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Abstract:  Reflection, diffraction and transmission of optical wavés a
the interface between a photonic crystal and the surrogndincan be
described by propagating and evanescent Bloch modes. We fbawnd
such modes for one of the canonical two-dimensional photonystals,
identical circular cylinders in a square pattern. We pressamputed
out-of-plane band diagrams for propagating as well as ecmt modes,
obtained with a numerical method based on Fourier-Besgalresions. For

a given frequency, all the modes are evanescent, excepféar w-order
propagating modes. We find that most of the evanescent maales &
purely imaginaryz-component of the Bloch wave vector, but many of the
modes have a complexcomponent.
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1. Introduction

Accurate calculation of electromagnetic field distribngan photonic crystals (PCs) is of fun-
damental importance to the design of practical micro- antbphotonics. The motivation for
the work reported below is the fact that we have coworkers hdne fabricated and charac-
terized two-dimensional (2D) PC slabs [1, 2], that often banrmodeled quite accurately by
a planar semiconductor slab with a 2D-periodic pattern ofggdly cylindrical air holes. Our
goal (not reported here) is the simulation of the transmisaind reflection of optical waves by
such PC slabs.

A step towards slab simulation is modeling of a single airi#f€rface, as shown in Fig. 1,
where incoming plane waves from above hit the surface of aQEnhat fills the half-space be-
low thexy-plane. Above the PC, the electromagnetic field can be espdass a series involving
incident, reflected, diffracted and evanescent plane wak/&so polarizations. Inside the PC,
the field may be expressed as a series expansion of Blochagawions for the infinitely ex-
truded PC. In the procedure called mode matching, the amdelt of the terms are adjusted so
that the electric and magnetic fields match on both sidessdbtiundaries.

Our contribution is the calculation of the needed series ofles (i.e. Bloch waves) of the
2D PC, needed for the mode matching calculation. We havedfthet to obtain this series of
modes, we need knowledge about a part of the band structtine @D PC that in general has
not been investigated before. We present new results opahni®f the band structure below.
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Fig. 1. Plane waves in three dimensions in air hitting théeserof a 2D PC. We would like
to calculate the waves that are reflected and diffracted theninterface between air above
thexy-plane and the PC. To do so, modes for a 2D PC extruding irlfinitéhe z-direction
are needed.

When the series of modes is known, the scattering matrix odetbported in [3] can be used
for the mode matching, to compute the reflected and trarerittlds of a PC slab. There is
also commercial software [4] that may possibly be adaptettieégourpose. The actual mode
matching calculation is, however, beyond the scope of thi wresented here.

The geometry that we treat is a 2D-periodic pattern of cyleal rods or air holes, as in
Fig. 1 but extruding infinitely in the-direction. We model this geometry without approxima-
tions, and describe analytically the E-field discontinatythe semiconductor surface around
the cylindrical holes. We find that, with the exception of & feropagating low-order modes,
all terms in the Bloch-mode series are evanescent. We hém@aizd band diagrams for real
values of thez-component of the wave vectors (low-order modes) as welnagjinary values,
corresponding to evanescent modes, modes that decay ejadigeaway from the boundary
(high-order modes). In addition to modes with real and puirabginaryz-components of the
wave vector, we also find complex modes (modes with a congbexnponent). The existence
of complex modes is intimately related to the existence aidgaps in PCs, since bandgaps
are frequency intervals where no propagating Bloch modzaliowed. When the Bloch-mode
expansion in the extruded 2D PC is made to match the plane-axgyansion in the air above
the PC, the complex modes are needed for completeness afrths.s

The need for complex modes in mode matching was recognizeddyl 20 years ago for a
class of dielectric microwave guides [5]. Complex modesrageneral needed to describe PCs
with absorption losses [6-8], but we find that they are alguled to describe lossless PCs. The
importance of complex modes has been noted for calculatibreflectivity and transmittivity
of semi-infinite non-absorptive PCs, e.g. one-dimensi¢t@) gratings [9], 2D PCs that are
terminated in a plane perpendicular to the plane of peritydit0, 11] and three-dimensional
PCs [12]. However, the case depicted in Fig. 1, where a sefinite 2D PC is terminated in a
plane parallel to the plane of periodicity, has not beenresttely explored in earlier work.

There are large differences in refractive index betweemthexide and semiconductor ma-
terials that the PC is made from, which represent a challeargeimerical simulations. Current
methods for analyzing PCs include plane-wave expansicrl[3Dfinite-element methods [14],
mode matching [15] and rigorous coupled-wave analysisIZ§,0ne can also use techniques
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that have been developed for the analysis of PC fibers [18f@2hstance scattering-matrix
method [23-25]. Today, Bloch-wave calculations for 2D P&s lbe performed with a number
of software packages, available commercially [17, 26] amd@en source [27]. Many of the
commonly used methods are reviewed in [13].

