

)
), whereas all high-order BWs are evanescent (with purely imag-

inary k(1)l,q
(
~k, ω

)
). This classification can be extended to extruded 2D PCs, where there is a limited number of

BWs that are propagating (with real k(m)l,q

(
~k, ω

)
), whereas all high-order BWs are evanescent. Furthermore,

in an extruded 2D PC we find in general that if we specify ~k and ω, and look at the resulting k(m)l,q;p’s, we find

an unlimited number of k(m)l,q;p’s that are actually complex and not only imaginary, as discussed in detail in [8].
A salient feature of a PC is the existence of band gaps, frequency ranges where only evanescent BWs exist, and
the existence of complex evanescent BWs in an extruded 2D PC is intimately related to the existence of band
gaps in the PC.

2.4 Bloch Wave Fields

The periodic fields of the Bloch wave (PFBWs) ~E(m)l,q;p + ẑE
(m)
z;l,q;p and ~H

(m)
l,q;p + ẑH

(m)
z;l,q;p are periodic functions of

position ~r, satisfying the following form of Maxwell’s equations:(
~∇+ i~k

)
× ~E

(m)
l,q;p = iωµ0ẑH

(m)
z;l,q;p, (21)

iωε(m) ~E
(m)
l,q;p = ẑ ×

[(
~∇+ i~k

)
H
(m)
z;l,q;p − ik

(m)
l,q;p

~H
(m)
l,q;p

]
, (22)(

~∇+ i~k
)
× ~H

(m)
l,q;p = −iωε(m)ε0ẑE(m)z;l,q;p, (23)

and iωµ0 ~H
(m)
l,q;p = −ẑ ×

[(
~∇+ i~k

)
E
(m)
z;l,q;p − ik

(m)
l,q;p

~E
(m)
l,q;p

]
. (24)

From these equations it can be shown that

1. If we have an upward propagating Bloch wave (BW) with z-component kz = k
(m)
l,q;p

(
~k, ω

)
of the Bloch

vector (BV), we also have a downward propagating BW with kz = −k(m)l,q;p

(
~k, ω

)
, with the same transverse

BV ~k and the same transverse E-field and H-field, except that we have to invert the sign of the transverse
H-field. To show this, just replace k

(m)
l,q;p by −k

(m)
l,q;p everywhere in the equations, and observe that the

original equations may be recovered by changing the sign of three of the six field components.

2. Let us consider a photonic crystal (PC) with inversion symmetry, where ε(m) (~r) = ε(m) (−~r), and where
ε(m) is symmetric about any point along the z axis because it is independent of z. Then the set of
equations above is invariant under inversion, in the sense that we get the same set of equations if we invert
r, k

(m)
l,q;p, and E

(m)
l,q;p = ~E

(m)
l,q;p + ẑE

(m)
z;l,q;p. Hence, in a PC with inversion symmetry we have BW pairs, so

that if we have a BW with +k(m), +E(m) (r, t) , and +H(m) (r, t) then we also have a BW with −k(m),
−E(m) (−r, t) , and +H(m) (−r, t).

3. It then follows that in a PC with inversion symmetry, for each kz there is a pair of BWs where the
transverse BVs of the two members of the pair differ only by a sign, and where the transverse E and H
fields of one member of the pair are obtained from the fields of the other member by spatial inversion in
the x-y-plane (equivalent to a rotation an angle of π in the plane):

~E
(m)
l,q;p

(
~k, ω, ~r

)
= ~E

(m)
l′,q′;p

(
−~k, ω,−~r

)
and ~H

(m)
l,q;p

(
~k, ω, ~r

)
= ~H

(m)
l′,q′;p

(
−~k, ω,−~r

)
. (25)

4. A PC is typically fabricated from transparent materials, so that the permittivity ε is real, and then a
PFBW corresponding to an inversion of the transverse BV (from ~k to −~k) may be obtained by complex
conjugation of the fields:

~E
(m)
l,q;p

(
−~k, ω, ~r

)
= ~E

(m)
l,q;p

(
~k, ω, ~r

)∗
and ~H

(m)
l,q;p

(
−~k, ω, ~r

)
= ~H

(m)
l,q;p

(
~k, ω, ~r

)∗
. (26)

