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Periodic Defects in 2D-PBG Materials: Full-Wave
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Abstract—In this paper, an accurate and efficient characteriza-
tion of two-dimensional photonic bandgap structures with periodic
defects is performed, which exploits a full-wave diffraction theory
developed for one-dimensional gratings. The high convergence rate
of the proposed technique is demonstrated. Results are presented
for both TE and TM polarizations, showing the efficiencies as a
function of wavelength, incidence angle, geometrical and physical
parameters. A comparison with other theoretical results reported
in the literature is shown with a good agreement. The transmission
properties of photonic crystals with periodic defects are studied,
investigating the effects of the variation of geometrical and phys-
ical parameters; design efficiency maps and formulas are given;
moreover, the application of the analyzed structures as filters is
discussed.

Index Terms—Electromagnetic scattering by periodic struc-
tures, gratings, microwave filters, passive filters.

I. INTRODUCTION

PHOTONIC BANDGAP (PBG) materials [1] are periodic
structures of great interest for their applications both in

the microwave region and in the optical range. In PBG struc-
tures, periodic implants of material with a specific permittivity
are embedded in a homogeneous background of different per-
mittivity; the implants are comparable in size to the operation
wavelength, and they may be dielectric or metallic, but also
magneto-dielectric, ferromagnetic, ferroelectric, or active. The
main feature resulting is the presence of frequency bands within
which the waves are highly attenuated and do not propagate [2].
This property is exploited in a lot of electromagnetic and optical
applications, such as microwave and millimeter-wave antenna
structures, waveguides, planar reflectors, integrated circuits, and
more [3]–[5]. The most commonly used methods for the anal-
ysis and design of PBG materials are the plane-wave-expansion
method [1], the finite-difference method [6], the finite-element
method [7], and the transfer-matrix method [8]. Various other
methods have been used, such as hybrid ones [9], [10]. It is noted
that most PBG applications deal with two-dimensional (2–D)
structures, that are invariant along a longitudinal axis and peri-
odic in the transverse plane [6], [11]. A 2–D PBG structure is
easier to manufacture than a three-dimensional (3-D) one [12],
[13].

The study of photonic crystals with defects is a topic of great
interest in the field of PBG materials. Defects may be present in
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a structure due to fabrication errors. Very often, however, PBG
materials with defects are on purpose designed to act as reso-
nant cavities, filters or switches, since the occurrence of a sharp
transmission peak in the bandgap results from defect creation.
In [14], the properties of a 2-D hexagonal array of air holes in a
dielectric material with defects are studied. For what concerns
microcavities built into photonic crystals, they allow enhancing
the spontaneous emission into the lasing mode and reducing it
into the spectrum of the nonlasing modes, so they greatly in-
crease the efficiency of lasers [15], [16]. In [17], measurements
of microcavity resonances in PBG structures with defects, di-
rectly integrated into a submicrometer-scale silicon waveguide,
are reported. The feasibility of optical filters and switches using
dielectric PBG structures with periodic defects is investigated in
[18]. In [19], a square microstrip resonator, with a PBG struc-
ture with defects in the lattice on the ground plane, is used to
design a passband filter (also realized and measured). In [20],
a dielectric-waveguide filter made of a 2-D PBG structure with
defects is designed, realized, and measured. In [21], an electro-
magnetic bandgap high-Q defect resonator, made of a periodic
lattice of vias in a host dielectric substrate with a defect, is used
to develop high-quality multipole filters.

The purpose of this paper is to investigate the characteristics
of 2-D finite PBG materials with periodic defects, by using
a full-wave method for diffraction gratings. In fact, a PBG
structure can be considered as a stack of diffraction gratings
separated by homogeneous layers, as pointed out in [22] where
a -matrix approach has been employed. With our approach,
taking advantage of recent calculation techniques as was done
in [23], it is possible to analyze and design, in a stable and
rapidly convergent way, electromagnetic crystals with rods
having an arbitrary shape; the rods can form rectangular,
triangular, hexagonal, or whatever kind of lattice, and they
can be made of isotropic or anisotropic dielectric as well as
of metallic material. Several kinds of periodic defects can be
considered: some layers of rods can be missing, or somehow
different in shape and material from the other ones, or else not
perfectly aligned.

In Section II, we explain how a rigorous diffraction theory
for multilevel gratings can be used to model and characterize
2D-PBG materials with periodic defects. We briefly resume the
formulation of the employed full-wave theory and discuss the
potentiality of such a method.