Our numerical method is the obvious method to try to use ferghrticular geometry with
circular cylinders. We use Fourier-Bessel series exparfsicthe electromagnetic fields inside
the unit cell, matching the fields analytically at the coladding boundary, just like in the
standard theory of single-mode optical fibers [14, 28]. Thkl§ are then matched point-wise
on opposing sides of the unit cell. The method was implenteim@&IATLAB, and we show
that this series expansion is well behaved and converggsagidly. The main results that we
present do not, however, depend on the choice of numeridhladéor the simulations.

2. Theory

We consider time-harmonic electromagnetic fields, withethgular frequency, and the struc-
ture shown in Fig. 1, where a 2D PC is extruding infinitely ie fiositivez-direction and ter-
minated atz = 0 so that we have air far < 0. The angular frequencw, relates to the wave
number for light in vacuunkg, and the speed of light, through

w
ko= (1)

With the standard assumption that the PC material is lins@ropic, lossless and nonmagnetic,
the displacement field and the electric field are related by a scalar relative permittivétyr )
[13]. The structure is periodic in therplane, with period$\y and/y in thex- andy-directions
respectively.

For this 2D-periodic structure, by using Bloch’s theorera,aan search for solutions for the
time-harmonic electric field on the form

E(x,y,z,t) = Re[e(x,y,z)exp(ik - T —iwt)], 2

wherek = (ky, ky, k) is the Bloch wave vectoe(x,y, z) has the same periodicity as the dielectric
structure, i.e.
e(X, yv Z) = e(X+ /\Xa ya Z) - e(X, y+ /\Ya Z) . (3)

k« andky are chosen in the first Brillouin zone, i&| < 71/Ax and |ky| < 71/Ay. Note that the
z-componenk; of the Bloch wave vector can be nonzero only if the PC is pdgf@eriodic or
uniform in thez-direction. For the rest of this paper the time dependentid@iomitted, and
the electric field is represented by the vector phasor

E(Xa Y, Z) = e(x7 Y, Z) exqik : r) (4)
that depends on space coordinates but not on time. Simitation is used for the magnetic
field, H(x,y, ).

2.1. Homogeneous region

The doubly periodic functioe(x,y,z) in Eqg. (4) may be expressed as a double Fourier series
expansion with the integetk anday:

<i 21 21y

e(x,y,z) = Z eqx-,CIy(Z) exp /\X X+i/\—y ) (5)

Ox,Cy

#107443 - $15.00USD  Received 24 Feb 2009; revised 6 Apr 2009; accepted 10 Apr 2009; published 15 Apr 2009
(C) 2009 OSA 27 April 2009/ Vol. 17, No. 9/ OPTICS EXPRESS 7173



Using this series expansion in Eq. (2), each term will satishxwell’s equations in the homo-
geneous regioftz < 0) if
eqx-,CIy(Z) = eqx-,CIy exp(ikZ,QX,QyZ)v (6)

so that each term in Eq. (5) yields a plane wave. The frequandythez-componenk; g, q, of
the wave vector are related to each other through the equatio

W\2 o 21y 2 210y ?
S(E) _kZ,QX,Qy+(kX+/\—X) +(ky+/\—y ) (7)

wheree is the relative permittivity. The general solution can theswritten

. 2 : 2 .
E(x.y,2) = Z €p.0x.0y exp{l (kx+ ﬂ) X+ i (ky+ ﬂ) y+ |kz,qx,qyz} . (8)
P,Gx,dy AX Ay

For each pair of values; andgy there are two possible polarizations for the plane waveanso
index p have been introduced in the sum above to include for the tharigations. We observe
that each term in the series (8) is a Bloch wave.

For plane waves in air, the electric and magnetic field vecéme orthogonal both to each
other and to the wave vector, also if the wave vector has agiimaayz-component. The smaller
the frequencyw is, the fewer allowed values af andgy exist that yield a redt; g, o, Higher-
order plane waves, corresponding to largeanday, have imaginark; g q,, corresponding to
evanescent plane waves, i.e. waves that decay expongmtitidldistance from the PC surface
in thexy-plane.

2.2. Photonic crystal region

The Bloch waves propagating in the PC region must have the $eansverse Bloch vector
componentsy andky as those in the air region, since the Bloch form in Eq. (4) igvia
every period of the PC, whereas mode matching is performed &ngle period only. If we
consider incoming plane waves with the wave vedtgs with componentsy e, Kyinc and
kzinc, we therefore get the discrete set of plane waves neededdde matching by choosing
kx = kxinc — 210/ Ax andky = Kyinc — 27my/Ay in Eq. (8). Furthermore, there always exist
integersgy andagy such that the Bloch vector with componekgsandk, belongs to the first
Brillouin zone in two dimensions.

