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Abstract

The film mode matching method for optical field calculations is applied

to the calculation of Bloch wave fields in photonic crystal slab structures.

0.0.1 Introduction

Accurate calculation of electromagnetic field distributions in photonic crystals
is of fundamental importance to the design of integrated optics and photon-
ics. With the large differences in refractive index between the air, oxide and
semiconductor materials that a photonic crystal is made from, a vector field
description is needed. In this paper, a formalism is developed for the calcu-
lation of field distribution in a photonic crystal slab or slice surrounded by a
homogneous material on each side. The formalism is general enough to handle
structures consisting of several parallell slices, possibly separated by slices of
homogeneous material.

0.0.2 Numerical Methods

The method discussed here is an adaptation of the method used in (11; 8; 9; ?)
for computing the mode fields of optical waveguides. A structure analyzed with
this method is modeled by a sandwich of M “slices” numbered m = 1, 2...M .
Each slice is considered to be cut from a two-dimensional photonic crystal (PC).
Hence it is natural to attach the label m to the PC that slice no. m is cut from,
as well. A homogeneous material may be considered a special case of a PC. Our
analysis requires all slices to have the same lattice structure and orientation.

Let us adhere to the common convention of having the homogeneous axis of
the PCs as the z-axis. We also call the z-direction the longitudinal direction, and
the x- and y-directions transverse directions. Then the slices are perpendicular
to the z-axis, lying in the x-y-plane, as shown in Fig.1, and both the lattice
vectors of the PCs and its reciprocal lattice vectors lie in the x-y-plane. We
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Figure 1: Simple 3-slice structure consisting of air, a photonic crystal (PC)
slice, resting on a homogeneous substrate. Four air holes are indicated in the
PC, so two periods of the PC are shown in each direction.

let both z and m increase from the bottom up. Let c be the speed of light,
ω the angular frequency, λ the corresponding vacuum wavelength, and k the
corresponding angular repetency, so that k = ω/c = 2π/λ. Let x̂, ŷ and ẑ
denote unit vectors in the x-, y- and z-directions, respectively, let the position
be xx̂+ yŷ + zẑ = �r + zẑ, and let t denote time. Within slice no. m, we have
Bloch wave (BW) solutions for the fields, where the x- and y-components of the
E-field (the transverse components) may be written

�E (�r, z, t) = �E
(m)
�g,p

(
�k, ω,�r

)
exp

(
i�k · �r + ik

(m)
�g,p

(
�k, ω

)
z − iωt

)
, (1)

and correspondingly for the H-field. In the above equation, and in the following,
an arrow above a symbol, like in �r = xx̂ + yŷ, is used to denote a transverse
vector, i.e., a vector in the x-y-plane. The Block vector (BV) of the wave is

�k + k
(m)
�g,p

(
�k, ω

)
ẑ, (2)

where �k (the transverse BV) may be chosen freely in the first Brillouin zone of
the photonic crystal (PC), if we adopt the reduced Brillouin zone scheme. The

z-component kz = k
(m)
�g,p

(
�k, ω

)
of the BV must be calculated for each BW in

slice no. m by solving Maxwells equations in photonic crystal no. m. For most
purposes in the following, the subscript pair (�g, p) may be considered just a label
distinguishing the various BWs. For the limiting case of a homogeneous PC, i.e.,
no spatial variation of ε and µ, the set of �g’s is the transverse reciprocal lattice
vectors of the PC, and p represents two possible BW polarizations possible for
each reciprocal lattice vector, e.g., TE and TM.

