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Three-Dimensional Multiple-Scattering Technique
for the Analysis of Photonic-Crystal Slabs

Stefano Boscolo and Michele Midrio

Abstract—A numerical technique allowing theoretical analysis
of propagation in three-dimensional (3-D) photonic-crystal (PC)
slabs is presented. The method is an extension to the 3-D case of the
two-dimensional multiple-scattering technique that was originally
developed by Tayeb and Maystre. As an application, the method is
used to numerically estimate the out-of-plane scattering losses in a
straight PC waveguide of finite height.

Index Terms—Electromagnetic scattering, numerical analysis,
optical waveguides, periodic structures, photonic crystals.

I. INTRODUCTION

PHOTONIC CRYSTALS have attracted much interest due
to their potential for controlling the propagation of light

[1]–[6]. Owing to the complexity of the geometries that are cus-
tomarily used, most of the theoretical work done so far has been
based on numerical investigations. Availability of efficient and
reliable numerical codes is then a key issue for accurate mod-
eling of photonic crystals (PCs), and this becomes particularly
important if the behavior of a real three-dimensional (3-D) struc-
ture has to be analyzed.

Mainly, so far, 3-D simulations have been performed with
the following numerical techniques: the finite-difference time-
domain technique (FDTD) [7], the Green’s tensor approach [8],
and the Fourier-modal method [9].

The first of these techniques works in the time domain, while
the others work in the frequency domain. Despite this difference,
these methods share a common concept, which raises similar
pros and cons. As a matter of fact, in those techniques, the
starting point is discretization of the computational domain,
or of a part of it. This makes the codes very broad in scope:
in fact, since any object may be discretized, the numerical
techniques may operate with any kind and shape of dielectrics
in the PC. The price to pay for this wide generality is memory
allocation and computational time. Indeed, the code accuracy
improves with the number of samples that are used to discretize
the objects in the PC.

This paper aims at illustrating an alternative numerical
method that may be used to perform theoretical investigations
of PCs, with a possibly reduced memory occupancy and com-
putational time. The method is based on a different approach

Manuscript received January 27, 2004; revised May 26, 2004. This work was
performed in the framework of the European Project “PICCO” (Photonic In-
tegrated Circuits using Crystal Optics) under IST-1999-10361 and under the
Italian FIRB Project “Metodi e modelli numerici di dispositivi fotonici per reti
ad alta capacità.”

The authors are with the Istituto Nazionale per la Fisica della Materia (INFM),
Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Università degli
Studi di Udine, Udine 33100, Italy (e-mail: midrio@uniud.it).

Digital Object Identifier 10.1109/JLT.2004.833276

Fig. 1. Schematic diagram of a PC waveguide.

with respect to those previously mentioned. Indeed, the aim is
not at developing a code that may operate with any geometry;
rather, the focus is on the kind of structure that is illustrated in
Fig. 1: a multilayer structure that, in its most general form, may
comprise a substrate, an insulating buffer, the lower cladding,
the waveguide core, the upper cladding, and, due to compu-
tational reasons, an air and a perfectly matched layer (PML)
above the structure top face [10]. In a typical configuration,
a two-dimensional (2-D) lattice of holes is etched into this
layered medium.

Essentially, this paper will then deal with planar slabs and
cylindrical holes and will fully exploit the fact that these objects
are geometrically “simple” to rigorously solve the Maxwell’s
equations in analytical form.

The basic idea is the following. To describe the field inside or
around a cylindrical object, the best choice is to write the field as
a sum of the “natural” modes of cylindrical objects, the cylin-
drical harmonics. With this choice, there is no need to make
any discretization, and it may be reasonably expected that a few
terms will be sufficient to properly approximate the field. In-
deed, this has been shown to happen in the 2-D case, where the
multiple-scattering technique proposed in [11] is one of the most
powerful, fastest, and most accurate simulation tools available
so far.

The method discussed in the present paper is an extension of
the 2-D scattering code to the 3-D case, and the problem that
must be solved is the following: a given field is injected into
a PC waveguide that comprises a number of arbitrarily located
air holes, and a routine is developed to compute the field that is
scattered by the ensemble of holes, as well as the field that is
transmitted into each of them.