Since the PC is homogeneous in thdirection forz > 0, we search for solutiore(X,y, 2)
of the form

€q(X,Y:2) = €q(X,y) exp(ikzq2). )
The most general solution is thus a series expansion of Blacles
E(xY.2) = eq(x.y)explikq 1) = eq(xy) expli(k+ky+ kzq2)], (10)
q q

wherekq = (kx, Ky, kzq) is @ three-dimensional Bloch vector for the 2D PC. Like fa fliane
waves, only a discrete set of valuekgj (eigenvalues) yields solutions to Maxwell’s equations
(for a given frequencyw and Bloch vector componenitg andky). Each possible value & q
corresponds to a modag(x,y), and the integeq can be called the Bloch mode index.

Central for the analysis of PCs is the calculation of banddims, the relations between
frequencyw andk, ky andk; 4. For a given frequency, allowed combinationskafk, andk,q
define 2D surfaces in thi, ky, kz)-space. In the homogeneous regions the equations defining
the surfaces take the simple form (7). Also for the PC regimrsnalogy with the plane waves,
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there exist a limited number of real solutions kgg, (low order modes) and an infinite number
of imaginary solutions (higher order modes).

The equation for the modesg(x,y) is known to be self-adjoint, if it is considered to be an
eigenvalue problem faw?, given thatky, ky andk; are all real [13]. But, seen as an eigenvalue
problem fork;, the equation is not self-adjoint even if the material isless. We find in our
simulations that in addition to the purely real or imaginsaues ofk,q there can also exist
modes for some complex-valuégy. The complex modes must be included when doing the
mode matching a = 0, where the amplitudes of the modgs,, q, andey are adjusted so that
the series expansions in Eq. (8) and Eg. (10) match. For th&ti@€ture that we have studied,
we have found that if there is a Bloch mode at Ehgoint of the Brillouin zone wittk, = kg,
then there is also a Bloch mode with= —k,4, and ifk,q is complex, there is also a Bloch
mode withk; = qu-

2.3. Fourier-Bessel expansion in one period of the crystal

Our method for finding the modes in the 2D PC is divided into steps. First, the time-
harmonic Maxwell’s equations [14, 28] are solved analytycaside one period (cell) of the
PC as shown in Fig. 2. Then Bloch’s theorem is used to set upt pratching along the cell
boundary, connecting fields at opposing sides of the cekk dimalytical solution inside the
unit cell is well-known [14, 23], but the way point matchirgjused to set up the boundary
conditions is original for our work to the best of our knowded

Fig. 2. One period of the 2D PC. A core with the radius surrounded by a cladding with
either higher or lower refractive index.

We borrow the nomenclature from the fiber-optics, and callrdgionr < athecoreand the
surrounding area theladding even though this nomenclature is not standard for cylimder
PCs. The relative permittivity is; in the core and; in the cladding. We define the permittivity

contrast as | |
&—&
A= ——. 11
(e1+&)/2 (11)
We introduce cylindrical coordinates as in Fig. 2. Usinga#dtions similar to those in [14],
the longitudinal components;, andH; can be obtained solving the equation

+ (ek5 —k2)U = 0. (12)

10 (0UY 100
ror\ or r2 g2

U denotes eitheE; or H;. Like in [14], we express the transversal field componentsims
of E; andH, and solve Eq. (12) using the separation of variables tectigiving a set of
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solutions

i\ /E0BnJn(Bur) expling ) explikz2) Jr<a
En = o : (13)
i\/g?g [Fadn(Bar) + Gn¥a(Bar)] expling) explik,z) .1 > a
oo Andn(Bar) exp(ing ) exp(ik,2) r<a (14)
2 — [Cadn(Bar) + DnYa(Bor) ] expling) explik,z) .1 >a

whereJ, andY, are Bessel functions of fjrst and second kind respectivelymalized as ex-
plained below, anth = 0,+1,42.... SinceYn(B1r) grows infinitely as — 0, no such term is
allowed forr < a. Forr > a, bothJ, andY, are needed. For convenience, the definition

B = (gik8 —K2)Y/2, for j = 1,2 (15)

has been made, where the branch(Rg > 0 is used.