The Block wave envelope fields (BWEFs) �E
(m)
�g,p

+ ẑE
(m)
z;�g,p and

�H
(m)
�g,p

+ ẑH
(m)
z;�g,p

are periodic functions of position �r, satisfying the following form of Maxwell’s
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equations:

(
�∇+ i�k

)
× �E

(m)
�g,p = iωµẑH

(m)
z;�g,p, (3)

iωε�E
(m)
�g,p = ẑ ×

[(
�∇+ i�k

)
H

(m)
z;�g,p − ik

(m)
�g,p

�H
(m)
�g,p

]
, (4)

(
�∇+ i�k

)
× �H

(m)
�g,p

= −iωεẑE
(m)
z;�g,p, (5)

and iωµ �H
(m)
�g,p = −ẑ ×

[(
�∇+ i�k

)
E

(m)
z;�g,p − ik

(m)
�g,p

�E
(m)
�g,p

]
. (6)

From these equations it can be shown that

1. If we have an upward propagating Bloch wave (BW) with z-component

kz = k
(m)
�g,p

(
�k, ω

)
of the Block vector (BV), we also have a downward

propagating BW with kz = −k
(m)
�g,p

(
�k, ω

)
, with the same transverse E-

field, but with the transverse H-field inverted.

2. In a photonic crystal with inversion symmetry, for each kz there is a pair
of BWs with equal and opposite transverse BVs. For such a pair we may
choose

�E
(m)
�g,p

(
−�k, ω,�r

)
= �E

(m)
−�g,p

(
�k, ω,−�r

)
and �H

(m)
�g,p

(
−�k, ω,�r

)
= �H

(m)
−�g,p

(
�k, ω,−�r

)
.

3. In a PC with real ε and µ, a BWEF corresponding to an inversion of the
transverse BV (from �k to −�k) may be obtained by complex conjugation
of the transverse E- and H-fields. If the PC also has inversion symmetry,
then

�E
(m)
�g,p

(
�k, ω,−�r

)
= �E

(m)
−�g,p

(
�k, ω,�r

)
∗

and �H
(m)
�g,p

(
�k, ω,−�r

)
= �H

(m)
−�g,p

(
�k, ω, �r

)
∗

.

4. In a PC with real ε and µ, there are at least two BWs propagating in
the z-direction, i.e., with real kz. (Two polarization states are always
possible.) All the high-order BWs (those with large |�g|) are evanescent,
i.e., have purely imaginary kz, increasing in absolute value with increasing
order. The lower the frequency, the fewer propagating BWs there are.
For a sufficiently low frequency, only two propagating BWs exist, and the
remaining BWs are evanescent.

5. Even if ε and µ are real, in some PC structures kz is actually complex in
some frequency intervals (15). Complex conjugation then yields a BW
with an inverted transverse BV and the complex conjugate z-component

kz = k
(m)∗
�g,p

. If the PC also has inversion symmetry, there are 4 different

BWs for a given �k, corresponding to kz = ±k
(m)
�g,p

and kz = ±k
(m)∗
�g,p

.

3



Comprising both upward- and downward-travelling BWs, the transverse E-
field phasor in slice no. m may then be written as a sum of Bloch wave compo-
nents:

�E(m)(�k, ω,�r, z) =
∑

�g,p u
(m)
�g,p (z)

�E
(m)
�g,p

(
�k, ω, �r

)
exp

(
i�k · �r

)
, (7)

and the corresponding transverse H-field phasor

�H(m)(�k, ω,�r, z) = −i
∑

�g,p

(
u̇
(m)
�g,p (z)/k

(m)
�g,p

)
�H
(m)
�g,p

(
�k, ω,�r

)
exp

(
i�k · �r

)
. (8)

Let z(m) be the position of the interface between slices no. m and m + 1, so
that the thickness of slice no. m is

d(m)
z = z(m) − z(m−1), (9)

and let the bottom slice be no. 1. The BW component amplitudes u
(m)
�g,p (z)

then have the form

u
(m)
�g,p (z) = u

(m,l,+)
�g,p exp[ik

(m)
�g,p (z − z(m−1))] + u

(m,l,−)
�g,p exp[−ik

(m)
�g,p (z − z(m−1))] =(10)

= u
(m,l,E)
�g,p

cos[k
(m)
�g,p

(z − z(m−1))] + iu
(m,l,H)
�g,p

sin[k
(m)
�g,p

(z − z(m−1))], (11)

with the z-derivatives

u̇
(m)
�g,p (z) = ik

(m)
�g,p u

(m,l,+)
�g,p exp[ik

(m)
�g,p (z − z(m−1))]− ik

(m)
�g,p u

(m,l,−)
�g,p exp[−ik

(m)
�g,p (z − z(m−1))] =(12)