0733-8724/04$20.00 © 2004 IEEE
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The paper is organized as follows. Section II begins with the
simple case of a single hole etched in the layered structure. Later
on, Section III generalizes the theory to the scattering from an
arbitrary number of holes. Section IV reports the results of some
tests performed to check the routine convergence and accuracy.
These refer to computation of out-of plane scattering losses
from a PC membrane. Some concluding remarks will close the
paper.

II. 3-D SCATTERING FROM A SINGLE ETCHED HOLE

With reference to the structure of Fig. 1, we identify two dif-
ferent layered regions. The first, referred to as the “slab,” is the
region formed by the stack of dielectric media that make up the
slab waveguide in the absence of the holes (plus the air and the
PML layer above the waveguide top surface).

The second region, referred to as the “hole,” is the cylindrical
region that contains one of the air holes and that goes from the
upper to the lower computational edges (see Fig. 2).

Let us now consider the scattering of an incident field from
a single etched hole. Three electromagnetic (EM) fields are
involved in the process: the incident field, which we suppose
to be assigned a priori, the scattered field, and the field that
is transmitted into the hole, which we denote as ,

, and , respectively.
The three fields obey continuity conditions on the lateral sur-

face of the cylinder that contains the hole, i.e., they satisfy

(1)

with being the cylinder radius. We now show explicitly how
these equations may be turned into an an efficient numerical
routine.

A. Incident Field

In order to represent the incident field in a proper way, we
use a result that we prove in Appendix A: the whole EM field
of a layered region (such as the slab region in which the inci-
dent field propagates) is uniquely determined once its -directed
components are specified.

Therefore, the incident field is completely described if we
only set the values of and , which we respectively write
as

Here, and in the equations herafter, the origin of the coordi-
nate system is in the center of the hole. Moreover, and

are expansion coefficients, which have to be regarded as
known coefficients as soon as the shape of the incident field is
assigned. Whereas is the index distribution in the slab
region, and are the radial wavenumbers for the

th TM and the th TE mode of the slab region, respectively.

Fig. 2. Cross section of a PC slab with a single hole.

Finally, is the -type Bessel function of order , and ,
are the field profiles along for the th TM mode and

the th TE mode of the slab region, respectively. The explicit
form of these function, along with the values of the modes’ ra-
dial wavenumbers, are given in Appendix A.

B. Diffracted and Excited Fields

In an analogous fashion, these fields also are completely spec-
ified once their -directed components are given, and these may
be written as

and

respectively.
Here, is the second-type Hankel function of order ,

while , , , and are the expansion coefficients
that have to be determined in order for the problem to be numer-
ically solved. Subscripts (HO) and (SL) were used to denote the
“hole” and “slab” regions, respectively.

C. The Numerical Routine

The basic idea to turn continuity conditions into a numerical
routine is the same as in the mode-matching technique [13].
We use the same number of modes to expand the field in both
the slab and the hole region, and we compute the projection of
the continuity conditions on each mode of the slab region. For
instance, if we take the inner product of the first of (1) with the
magnetic field of each mode of the slab region, and the inner
product of the electric field of each slab mode with the second
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of (1), and exploit the orthogonality relationships reported in
Appendix A, the following system of linear equations is found:

(2)
Notice that this system actually expresses continuity of the
Poynting vector through the lateral surface of the cylinder.
Therefore, since the modes in both the slab and the hole regions
are orthogonal to each other, the continuity, in fact, arises from
the principle of energy conservation.

In (2), is a column vector that contains the unknown co-
efficients for the th azimuthal order of the transverse-electric
(TE) diffracted field. The column length is equal to the number

of radial modes that are used to expand the field with
respect to , both in the hole and in the hosting slab guide. In
an analogous fashion, vector contains the expansion coef-
fcients for the th azimuthal order of the transverse-magnetic
(TM) diffracted field. Finally, and contain the expan-
sion coefficients for the fields that are transmitted into the hole.

are square matrices, whose entries are
listed in Appendix B. On the other hand, are column vectors
of length that depend on the expansion coefficients of the
incident field. They also are listed in Appendix B.