In our MATLAB code, we use normalized Bessel functions forafifunction arguments,
dividing the Bessel functions of first and second kind retipely with its value forr equal
to the distance from the center of the core to the corner ofittiecell or with its value for
r equal the cylinder radius. This normalization of the Bedsattions is designed to yield
numerically well-behaved expansion coefficiessB,, Cn, Dn, Fy andGy, in the series Eq. (21)
and Eq. (22), by ensuring that

« the order of magnitude of the coefficients are roughly theeséor all values of3; and

B
« the coefficients are continuous functiongBafand,.

The coefficient®\,, By, Cy, Dn, Fn andGp in Eq. (13)—(14) are related to each other through
the boundary conditions at= a (continuousH,, E;, Hy, Eg, Hr and eE;). When the field
components satisfy Maxwell’s equations and the boundamgitions are met for four of these
six field components, the remaining two boundary conditigiisautomatically be satisfied. So
we have four equations for the boundary conditions, andedirevith two unknown coefficients
that can be chosen arbitrarily so far. We choAsandBy, as independent variables and express
the other four coefficients in terms of these two:

_ p BIh(Bia)Ya(Bea) — Budn(Bia)Yi(Bed) | o (£2— &1)konkedn(Bra)Ya(Bo2)
Cn —An Ban + Bn anBZNn (16)
 Bid(B13)Jh(Be8) — Bodn(Boa) I (B1a) (£1 — £2)konkedn(Bra) Jn(B2)
Pn=Fn B1iNn B aB2BoNn an
(82— e)konkedn(Bia)Ya(B22) | o, Boerdh(Bra)Ya(Bod) — Bigadn(Bra)Ya(Boa)
=" aB2BoeoNn B B1&2Nn (18)
_, (e1— e)konkedn(B1a)Ya(B28) | , Big2dn(Bra)F(Ba) — Bagrdn(Be2)Jh(B1a)
Cn =% aB2Boe2Nn B B1€2Nn (19)
Common for all denominators is the factor
No = J)(B22)%(B2a) — Jn(B22) 3 (Boa). (20)

The factori\/ /& that is included in Eq. (13) ensures that the coefficiégtsBy, Cn, Dp,
F, andG,, get same dimension (magnetic field strength), and avoidsfdive imaginary unit
i explicitly in Eqg. (16)—(19). We then approximate theomponents of the generglandH
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fields by a sum of R + 1 contributions from Eq. (13)—(14), wheMis the highest order of
Bessel functions used:

N
EZ = Z EZ’n (21)
n=—N

N
Hz - Z Hz’n (22)
n=—N

2.4. Search for Bloch modes in the square periodic PC

The next step is to use Bloch’s theorem to match the fields im0, andr,, at opposite
sides of the unit cell, chosen such that they differ with eidatvector. We assume a square unit
cell, i.e.Ax =y = A, to allow the points to be equidistant. Since we ha{@\2+ 1) unknown
coefficientsA, andBy, we need 22N + 1) equations to determine the unknowns.

L) L) /) > J— —

—_— P —P

(a) (b)

Fig. 3. Point matching for 12 sampling points around the gelit of the PC, for thez
components of th& andH fields (a) and for the transversal components (b). The small
arrows in (b) indicate which transversal component thatascimed.

The z-components of the electric and magnetic fields are matchidial point pairs as in
the example in Fig. 3(a). We gBtequations by matching both the electric and magnetic fields
at point pairs with

ro=ri+AX (23)

wherer is one ofN/2 points at the left edge and is one ofN/2 points at the right edge. We
getN equations by matching
ro=r1+AYy, (24)

wherer, andr, are one of the points on the lower and the upper edge resplctivandy
are unit vectors in the- andy-directions respectively. We also get two linearly indegemt
equations by matching ttecomponents with

ro=r1+AR+AY. (25)

In total we get 2N + 1) equations for the-components.

For the transversal components we chaodgeoint pairs between the former ones, as shown
in Fig. 3(b). For the-components we match the electric and magnetic fields atpséparated
by A in they-direction, giving us\ equations, and for thecomponent we use points separated
by A in thex-direction, giving us additionall} equations. Thus, for the transversal components
we get N equations, and in total(2N + 1) equations.
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Bloch’s theorem (2) yields for the electric field and for thagnetic field respectively

E(ro) = E(r1)expik-(ra—rq)] (26)
H(r) = H(ry)expik-(ro—rq)]. (27)

By using Eq. (16)—(19)in Eqg. (13)—(14) and inserting into &1)—(22) the field$l, andE; can

be expressed in terms of the unknown constaqtandB,,. Likewise, transversal components
can be expressed in termsAyf andBy,. Finally the boundary conditions Eq. (26) and Eq. (27),
for the point pairs shown in Fig. 3 and in Eq. (23)—(25), aredu® get a homogeneous linear
set of equations for the variablég andBy:

AN
Mpi(kz) - Muianya(ky) :

AN _

5L |0 (28)
Mani21(Kz) -+ Mang2ani2(Ke) B

N

This equation system can have nonzero solutions for disgedties; 4 of k;, as already stated
in Sec. 2.2. Since the matrix elements are nonlinear funstafk;, Eq. (28) represents a non-
linear eigenvalue problem fég. This equation system can be written more compactly as

M (k)u =0, (29)

whereM (k;) is the matrix in Eq. (28) and is the vector containing thg2N + 1) element#,
andB,,. This nonlinear eigenvalue problem can be solved by solving

M (k)u' = v (30)

for an arbitrary, nonzero vectar and search for values & for which |u’| diverges [15].
Actually, Eq. (28) can be considered a nonlinear eigenvatablem for either one of the four
quantitieskg, ky, ky, or k;, allowing the other three to be specified.

3. Numerical results

The method described in Sec. 2 was implemented in MATLAB, aad used to calculate
the modes for the geometry in Fig. 2 with the paramefers- Ay = A anda= 0.2A. This
geometry is the same as one in reference [13], and our metsdaden verified against the band
diagram presented there in Fig. 5.2, whierés set to zero and is calculated as a function of
kx andky. An independent verification of our code is the fact thatélgs results that converges
to the analytical plane-wave result (7) as the permitticiiptrasthA approaches zero.

For mode matching, we need to find the set of allowed valuds fufr specifiedw, ky and
ky. We confine our attention tky = ky = 0, at thel" point of the 2D Brillouin zone, believing
that the numerical method that finkisat thel” point will find k; anywhere in the 2D Brillouin
zone. The band diagrams that we calculate correspond tdbHid.in reference [13], but are
extended to include modes for imagindgyas well.

Our algorithm for calculating the band diagrams starts \iitding eigenvalues fok, = 0,
considering Eg. (28) as an eigenvalue problemdanstead ok, finding zeros of 1 |u’|. For
each eigenvaluds is then either iteratively increased or decreased in srteglks In each step
the previous value d€ is used as a starting guess in the calculation of the new @ve\{ith
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Fig. 4. Automatically computed band diagram for a high-casit structureg; = 8.9,

& = 10.\x=/Ny=ANanda=0.2A. kx = ky = 0. The highest Bessel function order
is N = 10. Two occurrences of complex-conjugated pairs of compiegles are indicated
with dotted lines, where the black dotted lines represen(ld?)g/k/z\ and the blue dotted
lines represeriRe (k2) +1m (k2)]/kZ . Eigenvalues that are used in Fig. 9 are here marked
with small red circles.

Eq. (28) considered as an eigenvalue problenifpif no real solution fok? is found, Muller’s
method [29] is used to find complex zeros ¢f|@’|.

In Fig. 4 the band diagram for a structure with large persifiticontrast €, = 8.9 and
& = 1.0, giving A = 1.6) is shown. The calculations were done with= 10. k; andkgy are
normalized with respect tkn, defined as

2m
kn = A (31)
One of the important features in the band diagram is that ibgedsion curves fokg as a
function ofk? appear to have minima and maxima, leaving intervals (bauejgaf k3 where
pairs of modes with complebg exist, as indicated with dotted lines in Fig. 4. To comput th
band diagram in Fig. 4, a preliminary computation with lowalition inkg was first done. The
resolution was then manually increased at some intervdls tbfat were troublesome, and the
whole band diagram was recomputed. This was then repeatd @nfies. The last computa-
tion, which produced the band diagram in Fig. 4, took apprately 10 minutes to compute
on a standard personal computer (including a separate datigpufor complex-value#,).

The dispersion relation for a structure with lower permityicontrast €, = 4.0 ande; = 1.7,
giving A = 0.81) is shown in Fig. 5 (black lines). We have also plotted thaght lines (green)
that Eq. (7) yields for plane waves in a medium with a relapreemittivity that equals the
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Fig. 5. Automatically computed band diagram (black linem) d low-contrast structure,
& =4.0 ande; = 1.7. The unit cell geometry is as in Fig. 4. Green lines show glan
waves foreayg = 2.0 (the average dielectric constant for the low-contrastcstire). Fig-
ure (b) shows a magnification of the marked area in Fig. (aysvtveo of the bands form a
complex-conjugated pair de (marked with dotted lines).

average relative permittivity

ma?

Eavg = (e1—&2) e + &. (32)
The relative permittivities; ande, are chosen such that the average relative permittiyityis
the same in both Fig. 4 and Fig. 5. We observe that many of thdsiare nearly straight lines
lying close to the plane-wave results.