= ik
(m)
�g,p u

(m,l,H)
�g,p cos[k

(m)
�g,p (z − z(m−1))]− k

(m)
�g,p u

(m,l,E)
�g,p sin[k

(m)
�g,p (z − z(m−1))]. (13)

In (10) and (11) u
(m,l,+)
�g,p

and u
(m,l,−)
�g,p

are the complex amplitudes of the BW

components travelling upward and downward in slice no. m, at z = z(m−1),

whereas u
(m,l,E)
�g,p

and ik
(m)
�g,p

u
(m,l,H)
�g,p

are the resulting total amplitudes and z-
derivatives:

u
(m,l,E)
�g,p = u

(m,l,+)
�g,p + u

(m,l,−)
�g,p (14)

and u
(m,l,H)
�g,p

= u
(m,l,+)
�g,p

− u
(m,l,−)
�g,p

. (15)

Using (10) and (11) we define corresponding amplitudes u
(m,u,±)
�g,p

, u
(m,u,E)
�g,p

and

u
(m,u,H)
�g,p on the upper side of slice no. m, at z = z(m). It will be convenient to

have one symbol to represent either of the two slice side labels l and u; let us
use the symbol s for this purpose.

One point to note about the BW expansions (7) and (8) is that they involve
mostly evanescent BWs, since the higher-order BWs are all evanescent.
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Then we are ready to introduce vectors u(m,s,±), u(m,s,E) and u
(m,s,H),

with elements u
(m,s,±)
�g,p

, u
(m,s,E)
�g,p

, and u
(m,s,H)
�g,p

, respectively. Furthermore, we

introduce diagonal matrices K(m) with diagonal elements

K
(m)
(�g,p),(�g,p) = k

(m)
�g,p

d(m)
z , (16)

impedance matrices Z(m,s) relating u(m,s;E) and u(m,s;H),

u
(m,s;E) = Z

(m,s)
u
(m,s;H), (17)

and reflection coefficient matrices Γ(m,s) relating u(m,s,−) and u(m,s,+),

u
(m,s,−) = Γ

(m,s)
u
(m,s,+), (18)

Note that in these definitions we must group the upward decaying components

(with positive imaginary k
(m)
�g,p

) together with the upward travelling BW compo-

nents (with positive real k
(m)
�g,p

). This will become apparent in the discussion of
boundary conditions below.

It is straightforward to show from (14), (15), (17), and (18) that

Z
(m,s) =

(
I+ Γ(m,s)

)(
I− Γ

(m,s)
)−1

(19)

and Γ
(m,s) =

(
Z
(m,s)

− I

)(
Z
(m,s) + I

)−1
, (20)

where I is the identity matrix. From (10) we obtain

u
(m,u,±) = exp

(
±iK(m)

)
u
(m,l,±). (21)

Then (21) and (18) yield

Γ
(m,u) = exp

(
−iK(m)

)
Γ
(m,l) exp

(
−iK(m)

)
, (22)

which may be combined with (19) and (20) to yield

Z
(m,u) =

[
cos

(
K

(m)
)
Z
(m,l) + i sin

(
K

(m)
)] [

i sin
(
K

(m)
)
Z
(m,l) + cos

(
K

(m)
)]−1

(23)
This formula also holds if the impedances Z(m,s) are replaced by the admit-

tances
(
Z
(m,s)

)−1
. The formula must be written in a different form to handle

evanescent waves in thick slices correctly.

Let us assume that we have discrete spatial representations �E
(m)
(�g,p) (�r) and

�H
(m)
(�g,p) (�r) of the transverse E-and H-fields of each BWEF in slice no. m. These

representation may be considered to be matricesO(m;E) andO(m;H) with matrix

elements O
(m;E)
(�r,c),(�g,p) and O

(m;H)
(�r,c),(�g,p), respectively, with �r running over the spatial
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positions and c representing either one of the two transverse field components.
Point matching of the transverse E- and H-fields across the interface between
slice m and slice m+ 1 yields