In Section III, we first check the efficiency and accuracy of
the approach and numerical implementation that we have de-
veloped: convergence figures as well as comparisons with the-
oretical results taken from the literature, are reported and com-
mented on. Then, a detailed study of PBG materials made of di-
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Fig. 1. Geometry of a multilevel grating.

electric parallel rods with a rectangular section, with a periodic
defect consisting of a central layer of rods with different shape
and permittivity, is presented. We investigate the effects of the
variation of geometrical and physical parameters on the trans-
mission properties of such a structure, and we give efficiency
maps and design formulas. Moreover, we discuss the applica-
bility of this kind of PBG materials with periodic defects as fre-
quency and polarization selective filter.

In Section IV, concluding remarks are finally given.

II. CHARACTERIZATION OF 2-D-PBG MATERIALS BY USE OF

A FULL-WAVE THEORY FORGRATINGS

A 2-D electromagnetic crystal may be considered as a stack
of periodic grids of rods separated by homogeneous layers, i.e.,
as a stack of one-dimensional diffraction grating. As a conse-
quence, it is clear that 2-D-PBG materials can be analyzed and
designed by using a rigorous diffraction theory for multilevel
gratings.

The formulation of the full-wave theory that we employ is
described in [23]. In short, consider a monochromatic plane
wave of wavelength (in a vacuum), impinging at an angle

on the multilevel grating of period shown in Fig. 1. The
typical layer ( , where M is the number of
layers) is a binary grating including several alternate regions of
refractive indices and , respectively. The multilevel
grating ( ) is bounded by two possibly different
media having refractive indices and , respectively.
As is known, the incident polarization may be decomposed
into the two fundamental TE (electric field parallel to the
grating grooves) and TM (magnetic field parallel to the grating
grooves) polarizations (see the insets in Fig. 1). The general
approach for exactly solving the electromagnetic problem

associated with the diffraction grating involves the solution of
Maxwell’s equations in each of the following regions:
the incidence region, the grating layers, and the transmis-
sion region. Since the refractive index of theth layer of the
grating, say , is a periodic function, its square can be
expanded in a Fourier series. Such a Fourier decomposition of
the permittivity function, together with a planewave expansion
of the electromagnetic fields (Rayleigh expansions in incidence
and transmission regions, modal expansions in grating layers),
leads to an eigenvalue problem which has to be solved in each
grating layer. Then, the tangential electric and magnetic field
components have to be matched at all the boundary surfaces.
The resulting equation system is to be solved for the reflected
and transmitted field amplitudes, so that the diffraction effi-
ciencies can be determined.

To obtain a high convergence rate even in TM polarization,
we used the formulation of the eigenvalue problem presented in
[24] and [25]. To overcome numerical problems due to ill-condi-
tioned matrices obtained on imposing the boundary conditions,
and to improve numerical stability and efficiency of the imple-
mented codes, we applied the technique presented in [26] to both
polarizations.

The above-summarized full-wave theory provides a solution
of the problem of electromagnetic diffraction by grating struc-
tures to an arbitrary degree of accuracy [27].

Our treatment of the PBG structures is very versatile, since
it allows us to study electromagnetic crystals with rods having
an arbitrary shape [see Fig. 2(a)]; moreover, the rods can form
whatever kind of lattice, as sketched in Fig. 2(b). Of course, also
PBG materials made of holes in a host medium, instead of rods,
may be studied.

As pointed out in the Introduction, with our approach pho-
tonic bandgap materials with periodic defects can be studied.



128 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 3, SEPTEMBER 2003

(a)

(b)

Fig. 2. (a) With the described approach, it is possible to study electromagnetic crystals with rods having an arbitrary shape. (b) The rods can form rectangular,
triangular, hexagonal, or whatever kind of lattice.

Fig. 3. Presence of periodic defects, which can be taken into account with our approach.

For example, PBG structures in which some layers of rods (as
well as layers of the homogeneous background) are missing may
be characterized. Moreover, the presence of rods with a shape
somehow different from the other ones, as well as the occurrence
of layers not perfectly aligned, may be taken into account. A few
possible defects are sketched in Fig. 3 for the simplest case of a
PBG material made of rectangular parallel rods forming a rect-
angular lattice.

III. N UMERICAL RESULTS

In order to check the efficiency and accuracy of our approach
and numerical implementation, in this section we compare our
numerical results with other presented in the literature; we also
report and comment on some convergence data (Section III-A).
Then, we consider 2-D square-lattice square-section-rod PBG
materials with periodic defects, and study their transmission
properties, investigating the effects of the variation of geomet-
rical and physical parameters; we give efficiency maps and de-
sign formulas, and discuss the application of such structures as
filters (Section III-B).