The scattering problem has thus been turned into the problem
of solving a nonhomogenous system of linear equations
with unknowns for each of the azimuthal modes that are
used in the field expansion.

Notice that, in general, the scattered and the excited fields are
hybrid fields, i.e., they are neither purely TE nor purely TM,
even if the incident field is either TE or TM. In other words,
the polarization of the incident field is not preserved in the scat-
tering process. As a matter of fact, for a purely TE (or TM) field
to exist, the system of continuity (2) must split into two sub-
systems, one involving the expansion coefficients only, and
the other involving the coefficients only. Looking at the ma-
trix entries in Appendix B, it is easy to check that this only
occurs when the azimuthal order (in fact, in this case,

). Hence, unless the incident
field has the only harmonic, the scattered and excited
fields contain both TE and TM components.

The reader may recognize that this feature is not peculiar of
the problem we are dealing with. Indeed, it is shared by other
propagation problems where continuity conditions are imposed
on the boundaries between dielectric materials. For instance, the
modes of optical fibers are purely TE or purely TM only for the
azimuthal order , while they become hybrid HE or EH
modes for any [15].

D. Scattering and Transmission Matrices

Before we turn to the case of the propagation through an arbi-
trary number of cylinders, we briefly illustrate how the system

(2) may be rewritten in an alternative form that allows us to
nicely define a scattering and a transmission matrix for the di-
electric arrangement with which we have been dealing. To this
end, it suffices to notice that if we formally rewrite the right-
hand side (RHS) of (2) as

(3)

the whole system becomes equivalent to the combination of the
following two systems

(4)

where

(5)

and and are suitable square matrices.
Matrices are defined in Appendix B.

Equation (4) defines the scattering and the transmission ma-
trices of the cylinder embedded in the slab waveguide. Indeed,

relates the coefficients of the scattered field to those of the in-
cident field, whereas relates the field that is transmitted into
the cylinder to the incident field.

III. 3-D SCATTERING FROM AN ARBITRARY

NUMBER OF CYLINDERS

We now turn to the case of propagation through a set of
cylinders embedded in the slab waveguide. The starting point is
still the set of continuity conditions to which the field must obey.
Those now read as

(6)

where and are the EM fields that are
scattered by and transmitted into the th cylinder, respectively,
and is the unit vector of the radial coordinate of the cylindrical
reference frame that is centred in the th cylinder.

The conditions have to be applied at each , with
being the radius of the th cylinder, and for any .

Passing from the single to the multiple-scattering case is then
a formally and conceptually simple task. Still, one should no-
tice that in order to make computation of (6) really feasible, the
expressions of and in the th cylindrical reference
frame are required. Those may be computed by writing the th
cylinder Debye’s potentials (which entirely defines the field in
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the th hole, see Appendix A) through the Graf’s addition for-
mula (see [12, eq. (9.1.79)]. For instance, the TE potential for
the th mode of the slab may be written as

(7)

where is the distance between the centers of cylinders and
, and is the azimuthal coordinate of the center of cylinder
in the reference frame of cylinder , respectively. A similar

expression holds for potential , which defines the TM mode
as well.

Two facts are noteworthy.

1) Graf’s formula couples the terms with different azimuthal
orders, and this implies a major difference between the
cases of the single hole and that of the arbitrary number of
holes. Indeed, suppose that the field expansion is made on
azimuthal orders that range from to . As we
have shown previously, in the case of a single scatterer,
the whole EM problem might be turned into the solution
of decoupled linear systems, one for each of the
azimuthal orders that had been used in the field expansion,
whereas in the multiple-scattering case, there will be one
single system to be solved, and it will contain all the az-
imuthal orders.