O
(m+1;E)

u
(m+1,l,E) = O

(m;E)
u
(m,u,E) (24)

and O
(m+1;H)

u
(m+1,l,H) = O

(m;H)
u
(m,u,H), (25)

or

u
(m+1,l,E) =

[
O

(m+1;E)
]−1

O
(m;E)

u
(m,u,E) = O

(m+1,m;E)
u
(m,u,E)(26)

and u
(m+1,l,H) =

[
O

(m+1;H)
]−1

O
(m;H)

u
(m,u,H) = O

(m+1,m;H)
u
(m,u,H),(27)

defining the slice interface coupling matrices O(m+1,m;E) and O(m+1,m;H).
Just like in (11; 9), recursion relations may then be deduced for the im-

pedances:

Z
(m+1,l) = O

(m+1,m;E)
Z
(m,u)

O
(m,m+1;H) =

= O
(m+1,m;E)

[
cos

(
K

(m)
)
Z
(m,l) + i sin

(
K

(m)
)] [

i sin
(
K

(m)
)
Z
(m,l) + cos

(
K

(m)
)]−1

O
(m

This equation is easily inverted to yield Z(m,l) expressed by Z(m+1,l).

Let waves be incident from the bottom. Then we have no waves coming
down through the top slice, and no fields that decay exponentially as we go down
from the top. We have only the transmitted upward waves and the evanescent
fields from the bottom of the top slice. Now it is obvious why these fields belong
together in the definitions of Z(m,s) and Γ(m,s). That choice yields the simple
boundary condition

Γ
(M,l) = 0 and Z(M,l) = I . (30)

Recursive application of (29) then allows us to compute the impedance matrix
Z
(1,l,−) at the bottom of the bottom slice. The reflection coefficient matrix
Γ
(1,l,−) =

(
Z
(1,l,−)

− I
) (
Z
(1,l,−) + I

)−1
, given by (??) for m = 1, then yields

the reflected waves resulting from an incoming wave.

0.0.3 Discussion

The formalism above may be used to analyze a number of planar multilayer
transmission or reflection filters incorporating photonic crystal layers. Reflec-
tion and transmission coefficients for the optical plane waves may be calculated,
as a function of optical frequency, angle of incidence with respect to the sur-
face normal, and polarization (TE or TM). Polarization conversion in reflection
and transmission may be investigated . Each layer in the multilayer filter may
be a photonic crystal. There is a requirement in that all layers have to have
the same crystal lattice structure, i.e., the same lattice constants and the same
angle between the lattice axes. Any guided resonances of the photonic crys-
tal structure may be found by investigation of the reflection coefficient matrix
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Γ
(1,l,−) of the bottom slice. The resonances may be found by analyzing the

frequency dependence of the elements of this matrix that correspond to travel-
ling (non-evanescent) incoming and reflected waves. If the lattice constants of
the photonic crystal are sufficiently small compared to the wavelength, there is
only one incoming and one reflected wave possible.

The number of BW components needed in the field expansion for a given
transverse spatial resolution is roughly equal to two (polarizations) times the
product of the two lattice periods of the PC divided by the spatial resolution
squared. With desktop computers, if a few minutes of processing time is al-
lowed, matrices with a dimension of over a thousand may be manipulated. For
frequencies not too far above the lowest photonic bandgaps, the optical wave-
length in any of the constituent materials of the PC is not much smaller than
any of the two lattice periods of the PC. Then a resolution of a small fraction
of a wavelength may easily be obtained on a desktop computer. This resolution
is necessary to reproduce the divergence of the electric field at edges (2; 4), and
reach convergence for the calculation of BW fields. In calculations with such a
resolution not too far above the lowest bandgaps, most of the BW components

in the expansions (7) are evanescent BWs, i.e., with imaginary k
(m)
�g,p

.

As already pointed out in (11; 9; 10), to get a numerically well behaved recur-
sion relation for propagation of the Bloch wave (BW) amplitudes and derivatives
(the u’s) through the slices, it is important not to work with the u’s directly,
but rather with the impedance matrices Z(m,s), as in (29). It should also be
mentioned that an equally well behaved formulation may be obtained in terms
of the scattering matrices Γ(m,s)

.
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