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Remarkable properties of optical fibers with a high-index core region and
a surrounding silicarair photonic crystal cladding have recently been re-
ported. Here we discuss the physics, the special guiding properties, and the
theoretical tools developed for the modeling of these photonic crystal fibers.
With an emphasis on the applicational aspects of the fibers, we study their
single-mode operation, bending losses, and dispersion properties. While
exhibiting certain unique properties, the high-index core photonic crystal
fibers share many common features with conventional optical fibers, at-
tributed to an operation based on the well-known mechanism of total
internal reflection. Fundamentally different from all high-index core fibers,
in this work we demonstrate a novel type of optical waveguide, operating
truly by the photonic bandgap effect. The novel fiber has an improved
photonic crystal cladding and a central low-index structural defect along
which the light is guided. The novel fiber has several unique features due to
its different waveguidance mechanism, including remarkable dispersion
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properties and the potential to localize part of the guided mode in air
regions. The results presented are fundamental in the field of photonic
bandgap guidance, and this new class of optical waveguide is, therefore,
expected to be of future interest to a large variety of research areas. Q 1999

Academic Press

I. INTRODUCTION

Optical fibers and integrated optical waveguides are today finding wide use in
areas covering telecommunications, sensor technology, spectroscopy, and medicine
w x1 . Their operation usually relies on light being guided by the physical mechanism

Ž .known as total internal reflection TIR , or index guiding. In order to achieve TIR
Ž .in these waveguides which are formed from dielectrics or semiconductors , a

higher refractive index of the core compared to the surrounding media is required.
TIR is a physical mechanism that has been known and exploited technologically for
many years. However, within the past decade the research in new purpose-built
materials has opened up the possibilities of localizing and controlling light in
cavities and waveguides by a new physical mechanism, namely the photonic

Ž . w xbandgap PBG effect 2]9 .
The PBG effect may be achieved in periodically structured materials having a

periodicity on the scale of the optical wavelength. Such periodic structures are
usually referred to as photonic crystals, or photonic bandgap structures. By
appropriate choice of crystal structure, the dimensions of the periodic lattice, and
the properties of the component materials, propagation of electromagnetic waves

Ž .in certain frequency bands the photonic bandgaps may be forbidden within the
crystal. This ability of photonic crystals to inhibit the propagation of photons with
well-defined frequencies has a close analogy with the electronic properties of

w xsemiconductors 10, 11 . This fact has caused a tremendous interest in photonic
crystals, and their utilization has been predicted to have a major impact on a wide

w xrange of photonics applications 12]15 . Furthermore, the scalability of the electro-
magnetic properties of photonic crystals allows them to be exploited over the whole

w xelectromagnetic spectrum, covering optical to microwave frequencies 16]18 .
A special class of components incorporating photonic crystals are optical fibers

Ž . Ž .or waveguides with a two-dimensional 2D periodic variation in the plane
perpendicular to the fiber axis and an invariant structure along it. We refer to such

Ž . w xstructures as photonic crystal fibers PCF 19 . Within the past few years Russell
and co-workers have pioneered this field by the realization of PCFs, compromising

Ž .fine silica fibers with an array of air holes running down their length see Fig. 1
w x19]23 . This microstructured fiber has recently been used to form waveguides with
new propagation properties, compared to conventional optical fibers. We will
address these properties here, as well as the presently used tools for their
modeling.

Although these new waveguides show remarkable properties, it is important to
notice that they have a core, with a refractive index above the effective index of the
surrounding material, and the waveguidance is caused by TIR. The realization of a
fiber that truly operates by the photonic bandgap effect would naturally be of great
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w xFIG. 1. Photonic crystal fiber, currently fabricated at the University of Bath 23 .

interest from both a fundamental and an application-oriented point of view. For
the triangular-based cladding structure used for the PCFs, it has proven difficult to
realize a structure exhibiting PBG effect at optical wavelengths. We have thus
turned our interest toward different crystal structures. This search for new struc-
tures has proven to be very fruitful and has led to the development of a new PCF

w xdesign 24, 25 . We here present an investigation of this novel PCF, which appears
immediately realizable. It thus seems very promising for achieving the goal of
experimental realizations of new optical fibers, guiding light by a mechanism
different from that of all former fibers.

The paper is organized in the following way. In Section II we present three
different methods currently applied for the modeling of PCFs. The properties of
the index guiding PCFs are discussed in Section III, and in Section IV we
investigate new photonic crystal cladding structures and explain the principles for
waveguiding by the PBG effect. The novel PCF design is presented, and its
flexibility and possibilities of improving and adding to today’s fiber applications are
discussed.

II. MODELING PHOTONIC CRYSTAL FIBERS

The complex nature of the cladding structure of the PCFs does not allow for the
direct use of methods from traditional fiber theory. Especially for the novel PCF,
operating by the PBG effect, the full vectorial nature of the electromagnetic waves
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has to be taken into account, and a method closely related to the plane-wave
methods used for calculating electronic bandgaps in semiconductors has been
developed. However, for the index-guiding PCFs, a simpler scalar model, based on
an effective-index of the cladding, has proven to give a good qualitative description
of the operation. We will be using this model to gain qualitative information about
the properties of the high-index core triangular PCFs, as well as a more advanced
method, based on the direct solution of Maxwell’s equations around the core
region of the triangular PCF using a set of localized basis functions, for accurately
determining the modal dispersion properties.