We now introduce some symbols that are used throughout this
section. With reference to a PBG structure without defect (see
Fig. 2): and are the dimensions, alongand respectively,
of a rectangular-section rod;and are the periods, alongand
, respectively, of the electromagnetic crystal. In a triangular lat-

tice, we assume that there is a lateral shiftbetween two neigh-
boring layers of rods, so thatcan vary from 0 (when the trian-
gular lattice degenerates in a rectangular one) to. For each
geometrical configuration, it is customary to define the so-called
filling factor , which represents the fraction of the unit cell of
the periodic structure filled by the rod. The parameter rep-
resents the number of rod layers in the finite PBG structure. For
what concerns the involved materials,and are the refrac-
tive indices of rod and background media, respectively.

As pointed out in Section I, PBG materials with various pe-
riodic defects can be studied by using the present method: for
example, structures in which some layers of rods are missing,
or are somehow different in size or shape from the other ones,
or else are not perfectly aligned. In the case presented in Sec-
tion III-B, the periodic defect consists of a matter excess (see
Fig. 4): in the middle of a structure made of an odd number of
layers, the central layer has an anomalous thickness, larger
than . We use the symbol to denote the refractive index
of the central layer, that can in general be different from. We
call the number of layers located on each side of the central
defect, so that . The structure can also be
viewed as a Fabry–Perot resonator, with the mirrors consisting
of the PBG material located on the two sides of the defect.

For what concerns the computational effort, is the
number of diffraction orders taken into account. Moreover, we
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Fig. 4. PBG material with a periodic defect consisting of a matter excess in
the middle of the structure.

Fig. 5. Convergence of the transmission efficiency� as a function ofN , for
a PBG structure made of a stack ofNL = 15 layers of rods with a square
section:d = h = 0:7�, b = b = 0:5d, b = 3b , n = 2, n = 2:4,
n = 1.

denote with the total transmission efficiency of the PBG
structure, that is the sum of the efficiencies of all the trans-
mitted orders (the efficiency of theth transmitted order is the
ratio between the Poynting-vector-component of the th order
transmitted wave and that of the incident wave). Analogously,
we denote with the total reflection efficiency. Unless other-
wise specified, the incident planewave is supposed to impinge
normally on the structure ( ). From a practical point of
view, due to the finiteness of the structure, it is useful to estab-
lish a conventional upper limit for the efficiency value within a
stopband: in our case, we arbitrarily assumed the presence of a
bandgap when .

A. Convergence, Stability, and Accuracy of Our Approach

An example of the convergence of the results, as a function of
, is shown in Fig. 5 for a PBG structure with a periodic defect,

with layers (i.e., and ), made of rods
with a square section: , ,

. The rod refractive index is , the defect index is

Fig. 6. Comparison between the results obtained by Bastoneroet al. [28]
(solid line) and our results (solid line with dots), for a PBG structure of
dielectric square-section rods forming a square lattice, with a central defect:
d = 0:336 �m, h = d

p
3=2, b = b = 0:261 �m, s = 0:5d, n = 1,

n = 3:68, b = 0:68 �m, n = n , andND = 6. The transmission
efficiency� is shown as a function of the frequencyf , for TE polarization,
when� = 0 .

and the host medium is supposed to be a vacuum ( ).
From Fig. 5 it is seen that the convergence is very fast; moreover,
it can be appreciated that, by using the formulation presented in
[24] and [25], we obtain for TM polarization (dots) a rate of
convergence similar to the TE polarization one (circles). With

, convergence to the third decimal figure is obtained in
both polarization cases. With and , assumes
a value which is exact within the fourth decimal figure in TE and
TM polarization, respectively.

To check our codes we made a comparison with the results
obtained by Bastoneroet al. in [28], where a PBG microcavity,
built in a dielectric periodic structure of air holes arranged in
an equilateral triangular lattice into a bulk semiconductor, is
studied. The central row of holes is increased, creating a defect
in the crystal, so that a localized resonance mode takes place
and it can be used as the laser mode. The whole resonator may
be schematized as the structure in Fig. 4, with m,

, m (which results in a filling
factor ), , , , m,

, and . The transmission response of the entire
resonator is shown in Fig. 6, where is plotted as a function of
the frequency (in terahertz); the polarization is TE and .
Our results (solid line with dots) can be directly compared with
the results of Fig. 6 in [28] (solid line). In particular, in [28] the
authors found that the transmission peak for was cen-
tered on THz and with our codes we found exactly
the same value.