2) As for the radial wavenumbers, Graf’s formula acts in
the opposite way. Indeed, it does not couple terms with
different wavenumbers. As we show hereafter, this is an
important fact because it allows reduction of the whole
scattering problem to the form of a sparse system of linear
equations. To prove this statement, we may proceed in the
same way as in the single cylinder case, first verifying that
(6) is equivalent to the combination of the linear systems

(8)

(9)

which generalize (5) to the case of more than a single
scatterer.

The following notation was introduced: denotes the
whole set of the coefficients for the field which is scattered by
the th cylinder, namely

Each of the has the same form as in (5). In addition

is a block diagonal matrix, with each of the as in (4). Finally,
are squared

fringed matrices with the form

...
. . .

...
...

(10)

where, due to the fact that Graf’s formula does not couple terms
with different radial wavenumbers, is a
diagonal matrix, with the diagonal elements as follows:

Let us now consider (8) and rewrite it as

(11)

where

and the matrix

(12)

with the identity matrix and

...
. . .

...

...
. . .

...

Finally

Notice that all the matrices in the RHS of (12) are sparse ma-
trices, but matrix itself is not. Nonetheless, no large memory
occupancy is actually required to solve the linear system (11) if
an iterative solution routine is used. Indeed, in any iterative pro-
cedure (conjugate gradient, biconjugate gradient, etc.), explicit
knowledge of matrix is not actually needed [14]. Rather, com-
putation of matrix–vector products such as or
has to be performed at each iteration. is the solution at step

. In our case, it turns out that
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and therefore we may proceed as follows. We only store the
sparse matrices and . At each step of the iterative routine,
we first compute the product and obtain a column vector
as the result. Then, we right-produce this column vector times
matrix and use the result to refine the iterative solution. A
similar procedure may be used to compute the matrix–vector
product as well.

Notice also that since only products of sparse matrices time
vectors are required, and since this operation is not computa-
tionally intensive, the routine converges pretty quickly to the
solution.

Once the solution of system (11) has been computed, the ex-
pansion coefficients for the field that is transmitted into each
hole may be found without solving any other linear systems.
To this end, we only need to use (9), where matrix

is a block di-
agonal matrix, with each of the blocks as in (4).

As a final comment, we remark an important feature of
the routine we have presented: since the scattered field is
expressed through second-type Hankel functions, and since
these functions obey Sommerfeld radiation conditions at in-
finity, no boundary conditions in the radial coordinate have to
be implemented.

IV. NUMERICAL VALIDATION

In order to test the routine, we considered the propagation in
a PC waveguide realized in an high-index membrane, and we
compared the out-of-plane scattering losses that we computed
by using the proposed method and a commercial FDTD routine.

Waveguiding is obtained by assuming that a triangular lattice
of air holes is etched in the membrane and that a row of holes
is removed, thus forming a linear defect [9]. The pitch and the
radius of the holes were chosen so that their suppression per-
mitted opening of a forbidden gap. The following parameters
were used: the pitch is 403 nm, holes’ radii are ,
and the membrane thickness and refractive index are
and , respectively.

Fig. 3 shows the out-of-plane scattering losses that we com-
puted by means of the FDTD (open circles) and of the proposed
routine (solid squares and solid line). In order to obtain these
results, we considered a waveguide that contained a number of
holes as large as 246 and was formed by 24 elementary cells
along the propagation direction (the elementary cell is displayed
in the inset of Fig. 3). The flux of the Poynting vector was com-
puted on the edge of cells ranging from the sixth to the eigh-
teenth, and exponentially decaying regression was then used to
evaluate the loss. The reason why we did not consider the first
and the last six cells is the following: the “cladding” of the PC
waveguide confines light in the defect by multiple reflections,
interfering in a proper way; for this to occur, a minimum number
of elementary cells is required, and near the guide input and
output, the field is blurred, compared with the rest of the PC
waveguide.

When we used the FDTD, we observed that reliable results
could be obtained if the step of the discretization grid was
smaller than 10 nm. By exploiting the symmetry with respect
to the axis in the middle of the defect waveguide, this implied a

Fig. 3. Out-of-plane scattering losses. Circles: FDTD. Solid squares: The
proposed routine. Inset: Top view of the waveguide. The shaded region is the
elementary cell.