A. Effectï e-Index Approach

In order to establish a relatively simple numerical tool that could provide
qualitative mode-propagation properties of the high-index core triangular PCFs,

w xBirks et al. 26 proposed a method in which sequential use of well-established
fiber tools was applied. The fundamental idea behind this work was to first
evaluate the periodically repeated hole-in-silica structure of the cladding and then
Ž .based on the approximate waveguiding properties of this cladding structure
replace the cladding by a properly chosen effective index. In this model, the
resulting waveguide then consists of a core and a cladding region that have
refractive indices n and n , respectively. The core is pure silica, but theco cl

definition of the refractive index of the microstructured cladding region is given in
terms of the propagation constant of the lowest-order mode that could propagate
in the infinite cladding material. We will now briefly review this scalar effective-
index method, which also has been used as a basis for the approximate dispersion

w xand bending analysis presented in 27 and elaborated on in Section IIIB of this
paper.

The first step of the effective-index method is to determine the cladding mode
field, C, by solving the scalar-wave equation within a simple cell centered on one
of the holes. The diameter of these cells equals the pitch, L, between the holes of
the cladding structure, and as illustrated in Fig. 2, their hexagonal shapes have
been approximated by a circular one in order to make a general circular symmetric
mode solution possible. By reflection symmetry, the boundary condition at the cell

Ž .edge at radius Lr2 is dCrds s 0, where s is the coordinate normal to the edge.
This means that in the corners of the original hexagonal-shaped cells we have to
imagine constant fields with values equal to those at the circular cell boundary.
The propagation constant of the resulting fundamental space-filling mode, b , isfsm

Žused to define the effective index of the cladding as n s b rk where k is theeff fsm
.free-space propagation constant of light with wavelength l . Figure 2 further shows

an example of the resulting field distribution in the cladding cell. It should also be
Žnoted that in the calculation of this cladding field together with the effective-index

. w xvalue we have used the normal weakly guiding field assumption 28 , although the
Ž .index step between the central hole refractive index 1.0 and the surrounding silica

Ž .refractive index around 1.45 actually is considerable. However, the hereby intro-
duced inaccuracy is considered to be less significant than the approximation of the
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FIG. 2. Mode distributions in cladding cell for a silica PCF with a pitch of 2.3 mm, and an air-hole
Ž w x.size given by drL s 0.40 fiber parameters comparable to those presented by Birks et al. in 26 . The

modes are calculated at wavelengths 1.0, 1.5, and 2.0 mm. Inset shows the hexagonally shaped cladding
cell with its inscribed circular approximation. A slightly different circular approximation was used

w xin 26 .

guided-mode field in the effective-index fiber compared to the actual field in the
PCF.

Now having determined the cladding- and core-index values, we may calculate
the approximate propagation properties of the PCF as for a step-index fiber with
core index n , core radius Lr2, and cladding index n s n . As an extension toco cl eff

w x w xthe cladding-mode model originally described in 26 , it was in 27 added that the
refractive index for silica was wavelength dependent. This was done through

w xthe introduction of the generally applied Sellmeier formula 29 . In Section IIIB,
the effective-index model will be used for an investigation of bending loss and
dispersion properties.

B. The Method of Localized Basis Functions

Despite the good qualitative information provided by the simple effective-index
model, advanced numerical methods must be used for highly accurate modeling of
the PCFs. A method based on the direct solution of Maxwell’s equations, using a
representation of the refractive index and the field distributions as sums of
localized basis functions, has recently been developed for the modeling of triangu-

w xlar PCFs 30 . Here, we will review the method, and in Section IIIA we apply it to
the calculation of single-mode operation and group velocity dispersion of triangular
PCFs.

The guided modes of the PCFs are localized in the close vicinity of the defect
forming the core. Therefore, it is possible to model the guided modes by represent-
ing the fields as sums of functions localized in the vicinity of the core. A clear
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advantage of such an approach is that for an appropriately chosen set of basis
functions, only a modest number of functions are required to accurately describe
the bound mode, thereby significantly lowering the demand for computational
resources. To implement the method we reformulate Maxwell’s equations for a
medium translationally invariant along the z axis as an eigenvalue problem for the

w xpropagation constant b 31 ,

=2 qk 2« h q = ln « = = =h s b 2 h , 1Ž . Ž . Ž .Ž .Ž .H H H H H H

where = denotes the gradient in the periodic xy plane, k is the free-space waveH
w xTnumber, and the components of the vector h s h h correspond to theH x y

transversal components of the magnetic field H,

H s h exp i b z y ck t ; i s x , y.Ž .i i 0

For the system of basis functions we used the set of Hermite]Gaussian functions
w x30

2 2 2f s exp y x q y r2L HH xrL HH yrL , 2Ž . Ž . Ž .Ž .m n m

where HH is the Hermite polynomial of the order m and L denotes the period ofm

the lattice. The functions f are mutually orthogonal and form a completem n

system in the xy plane. They are localized in the vicinity of the point x, y s 0. In
Ž .the basis of functions f Eq. 1 becomes the algebraic eigenvalue problemm , n

Lm , nhk , l s b 2 hm , n 3Ž .Ý k , l H H
kl

for the vector of coefficients hk , l representing the transversal magnetic field in theH
Hermite]Gaussian basis. Lm , n are the matrix coefficients of the operator on thek , l

Ž .left-hand side of Eq. 1 in the Hermite]Gaussian basis. They are real and may be
found analytically for a wide range of lattices.