5. Eqs. (21)-(24) as given above are not invariant under complex conjugation for evanescent Bloch waves,
even if ε is real. Complex conjugation of the equations yields a BW with an inverted transverse BV and
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the inverted and complex-conjugated z-component kz = −k(m)∗l,q;p . If kz is purely imaginary, kz = −k∗z ,
complex conjugation is equivalent to changing the sign of kz, and then we do not really get a new BW via
complex conjugation. On the other hand, if we have a BW that satisfies (21)-(24) with a truly complex
kz in an arbitrary PC, we have in general no guarantee that there is a BW with kz = k

(m)∗
l,q;p that satisfies

(21)-(24). Reasoning similar to the one under point 4 above, however, does permit us to conclude that
if the PC is lossless with inversion symmetry, then there is indeed a BW with kz = k

(m)∗
l,q;p . For a given

transverse component ~k of the Bloch vector, there are then four different BWs with the same absolute
value of kz, corresponding to kz = ±k(m)l,q;p and kz = ±k(m)∗l,q;p .

2.5 Bloch Wave Series Expansions

The transverse E-field in slice no. m may be written as a sum of Bloch wave components:

~E(m)(~r, z, t) = Re
∑

l,q,p u
(m)
l,q;p(z)

~E
(m)
l,q;p

(
~k, ω, ~r

)
exp

(
i~k · ~r − iωt

)
, (27)

accompanied by the transverse H-field

~H(m)(~r, z, t) = −Re
∑

l,q,p i
(
u̇
(m)
l,q;p(z)/k

(m)
l,q;p

)
~H
(m)
l,q;p

(
~k, ω, ~r

)
exp

(
i~k · ~r − iωt

)
. (28)

These series expansions contain both upward- and downward-propagating BWs, and upward-increasing and
downward-increasing evanescent BWs. Let z(m) be the position of the interface between slices no. m and
m+ 1, so that the thickness of slice no. m is

d(m)z = z(m) − z(m−1), (29)

The BW component amplitudes u(m)l,q;p(z) then have the form

u
(m)
l,q;p(z) = u

(m,l,+)
l,q;p exp[ik

(m)
l,q;p(z − z

(m−1))] + u
(m,l,−)
l,q;p exp[−ik(m)l,q;p(z − z

(m−1))] = (30)

= u
(m,l,E)
l,q;p cos[k

(m)
l,q;p(z − z

(m−1))] + iu
(m,l,H)
l,q;p sin[k

(m)
l,q;p(z − z

(m−1))], (31)

with the z-derivatives

u̇
(m)
l,q;p(z) = ik

(m)
l,q;pu

(m,l,+)
l,q;p exp[ik

(m)
l,q;p(z − z

(m−1))]− ik(m)l,q;pu
(m,l,−)
l,q;p exp[−ik(m)l,q;p(z − z

(m−1))] = (32)

= ik
(m)
l,q;pu

(m,l,H)
l,q;p cos[k

(m)
l,q;p(z − z

(m−1))]− k(m)l,q;pu
(m,l,E)
l,q;p sin[k

(m)
l,q;p(z − z

(m−1))]. (33)

In (30) and (31) u(m,l,+)l,q;p and u(m,l,−)l,q;p are the complex amplitudes of the BW components propagating upward

and downward in slice no. m, at z = z(m−1), whereas u(m,l,E)l,q;p represents the amplitude of the superposition of

the two waves, and ik(m)l,q;pu
(m,l,H)
l,q;p the accompanying z derivatives:

u
(m,l,E)
l,q;p = u

(m,l,+)
l,q;p + u

(m,l,−)
l,q;p (34)

and u
(m,l,H)
l,q;p = u

(m,l,+)
l,q;p − u(m,l,−)l,q;p . (35)