We explored the dependence of one of the band gap regiong ibathd diagram on per-
mittivity contrast, expecting the band gap to close withrdasing contrast. We observe the
plane-wave approximation (7) to be better, the smaller #renfitivity contrast is. Figure 6(a)

0.4 0.8
——Bandgap minimum
—_ ——Bandgap maximum
Nf-\< 0.3 0.6 -—-Bandgap size
X~
;N N/\< /\
~ X
.g. o2 ;/O 0'4”3/6/\
s
c 0.1 0.2
00 0.5 1 15 2 00 0.5 1 15 2
A A
(a) (b)

Fig. 6. (a) The largest value of Ik§ in the bandgap as a function of the permittivity contrast

A. (b) The upper and lower boundaries @b of the bandgap and the bandgap size, as a
function of the permittivity contrast.
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shows the maximum of the imaginary partkgfin the bandgap. This value clearly decreases
as the contrast decreases. We fail, however, to observenificigt reduction in the band gap
size (Fig. 6(b)), and the two modes with a complkgxseem to exist at a significant range of
frequencies, also when the two modes are nearly degenakgia well approximated by the
plane-wave result for both modes. To verify that this bebiaig not an artifact of using too few
orders of Bessel functiorls, we have also computed Fig. 6 with= 18, with no significant
changes.

To visualize the electromagnetic mode patternskfor O.36k,2\ and for three of the eigen-
values marked with red circles in Fig. 4, we calculate thentjtya

SZ(X7 Y, Z) = % [EX(Xa Y, Z)Hy* (X7 Y, Z) - EY(X7 Y, Z)Hx* (Xa Y, Z)]
= Jladyhy (xy) gy (cy)expl-2mk-n), (39

over one period of the PC. Taking the real partSgfx,y,z) we get thez-component of the
time-average Poynting vector, i.e. the power per unit aressing thexy-plane.

In Fig. 7 and Fig. 8 the real respectively the imaginary valaéS,(x,y,z = 0) is shown,
representing the average power and the reactive poweratasgg at the plane = 0. The cal-
culation was done withl = 22 as the highest order of the Bessel functions. For eachwage
kz, S(X,Y,2) has been normalized so that its largest absolute valuesitisedunit cell is one.

Whenk; is real,S;(x,y,z= 0) is purely real too, which is seen in Fig. 8(a), where the imag-
inary part ofS;(x,y,z= 0) is negligible. So there is an average power flow in fthrection,
concentrated in the core of the PC. For purely imagitkail§rig. (b)) the situation is the oppo-

2 _ 2 2_ 2 2_ 2
KB=0.79K2 K2=-33212 k2= -0.18 +0.14i k2
0.4 0.4 J 0_4-/ K 1
0.2 0.2 0.2
0 o= o o ) 0
-0.2 -0.2 -0.2
-0.4 -0.4 R —0.4\ /— "
—04-02 0 02 04 ~04-02 0 02 04 ~04-02 0 02 04
@ (b) (©)

Fig. 7. Average power per unit area perpendicular tohglane, R§S;(x,y, z= 0)], within
one period of the PC, for some allowkg

2 _ 2 2_ D2
KX=07912 k2 =-0.18+0.14i K%
0.4 04 N !
0.2 0.2 4
: | (@) |+
-0.2 -0.2
-0.4 -0.4 /RN »

-04-02 0 02 04 . . . . -0.4-0.2 0 0.2 04
(@) (b) (©
Fig. 8. Reactive power, If5;(x,y,z= 0)], within one period of the PC, for some allowed

kz .

#107443 - $15.00USD  Received 24 Feb 2009; revised 6 Apr 2009; accepted 10 Apr 2009; published 15 Apr 2009
(C) 2009 OSA 27 April 2009/ Vol. 17, No. 9/ OPTICS EXPRESS 7181



site, with a negligible real part &(x,y,z= 0), meaning that even if the fields are oscillating,
on average no power is transported through the PC by thesesribde mode shown is a higher
order mode, with larger spatial variation than in Fig. ()eTnodes with complek, have a
complexS,(x,y,z = 0) (Fig. 7(c) and Fig. 8(c)), implying that these modes in pipre carry
power, but that the power exhibit exponential decay or gnaagta function of. Such a power
flow, decreasing in the-direction, is unphysical in a lossless PC. Hopefully, tve modes
with k; = kzq andk; = —qu combine to provide a net zero power.

In the band diagrams in Fig. (4)—(5) the highest order of thes®l functions used i = 10,
giving a 42x 42 matrix in Eq. (29). To estimate how the truncation of thesin Eq. (21)—(22)
affects the accuracy of the calculationkgf we gradually increase the number of terms used in
the calculation ok;, and see how the value changes. The result for a few seleigieavalues
(marked with red circles in Fig. 4) is shown in Fig. 9, where #alues obtained fa¥ = 46 are
used as a reference.