The implementation of the method becomes especially simple in the high-
frequency regime, where the coupling between the orthogonal components of the
field in the transversal plane becomes negligible. In this regime, a scalar approxi-

Ž .mation holds, and the eigenvalue problem 3 becomes Hermitian. For calculations
Ž .of the guided modes of the PCFs, the third term in Eq. 1 , describing the coupling

between the orthogonal components of the field in the transversal plane, scales
with the air filling fraction, and for small holes the high-frequency limit is reached
very quickly. For example, triangular PCFs with an air filling fraction less than 10%
are in the high-frequency regime for wavelengths less than L.

C. Full-Vectorial Plane-Wä e Expansion Method

For the general calculation of photonic bandgaps in full periodic structures and
the modes introduced by structural defects, various methods have been proposed
w x w x32]37 . One of the most widely used is the plane-wave method 32 . This method
solves the full-vector wave equation for the magnetic field and, as the name
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implies, is based on a plane-wave expansion of the field and an expansion of the
position-dependent dielectric constant. The method has a very general nature for
treating periodic structures and may be applied to one-, two-, and three-dimen-
sional problems. It allows one to calculate the photonic band diagrams of photonic
crystals and thereby the possible existence, width, and positioning of any PBGs. By
an enhancement of the simple plane-wave method, it may also be used to treat the
important case of structural defects in the photonic crystal. This is the method we
will be employing in Section IV for the analysis of the novel PCF.

For a single mode, the full-vector wave equation of the magnetic field H mayk

be obtained from Maxwell’s equations and expressed as

21 v
= = = = H s y H , 4Ž .k k2« r cŽ .

Ž .where k represents the wave propagation vector of the mode and « r is the
position-dependent dielectric constant of the periodic structure. Taking advantage
of the periodic nature of the problem, the H-field may be expanded into a sum of
plane waves using Bloch’s theorem as

H s h exp yi k y G ? r , 5Ž . Ž .Ž .Ýk kyG
G

where G represents a lattice vector in reciprocal space, describing the periodic
structure. The dielectric constant may be expressed as a Fourier series expansion

1
s V exp iG ? r , 6Ž . Ž .Ý G« rŽ . G

where

1 1
V s exp yiG ? r dr . 7Ž . Ž .HG A « rŽ .u

Ž .In 7 , A indicates the area of a unit cell, i.e., the smallest region, that may beu

used to represent the periodic structure. In Section IV we will look in greater
detail at the special unit cells applied for the modeling of PCFs. Finally, by

Ž . Ž . Ž .substituting 5 and 6 into 4 a matrix eigenvalue problem is obtained, where, for
a fixed wave vector, k, the frequencies, v, of the allowed modes in the periodic
structure are found as eigenvalues.

III. INDEX-GUIDING PCFS

Due to an operation based on total internal reflection, the properties of
high-index core triangular PCFs in many respects resemble those of step-index
fibers. However, very important differences occur as a result of the complex
geometry of the cladding structure. In this section we address some of the basic
waveguiding properties of the PCFs and compare them to standard optical fibers.



BROENG ET AL.312

Second, we look at some of their more advanced properties which have a direct
application-oriented interest.

A. Basic Properties

Similar to standard optical fibers, the high-index core triangular PCFs will always
support at least one index-guided mode. In Fig. 3, we have illustrated the field
distribution of the lowest-order mode of a triangular PCF. The specific mode is for
a PCF with a pitch, L, of 2.3 mm, and a hole size drL of 0.23, where d is the air
hole diameter. The experimentally obtained field distribution is for the PCF
operating at l s 458 nm. The corresponding contour plot of the calculated field is
presented in Fig. 3b. The field was calculated using the method of localized basis
functions, in the high-frequency regime, using 200 basis functions. The distribution
is seen to have the same rotational symmetry of the PCF. The field barely extends
beyond the first row of air holes surrounding the defect, so the high-index region
within the first row of holes indeed acts as the core of the fiber.

A manifestation of the resemblance of triangular PCFs to step-index fibers
Ž .appears clearly when regarding the group velocity dispersion GVD of the funda-

mental mode. In Fig. 4 we have illustrated this by plotting the frequency depen-
dence of the GVD for index-guiding PCFs and equivalent step-index fibers chosen

w xby matching their effective cladding indices in the low-frequency limit 26 . From
the figure a very similar behavior of the GVD is observed. There is, however, one
important feature separating the GVD of the two fiber types. For both fibers the
GVD of the lowest-order mode can reach negative values. While step-index fibers,
however, always support more than one guided mode in the relevant frequency
range, PCFs may be designed to support only a single mode in the same interval.

Ž .FIG. 3. Contour maps of the intensity distribution in the transversal plane of the observed a and
Ž .modeled b lowest-order mode for l s 458 nm. The spacing between the air holes is L s 2.3 mm, and

the ratio of hole diameter to the spacing is drL s 0.23. Filled circles represent the air holes closest to
the defect.
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Ž .FIG. 4. Group velocity dispersion of the lowest-order mode of PCFs a and of equivalent
Ž .step-index fibers with the diameter of the core equal to 2L b . On both plots the curves correspond in

descending order to drL s 0.45, 0.35, 0.25. The plots represent a normalized waveguide dispersion
2Ž . Ž .2­ bL r­ kL . Positive values of this quantity correspond to the normal conventional waveguide

dispersion.