B. 2-D Square-Lattice Square-Rod PBG Materials With
Defects

In this section, we consider 2-D square-lattice square-rod
PBG materials with periodic defects, and study their transmis-
sion properties by use of the approach outlined in Section II. As
pointed out in Section I, defects may be present in an electro-
magnetic crystal due to fabrication errors. Moreover, since the
occurrence of sharp transmission peaks in the photonic stop-
bands results from defect creation, very often PBG materials
with defects are on purpose designed to act as frequency and
polarization selective filters or switches, or they are employed
in the realization of resonators and cavities.

In Fig. 7, the transmission efficiency (full line) is shown
as a function of the normalized wavelength , for a struc-
ture with , , , ,

, , and (so that ); both
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Fig. 7. Transmission efficiency� (full line) vs. the normalized wavelength�=d, for a structure withd = h, b = b = 0:4d, n = 3:6, n = 1, b = 3b ,
n = n , andND = 5; both polarization cases are considered; the behavior of the corresponding structure without the defect is also shown (dashed line), for
comparison.

Fig. 8. Transmission efficiency� vs.�=d, for the same structure as in Fig. 7 and for different values ofND; the polarization is TE.

polarization cases are considered. In the same figure, the be-
havior of the corresponding structure without the defect is also
shown (dashed line), for comparison. We have chosen this ex-
ample because of the existence of a complete bandgap in the

range (as is known, if bandgaps for both TE
and TM polarization states are present and they overlap each
other, then their intersections are calledcompletebandgaps [1]).
Looking at Fig. 7, it can be noted, inside the TE stopband, the
presence of a sharp transmission peak centered on ,
where : this is due to the introduction of the defect,
and its 3-dB width is ; at the same time, for-
bidden propagation is kept for TM polarization. Therefore, it is
apparent that, by introducing a periodic defect in a PBG mate-
rial and taking advantage of complete bandgaps, it is possible to
realize a narrow-band filter for a particular polarization, while
keeping forbidden propagation for the other polarization: the

numerical example of Fig. 7 shows that the characteristics of
such a kind of frequency- and polarization-selective filters can
be easily and precisely modeled with our approach.

We will now discuss how to modify the selectivity of the filter,
showing the influence of some key physical and geometrical pa-
rameters on the performances of the structure: the number of rod
layers located on each side of the defects , the defect refrac-
tive index , the defect layer thickness , and the incidence
angle .

In Fig. 8, is shown as a function of , for the same struc-
ture as in Fig. 7 and for different values of ; the polarization
is TE. It is apparent that the selectivity of the filter depends on
the number of rod layers located on each side of the defects: the
larger , the narrower the filter passband, in fact the 3-dB
width of the peak is , 6 , and 2.5 ,
when , 3, and 4, respectively.
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Fig. 9. Transmission efficiency� vs.�=d, for the same structure as in Fig. 7
and for different values ofn ; the polarization is TE.

In Fig. 9, is shown as a function of , for the same struc-
ture as in Fig. 7 and for different values of; the polarization
is TE. It is seen that the central wavelength of the peak of the
passband filter is highly sensitive to the defect refractive index:
with a higher value of , the peak shifts toward larger values of

. It can be also noted that a higher value ofcauses a re-
duction of the global transmittance (i.e., of the transmission for
the frequencies outside the stopband) of the structure. The influ-
ence of the refractive index of the defect on the position of the
peak can also be appreciated from the efficiency map reported
in Fig. 10(a), where is shown as a function of and .
The gray scale of the map ranges from black to white

, so that a black region shows the location of a stop-
band while a white region corresponds to a high transmittance.
In Fig. 10(b), an enlargement of Fig. 10(a) is reported, where
the wavelength shift of the peak that results from a change of

can be appreciated with more evidence.
The movement of the transmission peak inside the bandgap

with varying the refractive index of the defect can be described
using a Fabry–Perot model. In a Fabry–Perot resonator made of
two identical mirrors with an equivalent separation width, if

is the central frequency of the transmission peak,is the light
velocity in a vacuum, and is the phase of the mirror reflection
coefficient, the resonant condition is satisfied when

(1)

where in our case [see Figs. 2(a) and 4].
Increasing the refractive index of the defect makes larger the
equivalent length of the cavity : from (1) it can be seen that
with a higher value of the defect frequency is lower, and
therefore the transmission peak has to occur at highervalues,
as in Fig. 9.

In Figs. 11 and 12, the same parameters as in Figs. 9 and
10(a), respectively, are shown for the case of TM polarization: it
is seen that a change of does not sensitively affect the location
and the amplitude of the stopband, and no transmission peak

(a)

(b)

Fig. 10. (a) Gray-scale map of� versus�=d andn , for the same structure
of Fig. 7, the polarization is TE. (b) An enlargement of (a).