0

10 5 5
—e—k2=-0.18+0.14i kK
oK =0.79K?

z ! A

_\Y: 5 +k§ =0.03 kf\

=~ 10_ T 2 = — 2

= o k?=-063K

S —e—k2=-3.3212

(]

2_ 2
K=-146K2
2 _ 2
1071 | +kz =-371 k/\
0 10 20 30 40
N

Fig. 9. An estimate of the error in the calculationlefka, as a function of the highest
order for the Bessel functionhl. The value obtained fdX = 46 is used as a reference.

The general trend is that the truncation error decreasesnexpially with the number of
terms used in the Fourier-Bessel series, and that more Bies&tion orders are needed to
achieve a given accuracy, the larger the imaginary pakt f That can be understood via the
observation that modes with a large imaginlarghigh-order modes) in general have fields that
vary more rapidly as a function of position in space than tmder modes. This trend does not
prevent some low-order results from being accurate by aémce, like fork? = —14.6k,2\ and
N =22.

The most time-consuming part of the calculations can bealdivinto two steps; the calcu-
lation of the matrixM (k;), and to solve fou’ in the equation system (30). For large matrices
the time needed to compute all the matrix elements is prap@tto the number of elements,
i.e. to (4N + 2)2, and the time for solving the equation system is known to l@grtional to
(4N +2)3 [29]. It is interesting to see which step that is most timesteming in our calcula-
tions. In Fig. 10 computation times for the matrix calcudatand the equation system solving
(matrix inversion) are compared. Together with the datazaeatic fit,t ~ (4N +2)2, is shown
for the matrix computation and a cubic fit> (4N + 2)3, for the matrix inversion.

Even if the matrix inversion time asymptotically grows moapid asN increases, it is clear
from Fig. 10 that the calculation of the matrix itself donties for reasonable values bf
(N < 100). Due to the large amount of memory needed, no calcuktiave been done for
very largeN to determine where the matrix inversion time start to donginbut one can still
tell that the crossing point occurs for a very large valudNof— much larger than anything
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Fig. 10. Computation times for calculating the matixk;) and taking the inverse, on a
standard personal computer.

needed to get a reasonable accuracy, as can be seen in Fa.fér $e range oN values
that is needed for our calculations, most of the computimgtis spent on evaluation of the
elements of the matrik (k;) in Eq. (30), and not on solving the equation for the unkna¥vn

4. Discussion

The aim in this work is to calculate the Bloch modes in a 2D PCiafular cylinders that
extends infinitely in the-direction, to be able to expand the electromagnetic field geries
expansion as in Eqg. (10), for a given frequency. For higreordodes, the order of a mode is
mainly determined by the imaginary partlgf thez-component of the Bloch vector. We need
to find all the modes: the low-order propagating modes withedls, the high-order evanescent
modes with a purely imaginaikg, and the many modes with complkxthat are found in PC
structures even if they are lossless with a very small péuityt contrast.

4.1. Comparison with other methods

Cylindrical coordinates and Fourier-Bessel expansioris baen used by others, i.e. scattering-
matrix method [23—25] and an early method for multicore #4&8]. In the analysis of photonic
crystal fibers (PCFs) [19-22], geometries with cylindera periodic pattern appear frequently,
but mostly in models using a large but finite number of obj&tes on the other hand, are
interested in an infinite, perfectly periodic array of cgars, a 2D PC with a single cylinder
per unit cell. We have not found anyone else describing opliGgtion of the Fourier-Bessel
expansions for Bloch-mode calculations in this PC, witmpaiatching along the edge of the
unit cell, and solving a nonlinear matrix eigenvalue prabfer the out-of-plane component of
the Bloch wave vector.

Our analysis differs from that of PCFs in what 2D modes areled@and how they are used.
The evanescent higher-order modes that decay along thaidivef the cylinders are usually
not relevant for the analysis of PCFs, but those are the medese interested in.

Other methods exist that like ours have the advantage ofjudin expansions instead of
2D-expansions, like mode matching in rectangular cootd®i 5] and rigorous coupled-wave
analysis [16, 17]. Here the structure is approximated bytaos@omogeneous rectangular
boxes, which has the drawback that, analytically, the atefield perpendicular to the edge
diverges at the edge [30], and more so the larger the pevityittiontrast is. Therefore a relative
large number of orders are needed to obtain accurate reatiish have been noted for 1D
gratings [31]. To retain an accurate description of the fétolind the cylinder, independently
of the number of terms used in the field expansion, cylindldoardinates are better suited than
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rectangular coordinates.