This makes the realization of PCFs having single-mode operation with negative
GVD a realistic possibility.

In fact, the triangular PCFs may be designed for endlessly single-mode opera-
tion. This unique ability was first explained by Birks et al. using the effective-index

w x Ž .approximation for the cladding structure 26 see also Section IIA . In traditional
fiber theory, a normalized frequency, V, is often used to determine the number of

w xguided modes in step-index fibers 31 ,

2pr
2 2'V s n y n , 8Ž .co cll

where r is the core radius. Unlike for step-index fibers, the effective V value for
PCFs tends to a stationary value in the high-frequency regime. This behavior is
illustrated in Fig. 5 and is a result of the strong wavelength dependency of the
photonic crystal cladding index. In the high-frequency limit, the effective index of

w x Ž .the cladding n is approaching n 26 , and we therefore realize from 8 that acl co

stationary V value may be reached for the PCFs. This is, of course, in directeff

contrast to standard optical fibers, where the cladding index is largely wavelength
independent, and V ª ` for l ª 0, resulting in multimode operation.

The stationary V -value is defined by the ratio of the hole diameter d to theeff

period of the lattice L, and increases with the ratio. Thus by designing PCFs with
drL below a certain value, V may be kept under the second-order mode cutoffeff
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value over any wavelength range, thereby ensuring an endlessly single-mode
operation. For step-index fibers this cutoff V value is 2.405, and although a
different value is expected for the PCFs, we see from Fig. 5 that a cutoff V ofeff

approximately 2.5 has been experimentally obtained. Above this V value theeff

triangular PCFs support higher-order modes, and a calculated field profile of the
second-order mode is illustrated in Fig. 6. The profile is seen to be very similar to
second-order modes of step-index fibers.

B. Ad¨anced Properties

Among the most interesting aspects of the work on PCFs are of course their
waveguiding properties with respect to their possible application in modern fiber
optical communication and sensor systems. This means that a considerable interest
is directed toward aspects such as spotsize behavior, loss properties, and dispersion
properties. It is noteworthy that this area of investigation is still very young, and we
must, consequently, expect that many new developments and more accurate
methods for characterization and analysis will enter in the field. However, in order
to get a first impression of some of the waveguiding properties of PCFs, we have

Ž .chosen to apply the effective-index model described in Section IIA in an approxi-
mate analysis of the macrobending and dispersion properties of triangular PCFs.

FIG. 5. V for triangular high-index core PCFs. The curves correspond to values of drL s 0.45,eff
Ž . Ž .0.35, 0.25, 0.2 in descending order. X Second-order-guided modes observed experimentally; O cases

w xwhere the PCFs were found to support only the fundamental mode 22 . The measured contour map in
Ž .Fig. 3a corresponds to the lowest-frequency O point.



PHOTONIC CRYSTAL FIBERS 315

FIG. 6. Theoretical near-field contour plot of the second-order guided mode of a PCF with
drL s 0.41 and Lrl s 4.8. Similar to the fundamental mode, the field of the second-order mode is
confined within the first row of holes represented as dotted circles.

B.1. Bending losses. The macrobending losses of optical fibers are very impor-
tant, not only from a practical handling point of view, but also because they define
the spectral window in which the fiber may be operated and provide important

w xinformation about the modes of the fiber. In 26 , the bending properties of the
PCF were described by the introduction of a critical bend radius, i.e., a radius
under which the fiber may not be bent in order for the excess bending loss to be
below a given limit. However, in order to numerically characterize the unique PCF
bending properties including both a low-wavelength and a long-wavelength bend-

w xloss edge, we have here chosen to apply the bending loss formula described in 38 .
In this formulation, which has proven to provide very accurate results for standard
optical fibers, the power loss coefficient due to macrobending is written as

3y4Dw
2'p A a exp Re 2ž /3a¨

a s , 9Ž .
2wR ¨

4Pw q(
a 2Dw

where D is the relative index difference between the maximum refractive index in
the core region and the cladding index, a is the core radius, ¨ is the normalized
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frequency, and w is the normalized decay parameter in the cladding. R is the
radius of curvature, A is the amplitude coefficient of the cladding electric field,e

and P is the propagation power carried by the fundamental mode. Applying
Ž .Eq. 9 , we directly calculated the bend loss from the Bessel-function coefficients

and propagation constant of the effective-index fiber. In order to choose a realistic
bend radius in this analysis, we consider a situation where the full length of the

Žfiber is coiled at a radius of 6.0 cm corresponding to dispersion-compensating
.fiber coils, or coils in a laboratory . The bending-loss values for different air-hole

dimensions are shown in Fig. 7 for a silica PCF with L s 2.3 mm. One of the most
important observations is that both the upper and the lower bend edges are found,
which clearly is in contrast to the case of the standard fiber. This difference is
further illustrated in Fig. 7, where the bend loss is also shown for a standard fiber,
which has the same core]cladding refractive-index difference as the PCF at the
wavelength l s 1.3 mm, and a core diameter of L. The bending loss results in

ŽFig. 7 also indicate that a large operational wavelength range of interest to optical
.communications is available with PCFs. In addition, the PCFs have the perspective

of providing very low scattering losses, because they may be fabricated from
undoped silica, and as long as the air holes may be manufactured with sufficiently
large diameters, the PCFs seem considerably more bending resistant than standard
optical fibers.