Fig. 4. Dependence of the computed loss on the parameters of the PML. The
solid circles refer to a PML thickness dPML = 0:3(1 � i0:4)�, the open
squares refer to dPML = 0:6(1� i0:4)�, and the filled triangles to dPML =
0:9(1� i0:4)�, respectively. The wavelength is � = 1280 nm.

memory occupancy of about 2 GB. Computation time for each
wavelength we considered was in the order of 40 h on a 3-GHz
processor.

As for the proposed routine, we set and
, respectively, i.e., we used seven azimuthal orders and 55 TE

plus 55 TM modes. This way, the field in each hole was ex-
panded over a set of 770 orthogonal functions, and the overall
problem contained 94 710 unknowns. Memory occupancy was
800 MB, and the computation time was in the order of 1 h for
each point we considered.

Fig. 4 gives some more details on the numerical accu-
racy of the solution we computed by means of the proposed
method. It shows the loss that we computed by changing
both the thickness of the air layer above the membrane
and that of the PML. The figure abscissa is the overall
real thickness of air plus PML. The three curves refer to
PML thicknesses equal to PML (solid
circles), PML (open squares), and

PML (solid triangles), respectively. In these
simulations, the wavelength was set equal to 1280 nm. As
it may be observed, the hard boundary that terminates the PML
may give rise to unreliable results if an excessively thin PML
is chosen.
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A general rule for the choice of the optimal PML cannot be
given. However, when we tested our code, we noticed that re-
sults tend to stabilize for real PML thickness greater than 0.6
and imaginary thickness greater than .

V. CONCLUSION

In this paper, a novel numerical method was presented that
is particularly suitable for theoretical analysis of 3-D PC wave-
guides with 2-D arrangements of air holes. The method is a gen-
eralization of the multiple-scattering technique developed by
Tayeb and Maystre for 2-D PCs. It is based on the representation
of the field in the form of sums of cylindrical harmonics, and it
fully exploits the fact that, due to the geometrical shape of the
objects that make up the PC, relatively few terms are enough to
provide a sufficiently accurate field expansion. This reflects in a
memory occupancy and computational time that may be signif-
icantly lower than those required by other 3-D codes.

APPENDIX A
ON THE MODES OF A LAYERED CAVITY

Let us consider a cylindrical cavity with several properties.

1) The refractive index in the cavity is independent of both
the radial and the azimuthal coordinate, while it is piece-
wise constant with respect to .

2) Along , the cavity contains layers, each of which
has the thickness and the refractive index . Notice
that may be a complex number, in which case the cor-
responding layer is a perfectly matched layer [10]. For
later use, we also introduce the following symbol:

.
3) The cavity is closed, on the upper and lower sides, by

perfectly magnetic walls.
The aim of this appendix is to show how the modes of such a

cavity may be computed and to discuss the relevant properties
they have. This task may be carried out by making use of the
TE–TM decomposition theorem, which we now recall for the
sake of clarity. The theorem states that in a simply connected re-
gion containing a linear isotropic medium, any electromagnetic
field may always be expressed as the sum of two e.m.
fields, , which
have the following properties:

The two fields are obtained from two Debye’s potentials, e.g.,
from two solutions of the scalar homogeneous Helmholtz equa-
tion, say and , respectively, as follows:

(13)

(14)

with the field frequency and and the magnetic and electric
permittivity, respectively [15].

Notice that since the cavity we are considering is not a ho-
mogeneous medium, but rather a stack of homogenous media,

the TE–TM decomposition theorem must be applied separately
to each layer. The modes of the whole structure may then be
computed by imposing continuity conditions at the layers’ in-
terfaces, and as we will see, the whole structure will still admit
existence of pure TE and pure TM modes.

A. TE Modes

We take the th layer in the cavity and consider the homoge-
neous Helmholtz equation

(15)

This equation may be solved in a cylindrical reference frame
by using the separation of variables: we introduce the

ansatz into (15) and get the following
system of differential equations:

(16)

with

(17)

The first of (16) indicates that the radial dependence of is
given by either a Bessel or an Hankel function of order . To
keep the treatment as general as possible, we write the generic
Bessel/Hankel function as so that

(18)

with .
In this expression, the radial wavenumber (or, equiva-

lently, the wavenumber ) is an unknown quantity, which
may be determined by using the transfer matrix method de-
scribed in [10].

