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Endlessly single-mode photonic crystal fiber
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We made an all-silica optical fiber by embedding a central core in a two-dimensional photonic crystal with
a micrometer-spaced hexagonal array of air holes. An effective-index model confirms that such a fiber
can be single mode for any wavelength. Its useful single-mode range within the transparency window of
silica, although wide, is ultimately bounded by a bend-loss edge at short wavelengths as well as at long
wavelengths.  1997 Optical Society of America
In a previous Letter1 we reported the fabrication
of a photonic crystal fiber. This optical fiber was
made entirely from undoped fused silica. The cladding
was a two-dimensional photonic crystal made of silica
with air holes running along the length of the f iber.
The holes were arranged in a hexagonal honeycomb
pattern across the cross section. The central hole was
absent, leaving a silica defect that acted as the core
(Fig. 1). The f iber was single mode over a remarkably
wide wavelength range, from 458 to 1550 nm at least.
Subsequent measurements have extended this range to
337 nm.

In a standard step-index fiber with core radius r and
core and cladding indices nco and ncl, the number of
guided modes is determined by the V value2:

V ­ s2pryldsnco
2 2 ncl

2d1/2 , (1)

which must be less than 2.405 for the fiber to be single
mode. Thus single-mode fibers are in fact mul-
timode for light of sufficiently short wavelength.
We explained the wide single-mode range of the
photonic crystal f iber by considering the effective
refractive index of the cladding, loosely understood
as the average index in the cladding weighted by
the intensity distribution of the light. At shorter
wavelengths the field becomes more concentrated
in the silica regions and avoids the holes (as we
observed by examination of the near-f ield pat-
terns1), thus raising the effective cladding index.
This dispersion counteracts the explicit depen-
dence of V on wavelength l and so extends the
single-mode range. We now quantify this model and
demonstrate that photonic crystal f ibers can be single
mode for all wavelengths. The model’s validity is
confirmed by bend-loss measurements, which show
that the useful spectral range of the fiber is bounded
by bend-loss edges at both short and long wavelengths.

Although most interest in photonic crystals has
focused on their photonic bandgap properties, we do
not consider guidance by photonic bandgap effects3

here. Instead, because the core index is greater than
the average index of the cladding, the fiber can guide
by total internal ref lection as a standard fiber does,
despite the unconventional structure. That is, there
are propagation constants b available to light in the
core but not to light propagating in the cladding:
0146-9592/97/130961-03$10.00/0
kn0 . b . bFSM , (2)

where k ­ 2pyl, n0 is the index of silica (the core
material), and bFSM is the propagation constant of the
fundamental space-f illing mode (FSM). The FSM is
the fundamental mode of the infinite photonic crystal
cladding if the core is absent, so bFSM is the maximum
b allowed in the cladding. Inasmuch as the lower
limit of b in a step-index f iber is kncl, we identify the
effective cladding index neff with

neff ­ bFSMyk . (3)

The FSM is the generalization of a z-directed plane
wave in an infinite uniform medium, whose b equals
k 3 the medium’s index. Thus Eq. (3) gives the cor-
rect value in this special case. More generally, Eq. (3)
is justified because inequality (2) implies that the
transverse wave-vector component kT in the core lies
between zero and kTmax ­ sk2n0

2 2 bFSM
2d1/2 for a

guided mode. kT is quantized by the boundary con-
ditions between core and cladding, so the number of
guided modes is determined by rkTmax. For a step-
index f iber this is simply the V value of Eq. (1). Thus

Fig. 1. Scanning electron microscope image of the end of
a photonic crystal fiber, showing the central core where a
hole has been omitted. The pitch L is 2.3 mm, and the
fiber is ,40 mm across.
 1997 Optical Society of America
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bFSMyk plays the role of an effective cladding index
when one is counting modes, and so an effective V value
such as Eq. (1) can be defined for the photonic crystal
fiber:

Veff ­ s2pLyldsn0
2 2 neff

2d1/2 , (4)

which determines whether the fiber is single mode.
As usual, when defining V values2 one may choose any
transverse dimension for r. Here we use the pitch
(center–center spacing) of the holes L, which is also
roughly the radius of the defect core formed by omitting
one of them.

Having found neff, we consider the limit l ! 0. The
scalar wave equation, valid here,4 gives

L2=t
2c 1 Veff

2c ­ 0 (5)

for the f ield distribution c of the FSM in silica regions,
where =t

2 is the transverse part of the Laplacian
operator. When l ! 0, c is excluded from the low-
index air holes4 and is confined to the silica region
bounded by the edges of the holes. For a given
ratio of hole size to L, c is therefore an invariant
function of normalized transverse coordinates xyL and
yyL in the short-wavelength limit. Equation (5) then
implies that Veff is finite and independent of l and
L under these conditions. This situation contrasts
with that for the step-index fiber, for which V ! `

as l ! 0. The limiting value of Veff depends on the
relative size of the holes, but a sufficiently small value
guarantees single-mode operation for all wavelengths l

and scales L.
By averaging the square of the refractive index in the

photonic crystal cladding it is simple to show that the
long-wavelength limit of Veff in a scalar approximation
is

Veff ­ kLF1/2sn0
2 2 na

2d1/2 , (6)

where na is the index of air (or whatever is in the holes)
and F is the air f illing fraction.