B.2. Dispersion. If applications of PCFs are considered within the area of
optical communication systems, then the most interesting question at present will
probably be, What are the dispersion properties of the PCFs? In order to get closer
to the answers to this question, the dispersion properties have been calculated
using the effective-index model outlined in Section IIA. Once more, the design

w xoutlined in 26 , i.e., a PCF with a pitch of 2.3 mm, is used as a point of reference.

FIG. 7. Bending loss properties for standard fiber and PCFs coiled with a 6.0 cm radius. The
w xnumbers indicate the relative air-hole diameter drL. Similar results have been presented in 27 .
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For such fibers with variable air-hole filling fractions, the calculated dispersion is
shown in Fig. 8 as a function of wavelength.

From Fig. 8, we first note that for very small air filling fractions, e.g., when the
influence of the air holes is strongly limited, the dispersion curve is expectedly very

Žclose to the material dispersion of pure silica zero dispersion wavelength around
.1.3 mm . As the diameter of the air holes is increased, the waveguide disper-

sion becomes increasingly strong, and we obtain a significantly reduced dispersion.
It is particularly interesting that an almost constant dispersion level around
y60 psrkmrnm is predicted for a ratio drL s 0.40. Note also that the wave-

Ž .length range over which the flattened dispersion is calculated is very broad, and
with reference to Section IIIB.1, the bending loss properties are not considered to
be a serious limit. These dispersion results indicate the interesting possibility of
applying the PCFs as dispersion-compensating or dispersion-managed fibers for
optical communication systems. Therefore, to investigate this option further, a
number of different designs have been analyzed. The most spectrally constant
dispersion values were calculated for fibers with relative air-hole sizes around
drL s 0.40. Some of the results are presented in Fig. 9, where very flat dispersion
curves with values below y100 psrkmrnm are seen.

For the fiber parameter range used in Fig. 9, it is noteworthy that the effective
w x Žnormalized frequency 26 , V , is in the range from 2.0 to 3.5 smallest value foreff

. w x Žsmallest pitch . This should be compared to the result of Knight et al. 22 see also
.Fig. 5 , who found that a PCF with V - 2.5 could be expected to support only aeff

single mode. Although based on an approximate numerical method, the dispersion
results strongly indicate that PCFs have potential applications as dispersion-manag-
ing components, and we aim to address the issue of dispersion properties in much
more detail in future work.

FIG. 8. Dispersion as a function of wavelength for PCFs with a fundamental cell diameter
Ž . w xL s 2.3 mm curves are shown for different ratios drL . Similar results have been presented in 27 .
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FIG. 9. Dispersion as a function of wavelength for PCFs with a relative hole size of drL s 0.40
Ž .curves for different pitch values: 1.4]3.2 mm in steps of 0.3 mm . Similar results have been presented

w xin 27 .

IV. WAVEGUIDING BY THE PBG EFFECT

The PCFs we have been investigating so far have all had the common character-
istic of a high-index core and an operation based on TIR. In the remainder of this
paper, we address a radically new concept for optical fibers, namely photonic
bandgap guiding PCFs. For an understanding of the principle of waveguiding by
the PBG effect, and as a basis for the analysis of the novel PCF, we first briefly
touch upon some general aspects of photonic crystals and their classification.

A. What Is a Photonic Bandgap?

To support a full 3D PBG, that is the photonic crystal does not allow any modes
within a band of frequencies to propagate, irrespectiple of direction, the crystal

w xneeds a full 3D periodicity 10, 39, 40 . However, structures with a 1D and 2D
w xperiodicity are also generally classified as photonic crystals 41]43 . Where the 1D

case is well known and has been exploited for many years, finding use in, e.g.,
high-reflective mirrors, the possibilities of utilizing 2D periodic structures for
achieving PBGs have only been realized within the past decade. The main reason
for this is that where any refractive index contrast between the different layers in a
1D periodic structure results in a 1D forbidden gap, the realization of 2D PBGs is
far more demanding. The realization requires both a relatively large refractive
index contrast and a properly designed wavelength-scale periodic microstructuring
of the material. Such a periodic structuring at the wavelength scale represents
today the major technological difficulty for the realization of 2D and 3D photonic
crystals operating at optical frequencies.
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A.1. 3D field propagation in 2D photonic crystals. For 2D photonic crystals, with
wave propagation restricted to the periodic plane, the electromagnetic fields may
be decomposed into separate TE and TM components. While the low-index
contrast between silica and air does not allow for overlapping PBGs for TE- and
TM-polarized waves, it is important to notice that for the case of true 3D field

w xpropagation in 2D silicarair structures, full PBGs may open up 20 . In this
quasi-3D case a separation of the fields in TE and TM components is no longer
valid, and when using the term PBG in connection with the PCF investigations, we

w xrefer to a PBG common to all polarizations 44, 45 .
ŽFor 2D photonic crystals including quasi-3D cases such as for the photonic

.crystal fibers the vectors describing the 2D lattice have no component out of the
Ž .periodic plane. For 3D field propagation in a 2D structure i.e., quasi-3D case the

out-of-plane component of the wave propagation vector, b , will therefore always
remain constant. This knowledge of a well-defined out-of-plane component of the
wave propagation vector for a fixed frequency mode is crucial for the analysis of
the PBG guiding PCF. In the analysis, we operate with a normalized out-of-plane

Ž .propagation wave vector component, bL normalized propagation constant , and
normalized frequencies, kL, where again L is the distance between the nearest

Ž .holes and k the free-space wave constant s2prl .