1) In order for the continuity of transverse components of
fields (13) to hold for any value of , the azimuthal order

must be the same in all the layers: ,
.

2) In the same way, for the continuity to be satisfied for any
, also the radial wavenumber is actually independent

on the layer: , .
3) In the absence of PML, the admissible values of form

a countable set, a finite number of which is real, and the
remaining are purely imaginary, whereas in the presence
of PML, all the eigenvalues are complex. The entries of
this set may be ordered (for instance, by decreasing real
values and increasing imaginary values), and we denote
the generic entry in the set as .

The explicit form of the TE field components is
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(19)

with

for and .

B. TM Modes

TM modes may be found in an analogous way, provided that
(14) is used instead of (13). For the sake of brevity, we only
quote the final result, which reads

(20)

C. On the Radial Dependence of the Modes

In this previous derivation, we kept the radial dependence of
the field as general as possible. Now, we look at the point with
some more detail, and we clarify the circumstances under which

specializes as a Bessel or an Hankel function.
The theory we have developed applies to any layered

medium. Thus, it may be used to represent a field in both the
holes or in the slab waveguide. In the former case, the cavity
domain is a finite region that includes the origin of the cylin-
drical reference frame. Then, the field may only contain -type
Bessel functions. By contrast, in the latter case, one must
distinguish among two cases. As a matter of fact, the expansion
in the slab region may be used to represent both the field that
is injected toward the holes, i.e., the field that impinges on the
PC, or the field that is scattered by the holes. The scattered field
must obey Sommerfeld radiation conditions. Hence, it must be
expressed through a second-type Hankel function.1 By virtue
of the induction theorem, on the other hand, the incident field
may always be expressed by means of J-type Bessel functions
only [11].

1Second-type Hankel functions are outgoing waves for time-harmonic fields
of the type e(t) = RefE exp(i!t)g. If the complex vector were defined
through the kernel exp(�i!t), the first-type Hankel functions had to be used
instead.

D. Properties of Functions and

We now show that if we take any couple of nondegenerate
modes, i.e., modes with radial wavenumbers , the fol-
lowing properties hold:

(21)

(22)

(23)

To prove the statements, we consider the first of these equa-
tions and rewrite the integral as

In addition, we introduce the quantity

Since within each layer , we may integrate
by parts to obtain

On the other hand, using (16) and (17), we also get

Then, since and do not depend on the layer, i.e., they do
not depend on , we find
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so that, being by hypothesis, (21) is actually proven
if we show that

This is done as follows. From (19), we see that the functions
and are proportional to the transverse compo-

nents of the electric and magnetic fields of a TE mode, respec-
tively. Then, the addendum in the sum vanishes for and

since the upper and lower edges of the cavity are per-
fectly magnetic walls, whereas electric-field continuity through
the layers implies that any term that is evaluated in
cancels out with the one in . In this way, the overall
quantity sums to zero, thereby proving (21) indeed.

Proof of (22) and (23) may be carried out in an analogous
fashion, and it is left to the reader for the sake of brevity.

E. Orthogonality Properties

As a closing remark on the modes of a layered cavity, we now
prove some relevant orthogonality relationships. We denote as

, a couple of TE modes where
and stand for and , respectively. The fol-

lowing orthogonality relationship is found:

(24)

where is any cylindrical surface parallel to the axis.
The proof stems directly from (21). In fact, using (19) and

(20), we recognize that the integral may be factored
out in the RHS of (24), and the relationship is then immediately
proved.

In a similar fashion, if ,
are two TM modes, from (22), it also follows that

(25)

Finally, every couple , satis-
fies the relations

(26)

(27)

APPENDIX B
FORM OF ENTRIES IN (2)

The explicit expression of entries in (2) are the following:

whereas



2786 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2004

Finally
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