Note that in these definitions, for a non-propagating (evanescent) BW, u(m,l,+)l,q;p is the amplitude of the upward-

decreasing BW (with positive imaginary part of k(m)l,q;p), and u
(m,l,−)
l,q;p is the amplitude of the accompanying

downward-decreasing BW. (The reason for this grouping of propagating and evanescent BWs will be presented
below.)
Also note that the series expansions (27) and (28) consist entirely of evanescent BWs, except for a few

low-order propagating BWs. The high-order BWs are needed to match fields at each slice interface position
z(m), but their ampltudes are appreaciable only near the interfaces and not in between, since their contribution
decreases exponentially with distance from the interface. Since an extruded 2D PC in general has an unlimited

number of BWs with complex k
(m)
l,q;p

(
~k, ω

)
, the field inside slice no m of the PC film structure may contain

superposition of up to 4 different BWs having the same absolute value of kz, namely kz = ±k(m)l,q;p

(
~k, ω

)
and

kz = ±k(m)l,q;p

(
~k, ω

)∗
.

Finally, using (30) and (31) we define corresponding amplitudes u(m,u,±)l,q;p , u(m,u,E)l,q;p and u(m,u,H)l,q;p on the upper
side of slice no. m, at z = z(m). It will be convenient to have one symbol to represent either of the two slice
side labels l and u; let us use the symbol s for this purpose.
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2.6 Impedance and Reflection Coeffi cients Matrices

Let us introduce vectors u(m,s,±), u(m,s,E) and u(m,s,H), with elements u(m,s,±)l,q;p , u(m,s,E)l,q;p , and u(m,s,H)l,q;p , respec-
tively. (Note that the u-vectors are mathematical objects, not vectors in 3D physical space). Furthermore, we
introduce diagonal matrices K(m) with diagonal elements

K
(m)
(l,q;p),(l,q;p) = k

(m)
l,q;pd

(m)
z , (36)

impedance matrices Z(m,s) relating u(m,s;E) and u(m,s;H),

u(m,s;E) = Z(m,s)u(m,s;H), (37)

and reflection coeffi cient matrices Γ(m,s) relating u(m,s,−) and u(m,s,+),

u(m,s,−) = Γ(m,s)u(m,s,+), (38)

It is straightforward to show from (34), (35), (37), and (38) that

Z(m,s) =
(
I + Γ(m,s)

)(
I− Γ(m,s)

)−1
(39)

and Γ(m,s) =
(
Z(m,s) − I

)(
Z(m,s) + I

)−1
, (40)

where I is the identity matrix. From (30) we obtain

u(m,u,±) = exp
(
±iK(m)

)
u(m,l,±). (41)

Then (41) and (38) yield

Γ(m,u) = exp
(
−iK(m)

)
Γ(m,l) exp

(
−iK(m)

)
, (42)

which may be combined with (39) and (40) to yield

Z(m,u) =
[
cos
(
K(m)

)
Z(m,l) + i sin

(
K(m)

)] [
i sin

(
K(m)

)
Z(m,l) + cos

(
K(m)

)]−1
=

=
[
Z(m,l) + i tan

(
K(m)

)] [
i tan

(
K(m)

)
Z(m,l) + I cos

(
K(m)

)]−1
(43)

This formula also holds if the impedances Z(m,s) are replaced by the admittances
(
Z(m,s)

)−1
.

Let us assume that we have a discrete set of sampling points ~r that yields discrete representations ~E(m)l,q;p (~r)

and ~H
(m)
l,q;p (~r) of the transverse E-and H-fields of each PFBW in slice no. m. These representations may be

considered to be matrices O(m;E) and O(m;H) with matrix elements O(m;E)
(~r,c),(~G,p)

and O(m;H)
(~r,c),(~G,p)

, respectively,

with ~r running over the spatial positions and c representing either one of the two transverse field components.
Ideally, the number of sampling points for the fields should be same as the same as the number of BWs included
in the sums (27) and (28), so that O(m;E) and O(m;H) are square matrices, and the sampling points should
be chosen so that these matrices are nonsingular. Point matching of the transverse E- and H-fields across the
interface between slice m and slice m+ 1 then yields

O(m+1;E)u(m+1,l,E) = O(m;E)u(m,u,E) (44)

and O(m+1;H)u(m+1,l,H) = O(m;H)u(m,u,H). (45)

If all the O(m;E) and O(m;H) are nonsingular square matrices, we then obtain

u(m+1,l,E) =
[
O(m+1;E)