B. Impro¨ed Cladding Structures: Honeycomb-Based Photonic Crystals

Although the high-index core in triangular PCFs will always result in a funda-
mental mode guided by TIR, it is possible for higher-order modes to be PBG
guided, requiring that the cladding structure exhibit the PBG effect. Until now,
however, no such PBG-guided modes have been observed in triangular PCFs, and
we have turned, therefore, our interest toward new cladding structures, in a search
of photonic crystals exhibiting PBG effect at realizable dimensions. A structure
that has proven superior to triangular structures, with respect to broader PBGs, is

w xthe honeycomb, or graphite, structure 24, 46, 47 . The honeycomb structure is
illustrated in Fig. 10, along with an indication of L and the unit cell of the
structure. As shown in Fig. 10, the air filling fraction, f , defined as the total area of
the air holes in a unit cell relative to the total unit cell area, will not be the same
for a triangular and a honeycomb structure with similar L and air-hole size. When
comparing triangular and honeycomb structures and using f to describe the
structures, it is, therefore, important to notice that for the same L and hole size,
the honeycomb structure has a factor 2r3 smaller f value.

A band-structure calculation using the plane-wave method for a honeycomb
structure with an air filling fraction of 30% at a fixed b value of 2prL is
illustrated in Fig. 11. The band diagram reveals the existence of two PBGs
Ž .primary and secondary gaps . For the specific b value, no modes are allowed to
propagate in the honeycomb photonic crystal if their frequencies fall within one of
the two PBGs. To exemplify how to perform designs from the normalized parame-
ters obtained from, e.g., the band diagram in Fig. 11, we chose a nearest hole
distance, L, of 2 mm. For this value, the lower PBG region boundary of the

Ž .primary gap kL s 4.75 corresponds to the free-space wavelengths l s 2.65 mm.
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FIG. 10. The two-dimensional honeycomb PBG structure.

FIG. 11. Band-structure calculation for a honeycomb photonic crystal with an air filling fraction of
30% and out-of-plane wave-vector component fixed at 2prL. The three high symmetry points of the
honeycomb crystal lattice are indicate by O, M, and X. For a full characterization of the photonic
bandgaps of the crystal it is sufficient to sweep the in-plane component of the wave propagation vector

w xalong the boundaries of the irreducible Brilloin zone of the lattice 32 .
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By varying the b value and plotting the boundaries of the two bandgaps, the result
in Fig. 12 is obtained. As is shown in the figure the silicarair photonic crystal does

Ž .not exhibit any forbidden gaps in the pure 2D case bL s 0 ; however, as bL is
Ž .increased moving out of the plane forbidden regions do open up. In the figure, we

have introduced the ‘‘radiation line’’ defined as the envelope of the lowest-
Ž .frequency-allowed mode i.e., the fundamental space filling mode of the structure .

For the further analysis of honeycomb-based cladding structures, we include an
investigation of the effect of adding small interstitial holes in the cladding struc-
ture. Such interstitial holes have been observed remaining in the cladding of recent

w xPCFs, and attributed to the stack-and-pull fabrication technique of the PCFs 48 .
In Fig. 13 we have illustrated the unit cells that were used, both for the study of

Ž .triangular structures Fig. 13a and for honeycomb structures modified by intersti-
Ž .tial holes Fig. 13b . The relative size of the two gaps of the honeycomb structure

with f s 30% is illustrated in Fig. 14. The relative size is defined as the width of
the gap relative to its center frequency. Included also is the relative size of the first

Ž .PBG appearing for a triangular structure with same air-hole sizes f s 45% . As
seen, the relative size of the PBGs for the honeycomb structures is considerably
larger than for the corresponding triangular structure. Furthermore, the interstitial
holes are seen to increase the size of the PBGs, where in triangular structures

w xthese have been found to decrease the PBGs 24 . Building on the intuitive ideas of
w xJoannopoulos et al. 3 , where the broadest complete PBGs were found for

Ž .structures with large nodes connected by thin veins see Fig. 15 , we realize the
superiority of the honeycomb structure over the triangular structure. The honey-
comb structure has intrinsically larger nodes and relatively narrower veins than the

FIG. 12. Out-of-plane properties of a honeycomb photonic crystal with an air filling fraction of
30%. Two complete gaps are seen to open up above the radiation line, defined as the frequency of the
fundamental space filling mode.
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Ž .FIG. 13. a Unit cell employed for the study of triangular photonic crystals. The angle between the
Ž .two lattice vectors R and R is 1208. b Unit cell employed for the general study of photonic crystals1 2

with a hexagonal symmetry. A honeycomb structure with interstitial holes results from setting the radius
of the corner holes to zero.

triangular structure. Furthermore, for the triangular structure, we notice that the
Žinterstitial holes fall right in the center of the nodes thereby severely damaging

.their ability to act as high-index centers ; in contrast, the interstitial holes in the
honeycomb structure are seen to leave the nodes undisturbed, while at the same
time narrowing the veins even further.

FIG. 14. Relative size of the photonic bandgaps for a honeycomb lattice with filling fraction
f s 30%. Interstitial holes are seen to have the effect of increasing the bandgaps. The insert shows the

Ž .geometry of the honeycomb lattice with interstitial holes f s 5%, f s 50% . Similar results haveint tot
w xbeen presented in 24 .
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FIG. 15. Schematic illustration of the concept of nodes and veins for an intuitive understanding of
Ž . Ž .the influence of interstitial holes in triangular structures a and honeycomb structures b .