Veff can be calculated in the general case in a scalar
approximation. Because the FSM is a fundamental
mode with the same symmetries as the photonic crystal
itself, one f inds it by solving the scalar wave equation
within a unit cell centered on one of the holes of diame-
ter d (Fig. 2). By ref lection symmetry, the boundary
condition at the edge is that ≠cy≠s ­ 0, where s is a
coordinate normal to the edge. We approximate this
with a circular outer boundary at radius r ­ b, where
dcydr ­ 0. This is reasonable if the holes are not too
large, because the f ield variation on a circle intersect-
ing the hexagonal boundary will be small. Equating
the model’s f illing fraction to the actual value gives
b. The analysis is little more complicated than that of
the step-index f iber2: The f ield in both regions is ex-
pressed in terms of Bessel functions of order 0, and the
application of boundary conditions yields bFSM. The
resulting curves of Veff against Lyl for n0 ­ 1.45 and
na ­ 1.00 are shown in Fig. 3 for various relative hole
sizes dyL. The l ! 0 limit of Veff approaches zero
slowly as dyL approaches zero.

The fiber described in our earlier Letter1 has L ­
2.3 mm and dyL ø 0.15, and the available wavelength
range corresponds to Lyl between 1.5 and 6.8. Veff
is therefore less than 2.405 at all wavelengths. Al-
though single-mode operation will not be defined by
Veff , 2.405 specifically (perhaps our fiber becomes
multimode at shorter wavelengths), some similar cutoff
value Vco should apply. It is always possible to adjust
dyL so that Veff , Vco, thus proving that the photonic
crystal fiber can indeed be endlessly single mode.

Larger holes make the fiber likely to be multimoded.
The gaps between the holes become narrower, isolating
the core more strongly from the silica in the cladding.
Smaller holes make single-mode guidance more likely,
but the decrease in effective index difference (or in ef-
fective N.A.) makes the fiber more susceptible to bend
loss. A well-known simple expression gives the criti-
cal bend radius Rc at which bend loss in a waveguide
becomes large.5 Although it is not quantitatively ac-
curate, it does give the correct parametric dependence
of Rc on wavelength, core size, and refractive indices.
The condition on bend radius R for low loss can be
written as

R .. Rc ­
8p2nco

2r3

l2W 3
, (7)

where W is the dimensionless modal parameter of
optical fiber theory2 and is a function of V only. For
long wavelengths, the photonic crystal fiber behaves
as a standard fiber, as anticipated in Eq. (6). W 3

decreases more rapidly2 than l22 with increasing l,2

so there is a long-wavelength bend-loss edge beyond
which the fiber suffers massive bend loss.

Fig. 2. (a) Actual unit cell in the photonic crystal with (b)
its circular approximation.

Fig. 3. Variation of Veff with Lyl for various relative hole
diameters dyL. The dashed line marks Veff ­ 2.405, the
cutoff V value for a step-index fiber.
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Fig. 4. Measured short-wavelength loss edge (for 3-dB
loss) versus bend radius for a photonic crystal f iber
with a single-turn bend (points), together with a f it to
l ­ constanty

p
R. Inset: Typical transmission spectrum

of the bent fiber, relative to the transmission of the
straight f iber. The short-wavelength loss edge lies near
600 nm. The long-wavelength loss edge is beyond the
range of the measurement for this sample.

For short wavelengths the f ibers are quite differ-
ent. In standard fiber,2 W ~ ryl, giving Rc , l in-
dependently of the core diameter. However, Veff and
hence W are constant in the photonic crystal f iber, so
Rc varies as

Rc ~ L3yl2 . (8)
The reciprocal dependence on l implies that there is a
short-wavelength bend-loss edge also. Measurements
of the transmission spectrum of a photonic crystal
fiber were taken for a range of single-turn bend radii.
A low-loss wavelength range was observed that was
bounded by loss edges at short and long wavelengths.
The inset in Fig. 4 is an example of such a spectrum
for the very tight bend radius of 4 mm. The variation
of the short-wavelength loss edge with bend radius
R is plotted in Fig. 4, together with a fit to l ­
constanty

p
R. The fit is excellent, conf irming the

validity of relation (8) and hence of the effective index
model.

The loss edge for a 5-mm bend radius was at
,530 nm. The cubic dependence on L in relation (8)
indicates that a f iber with a pitch of 10 mm and the
same relative hole size would suffer bend loss at a
bend radius of approximately half a meter at this
wavelength. Thus bend loss limits not only the useful
wavelength range of our endlessly single-mode fiber
but also the otherwise appealing prospect of a single-
mode fiber with a macroscopic core.

We have used an effective-index model to show
that the photonic crystal f iber can, as suspected, be
single mode at all wavelengths. The useful wave-
length range of the fiber within the transparency win-
dow of silica, although wide, is ultimately limited by
bend loss.
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