Fig. 11. Transmission efficiency� versus�=d, for the same structure as in
Fig. 7 and for different values ofn ; the polarization is TM.

appears. Finally, comparing Figs. 9 and 11, it is worth noting
that for and the TE peak is located outside
the complete bandgap.

Fig. 10 can be very useful for determining the value of the
defect refractive index needed for positioning the transmission
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Fig. 12. Gray-scale map of� versus�=d andn , for the same structure as in
Fig. 7, the polarization is TM.

Fig. 13. Transmission efficiency� as a function of� (in �m), for a structure
with d = h = 1 �m, b = b = 0:4 �m, n = 3:6, n = 1, b = 3b ,
n = 3:5, andND = 5: the wavelength shift of the peak that results from a
�0:01 change of the defect refractive index is shown; the polarization is TE.

peak central wavelength. However, it can be useful to have at
one’s disposal a design formula, i.e., a simple expression giving
the wavelength position of the peak as a function of the defect
refractive index. To this aim, we made a polinomial curve fit-
ting of our numerical results: the coefficients of the polynomials
are chosen fitting the data in a least-square sense; the degree of
the polynomials is 3 (so that the design formula comes out very
simple), and the order of magnitude of the relative error com-
mitted in the fitting is . In the following expression, the
normalized central wavelength of the transmission peakis
given as a function of :

(2)

The high sensitivity of the TE-peak central-wavelength to the
defect refractive index is shown in Fig. 13, whereis reported
as a function of in for a structure with ,

, , , , ,
and : the wavelength shift of the peak that results from
a change of the defect refractive index is apparent.

Fig. 14. Central wavelength of the transmission peaks as a function of�=d
and ofb =d, for the same structure as in Fig. 7; the polarization is TE.

In Fig. 14, the transmission peaks vs. and
are shown for the same structure as in Fig. 7 and for TE

polarization. The central wavelength of the transmission peak
is seen to be highly sensitive to the defect thickness: in

particular, the transmission peak shifts toward higher values of
when is increased, as predicted by (1) for a Fabry–Perot

resonator with a larger equivalent cavity length . Moreover,
it can be noted that in correspondence of certain values of
our graph suggests that there are two transmission peaks within
the bandgap: it implies that a single defect is causing two local-
ized states within the stopband. In particular, this occurs when

, , and
in the considered range: in all these intervals, as the thickness

is increased, the peak disappears from the upper edge of
the stopband only after the appearance of a second peak from
the lower edge of the stopband. This phenomenon could be re-
lated to the behavior af a Fabry–Perot under similar conditions
(see, for example, [29], where a double-peak formation, analo-
gous to the one here noticed, has been predicted and measured
for a photonic crystal with a single defect): since the phase of
the mirror reflection coefficient varies with frequency, the
difference between the values of at a wavelength closer to
the lower edge of the stopband and at a wavelength closer to
the upper edge may be high. Therefore, for sufficiently high
values of , the resonance condition can be satisfied at two
different frequencies, whereas for lower values only one peak
is present. This is apparent from Fig. 14, where it can be noted
that for lower there is no overlapping between the var-
ious branches, while the overlapping region occurs larger for
higher values.

Finally, we analyze the behavior of the PBG structure as a
function of the incidence angle. To this aim, in Fig. 15 we
report vs. , for the same structure of Fig. 7 and for different
values of , in correspondence with the transmission peak, for
both polarization cases. It is seen that, when the polarization
is TM, remains negligible for a very large angular range;
moreover, it can be noted that, in TE polarization, the angular
transmission peak is narrower for higher values of. In fact,
as the incidence angle varies, a shift of the central wavelength
of the peak occurs.
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Fig. 15. Transmission efficiency� versus the incidence angle�, for the same
structure as in Fig. 7 and for different values ofn , in correspondence of the
TE-transmission peak, for both polarization cases (full line: TE polarization;
dashed line: TM polarization).

IV. CONCLUSIONS

In this paper, a comprehensive analysis of periodic defects in
two dimensional finite thickness, photonic bandgap materials
has been presented. A full-wave approach originally developed
for diffraction gratings has been exploited with very good re-
sults. Both TE and TM polarizations for the incident field have
been considered. Curves have been shown to prove the very ef-
ficient convergence for both polarizations: in particular, for the
TM case suitable acceleration techniques have been adopted.
The transmission efficiency has been investigated as a function
of frequency and of the geometrical and physical parameters,
as well as the incidence angle. The effects of the presence of
defects of different nature on the filtering properties have been
enlightened, both in frequency and in polarization. Gray-scale
maps and an approximate formula, useful in the design proce-
dure to localize the position of the transmission peaks, are re-
ported. A comparison with another result shown in the literature
is presented with a good agreement.
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