The investigations of cladding structures presented thus far have been for
relatively large f values, where the triangular structures exhibit the PBG effect.
However, apart from the broader PBGs, the honeycomb structures also exhibit the
PBG effect at much lower f values than the triangular structures. This may prove
vital for the realization of the novel fiber. We have found complete PBGs in
honeycomb structure for f values down to as low as 5%, where no PBGs exist for
triangular structures. We therefore conclude that at realizable air-hole sizes, the
PBG effect is exhibited for honeycomb photonic crystals, and thus the basic
requirement for obtaining confinement by this new physical mechanism may be
fulfilled.

C. No¨el PCF Design

Based on the results from the investigations of honeycomb-based cladding
structures, we have recently proposed a novel PCF design operating solely by the

w xPBG effect 24 . A cross-sectional schematic of the honeycomb-based PCF is
illustrated in Fig. 16, along with the design of the high-index core triangular-based
PCFs. Apart from the improved cladding structure it is seen to have a low-index
centrally placed structural defect. This defect is easily introduced as an extra air
hole with a size of the same order as the remainder of air holes. The exhibition of
the PBG effect at realistic fabrication parameters is, of course, a fundamental
prerequisite for obtaining PBG guidance, but the low-index defect proves further
advantageous for studies of PBG guidance, as it does not allow a fundamental
mode guided by TIR. An important feature of the new PCF is that it provides an
extra degree of design freedom compared to triangular PCFs. For triangular PCFs
only the pitch, the cladding hole sizes, and their shapes may be tuned for obtaining
specific guiding properties. Since the core in these PCFs is simply created by a
missing air hole, its geometry will be fixed by the above properties. In addition to
the parameters of the triangular PCFs, the novel PCF further offers the possibility
of varying the size and the shape of the central air hole, independently of the other
fiber parameters. In Section IVD we shall demonstrate how the guided modes of
the novel PCF may be affected by such changes.
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Ž .FIG. 16. a Cross-sectional view of a honeycomb photonic crystal fiber. For light having a
frequency within the PBG of the surrounding cladding structure, the central periodicity-breaking region
may act as a defect site, to which light can be confined. If the light has a nonzero wave-vector

Ž .component in the direction of the fiber axis, it may thus be guided along the defect. b Cross-sectional
view of a triangular photonic crystal fiber. The central defect here causes a high-index region to allow
waveguiding by total internal reflection.

D. Confinement of Light at Low-Index Defects: PBG Wa¨eguidance

For an easy-to-grasp explanation of the mechanism of confining light by the
PBG effect, we consider a light source at a structural defect in a photonic crystal.
The light source is operating at a fixed frequency falling inside the forbidden gap
of the corresponding perfect photonic crystal. In the close vicinity of the defect the

Žlight does not experience the periodicity of the photonic crystal the periodicity is,
.of course, broken at the defect , and the light may well be allowed as the PBG

effect locally is not exhibited. Propagating away from the defect, the light starts
experiencing the full periodic nature of the photonic crystal and will be expelled by
the PBG effect, and thus forced back to the defect site. In this way a very strong
confinement of the light around the defect site may be achieved, and the light will
only be allowed to propagate if this takes place in the close vicinity of the defect

Ž .site. Such PBG confinement has for planar structures pure 2D case theoretically
been shown to result in extraordinary optical waveguides, with lossless transmission

w xaround sharp 908 degree bends 5, 9 . For the novel fiber a point defect, such as the
central air hole, allows for modes with a frequency falling inside the PBG of the
cladding structure to be guided along the defect in the direction perpendicular to
the periodic plane, i.e., along the fiber axis.

To determine the guided modes of the honeycomb PCF, we employed a so-called
supercell enhancement to the plane-wave method. This enhancement allows the
treatment of structural defects in the photonic crystal. The principle for the
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enhancement is simple, as it just includes representing the structure by a large unit
cell in which the defect is included. The real problem that is solved is thus a
periodic structure, where also the defect is repeated periodically. For the accurate
calculation of the defect modes it is therefore necessary to choose a supercell
sufficiently large that the spacing between the two nearest defects is large enough

w xfor their coupling to become negligible 33 . For the analysis of the honeycomb
PCF we are operating with a supercell resulting in a spacing between two nearest
defects of five simple honeycomb lattice vectors. Using the supercell plane-wave
calculation with a basis of 2905 plane waves, the modal dispersion curves, illus-
trated in Fig. 17, were obtained. The calculation is for a honeycomb fiber with
f s 18%, a central air-hole diameter of 65% of the cladding holes, and no
interstitial holes. The figure reveals several important differences between the
novel fiber and conventional fiber, including the high-index core PCFs. First, no
modes above the radiation line are observed, proving that no modes will be guided
by total internal reflection in the novel design. For index guiding fibers, confine-
ment is only achieved for modes having an effective index below the index of the

Ž .core region and above the index of the cladding region the radiation line .
Considering first conventional fibers, a continuum of modes are allowed below the
radiation line; however, as these modes are not confined to the core region but
represent allowed cladding modes, a real fiber will not serve as a waveguiding
structure for these modes. For the novel fiber, however, we see forbidden regions
opening up below the radiation line, a phenomenon uniquely caused by the