One benefit of our method is that the computed Bloch-waveovettpends continuously
on the cylinder radius, also when very few terms are incluidethe Fourier-Bessel series
expansion. A continuous dependence allows the Bloch-wegtvto be easily tracked of as a
function of cylinder radius.

Figure 3 indicates that if we do the field matching M goints (wheréN = 6 in Fig. 3) around
the unit cell of the 2D PC, we get a spatial resolution in thelenfeeld that roughly corresponds
to (N/2)? sampling points inside the unit cell. The analysis of Se¢tt?en shows that we need
matricesM of dimension 22N + 1) x 2(2N + 1) in Eq. (29)—(30) to obtain theN /2)? samples
of the Bloch mode field inside the unit cell. A large number efywclever methods have been
developed for efficient calculation of the two lowest-orBé&ych modes, or a few of the lowest-
order modes, of a perfect 2D PC, and many of the methods aeved in Appendix D of [13].
As pointed out on p. 257 of [13], if we want to find as many(Big’2)2 modes, however, the
time taken to perform the matrix operations needed to finthalfe modes will in general be
proportional toN®. Similar reasoning allows us to conclude that the time ne¢alénd (N/2)?
modes using Eq. (29) is proportionali if the computation is dominated by matrix element
evaluation, and proportional t¢° if the computation is dominated by matrix inversions. So we
should get a gentler scaling of computing time withby exploiting the knowledge that the
unit cell has cylinder geometry.

4.2. Considerations on the method used

There is a wide range of conceivable choices for the pointhiiag around the unit cell bound-
ary. Care must be taken to ensure that the matching procediuags yields a set of equa-
tions (28) that are linearly independent, except when atisoldior k; is found. Not all of them
will work, so in our work we have tested quite a few differeptions, and we would like to
point out that our paper provides a prescription for settipgpoint matching equations that
fulfills the requirement above. Among the six field composentEq. (26)—(27), we have cho-
sen to match the components that are parallel to the edgé afit cell, in points that are
evenly spread around the unit cell boundary. The point niradcls always done along a curve
(a square) where all electric and magnetic field componestaralytically well-behaved, re-
sulting in series expansions that converge very rapidlghasvn in Fig. 9.

It should be noted that with the scheme for setting up the teansas in Fig. 3N must be
an even number. Furthermore, for the symmetric case wheredte is centered in the unit
cell, andky = ky = 0, N cannot be a multiple of 4, for the scheme to yield a set of liyea
independent equations. The option to use path integraksadof point matching to set up the
boundary conditions has not been tested, since point nmafetdrks well and no problems in
converging have been encountered as the number of pointerisaised. The time needed for
the calculations would not scale differently with the numbgBessel orders that is used, if
path integrals were used instead of point matching.

With our method an eigenvalue to Eq. (28) appeats at ky\/€1. An eigenvalue also ap-
pears for a value df; > kg./€1. This eigenvalue approachles= ko./€1 asN increases. These
eigenvalues are obviously unphysical, and have been disdar

5. Conclusion

We have studied propagating and evanescent Bloch wavetkeiosie of the canonical two-
dimensional photonic crystals (2D PCs); identical circuginders in a square pattern, with
the interface perpendicular to the cylinders. For a giveqdency, all waves are evanescent,
except for a few low-order propagating waves. We have ptedesomputed out-of-plane band
diagrams for propagating as well as evanescent Bloch wavési 2D PC. We have found
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that many of the evanescent Bloch modes do not have a puralyiaryz-component of the
Bloch wave vector, but a complexcomponent. We believe that the existence of modes with
a complex z-component is a property of PCs in general, inéipaelated to the existence of
band gaps in PCs.

To compute the band diagrams, we have used a numerical mieétsed on Fourier-Bessel
expansions of the electromagnetic fields, well suited tattiiee fields inside and surrounding
a cylinder. The method is numerically very well behavedheextent that the accuracy of the
calculated Bloch vector improves exponentially with thentner of terms included in the series
expansions. The method involves manipulation of matriciés small dimension, making fast
exploration of complex dispersion maps feasible on a dgsébmputer. To provide assurance
that our computer code can be trusted, we have reproducduhtitk diagrams published in
[13] for a structure with high permittivity contrast, and Wwave observed the computed band
diagrams to converge to the analytic plane-wave result®wigget the contrast approach zero.

Finally, we believe that our results represent a contrdouto the development of a modal
expansion method to calculate transmission and reflectefficients of 2D PC slabs. The ex-
istence of modes with a compl@component of the Bloch wave vector represents a challenge
for modal expansions methods in general, regardless of #thad used to compute the 2D
modes.
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