]−1
O(m;E)u(m,u,E) = O(m+1,m;E)u(m,u,E) (46)

and u(m+1,l,H) =
[
O(m+1;H)

]−1
O(m;H)u(m,u,H) = O(m+1,m;H)u(m,u,H), (47)

where we have introduced the slice interface coupling matrices O(m+1,m;E) and O(m+1,m;H).
Just like in [7, 5], recursion relations may then be deduced for the impedances:

Z(m+1,l) = O(m+1,m;E)Z(m,u)O(m,m+1;H) = (48)

= O(m+1,m;E)
[
cos
(
K(m)

)
Z(m,l) + i sin

(
K(m)

)] [
i sin

(
K(m)

)
Z(m,l) + cos

(
K(m)

)]−1
O(m,m+1;H)
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This equation is easily inverted to yield Z(m,l) expressed by Z(m+1,l).
Let waves be incident from the bottom. Then we have no waves coming down through the top slice, and

no fields that decay exponentially as we go down from the top. We have only the transmitted upward waves
and the evanescent fields from the bottom of the top slice, and get the simple boundary condition

Γ(M,l) = 0 and Z(M,l) = I. (49)

Recursive application of (48) then allows us to compute the impedance matrix Z(1,l) at the bottom of the bottom

slice. The reflection coeffi cient matrix Γ(1,l) =
(
Z(1,l) − I

) (
Z(1,l) + I

)−1
, given by (40) for m = 1, then yields

the reflected, diffracted, and evanescent plane waves resulting from an incoming plane wave. Finally, we can
see the rationale for grouping propagating and evanescent BWs the way we did for the definitions of u(m,l,+)l,q;p

and u
(m,l,−)
l,q;p . We need this grouping to get the simple boundary condition (49).

3 Discussion

The formalism above may be used to analyze a number of planar multilayer optical filters incorporating photonic
crystal slices as layers of the structure. There is a requirement on the structure in that all layers that are
photonic crystal slices have to have the same crystal lattice structure, i.e., the same lattice constants and the
same orientation of the lattice axes. Reflection and transmission coeffi cients for plane waves may be calculated,
as a function of optical frequency, angle of incidence with respect to the surface normal, and polarization. In
the so-called metamaterial limit, when the wavelength is much larger than either of the two lattice periods of the
photonic crystal, there is only one incoming and one reflected wave, but for larger lattice periods, diffraction will
be observed, meaning that one incoming plane wave results in outgoing plane waves in addition to the reflected
and transmitted plane wave. In general, there may be polarization conversion in reflection, transmission and
diffraction, so that the state of polarization of the outgoing waves may be different from that of the incident
waves. Such a polarization conversion is also possible in the low-frequency limit, induced by the anisotropy
generally observed in a metamaterial.
Any guided resonances of the photonic crystal structure may be found by investigation of the reflection coef-

ficient matrix Γ(1,l) of the bottom slice. The resonances may be found by analyzing the frequency dependence
of the elements of this matrix that correspond to propagating (non-evanescent) incoming and reflected waves.
The number of BW components needed in the field expansion for a given transverse spatial resolution is

roughly equal to two (polarizations) times the product of the two lattice periods of the PC divided by the spatial
resolution squared. With desktop computers, if a few seconds of processing time is allowed, matrices with a
dimension of over a thousand may be manipulated. For frequencies not too far above the lowest photonic
bandgaps, the optical wavelength in any of the constituent materials of the PC is not much smaller than any of
the two lattice periods of the PC. Then a resolution of a small fraction of a wavelength may easily be obtained
on a desktop computer. This resolution is necessary to reproduce the divergence of the electric field at sharp
edges [9, 10], and reach convergence for the calculation of BW fields. In calculations with such a resolution not
too far above the lowest bandgaps, most of the BW components in the expansions (27) are evanescent BWs,
i.e., with imaginary k(m)l,q;p.

As already pointed out in [7, 5, 6], to get a numerically well behaved recursion relation for propagation of
the Bloch wave (BW) amplitudes and derivatives (the u’s) through the slices, it is important not to work with
the u’s directly, but rather with the impedance matrices Z(m,s), as in (48). It should also be mentioned that
an equally well behaved formulation may be obtained in terms of the scattering matrices Γ(m,s).
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