FIG. 17. Core modes of a honeycomb PCF. The top dashed curve is the radiation line, illustrating
the effective refractive index of the cladding. The solid curves show the guided core modes. The
dash]dotted curves surrounding the guided modes represent the PBG boundaries. Constant frequency

Ž .lines dotted are also illustrated, with their respective values given at the lower part of the figure.
w xSimilar results have been presented in 49 .
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periodic structuring of the cladding. In these regions no modes are allowed in the
full periodic photonic crystal, as discussed earlier, but the introduction of the
central defect may cause the existence of localized defect modes. Indeed a doubly
degenerate mode is seen to enter into the primary forbidden region at approx.
bL s 5 and remains there until approx. bL s 30. At bL around 15, a second
mode is seen to enter the secondary bandgap. Single-mode operation of this
specific PCF therefore may be achieved for bL s 5 to 15. For a PCF with
L s 2.0 mm this interval corresponds to l s 1.2]3.2 mm. We have found all the
defect modes that are positioned inside the forbidden region to be localized to the
low-index defect region. Moving to the PBG boundaries the modes start coupling
to the allowed cladding modes, and these now-resonant defect modes therefore will
not be supported by the PCF waveguide over long distances. Sharp transmission
spectra for the PBG-guiding PCFs are therefore expected. As the defect modes
move to the center of the PBG regions a very tight confinement around the
low-index region is observed.

In Fig 18 we have plotted the calculated field distribution for the defect mode
appearing in the primary PBG at bL s 10. As shown in Fig. 18 the field is strongly
localized around the low-index core region. Although peak intensity appears
outside the air region, this confined mode is fundamentally different to any guided
modes in high-index fibers. In principle, even strong localization in the air regions
of PBG-guiding PCFs is possible, and the prospects of this are clearly very
appealing; e.g., for sensor applications, the ability to confine light in air regions will

FIG. 18. Field distribution of a mode positioned in the primary PBG of the cladding. The real space
hole structure around the fiber core is indicated by dotted circles. A strong confinement to the

Ž .low-index core region is observed dark regions represent high intensity . Similar results have been
w xpresented in 49 .
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open up sensing possibilities that cannot be achieved by today’s known fiber types.
Also for telecommunications applications, localization of part of the guided mode

Ž .in air or vacuum regions may prove very interesting. It is clear that nonlinear
effects may dramatically be reduced by the realization of a pure silica fiber, where
a large portion of the field is guided in vacuum. Regarding nonlinear effects as
setting the ultimate limits for the operation of today’s fibers, it is clear that
PBG-guiding PCFs have the potential to break the today known limitations. As the
results presented in this paper only represent the first efforts to explore the
potential of these new fibers, much work remains before they may find their way to
practical applications. An important feature to determine is the dispersive proper-
ties of the PBG-guiding PCFs. We expect from the different waveguiding mecha-
nism that these will be significantly different from index-guiding fibers. Although
not directly presented in this paper, we may gain some knowledge of the dispersion
in the honeycomb fibers from Fig. 17. First, it is seen that the modal index range in
which the fibers may be operated is greatly widened compared to that of conven-
tional fibers. As conventional fibers operate by TIR, this range is limited by the
core and cladding index difference. However, for the PBG-guiding PCFs we see a
much larger modal index range to operate in. Second, since the dispersion of the
novel fiber may be viewed as the curvature of the modal index curve, we realize
that the enlarged modal index range correspondingly greatly enlarges the possibili-
ties of operating the novel PCF in a region with specifically tailored dispersive
properties. Therefore, an obvious potential application of the novel PCFs will be as
dispersion managing components.

Finally, we focus on the appealing high flexibility of the novel fiber. By the
photonic bandgap effect, it is, as demonstrated, possible to open up forbidden
regions by correctly microstructuring the cladding and by introducing a defect site
to localize light within this region. By independently optimizing the cladding and
the defect structures, it is thus possible to tailor the properties of the fiber. In
Fig. 19 we have illustrated that it is possible by varying the size of the central
defect hole, but keeping the cladding structure fixed, to precisely tune the fre-
quency of the defect mode within the PBG region of the cladding. Although we
have only been investigating defect sites introduced by a single additional air hole,
many other ways of creating such defects may be thought of; e.g., for polarization-

Žmanaging purposes the introduction of asymmetric defects possibly with a larger
.defect region than that presented here seems intuitively a correct design route. In

future work, we will aim at addressing such more sophisticated PBG-guiding PCFs.

V. SUMMARY

In this paper we have reviewed some of the progress in the field of photonic
crystal fibers. Emphasis has been on the applicational aspects of high-index core
triangular photonic crystal fibers, and qualitative results on their single-mode
operation, bending losses, and dispersive properties have been presented. We have
been investigating the basic guiding properties of a new class of optical fibers,
which are radically different from all known fibers of today, and are operating
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FIG. 19. Tuning of the frequency of the core mode precisely within the PBG by varying the size of
the central hole. The plot is for a fixed value of bL s 5.

solely by the photonic bandgap effect. The prospects of having a fundamentally
new way of guiding light, completely different from that exploited for several
decades now in conventional optical fibers, seem extremely interesting and we have
briefly touched upon some of the new possibilities offered by the novel fibers.
While the results presented in this paper represent the first efforts to explore the
potential of these new fibers, much work remains for determining their potential
use in specific applications, and we will pursue this in more detail in our future
work.
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