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Abstract. The old film mode matching or transverse resonance method for calculating mode
fields in dielectric waveguides is given a new formulation that makes it an efficient, accurate,
and general numerical method, ready to exploit standard computer libraries for numerical
linear algebra. Both the scalar and the vector field cases are treated for a rather general
class of waveguide cross sections, where the method (like the method of lines) is more
accurate and more efficient than sophisticated finite-element and finite-difference methods.

1. Introduction

The calculation of mode fields in dielectric waveguides is of fundamental importance
both in optics and in microwave technology. Literally hundreds of papers have been
published on the subject, and even more on the associated problem of finding mode
indices or repetencies. The most challenging problem is the design of numerical methods
whereby the mode field can be calculated accurately everywhere in the waveguide cross
section, also near non-planar interfaces with large index of refraction differences.
Specifically, there are fundamental analytical problems with the calculation of vector
modes of rectangular waveguides, in that the mode field is singular at the corpers of
the waveguide core [1-3]. The singularity is a property of vector modes only, absent
in the scalar approximation. Such corners appear in many model waveguides analysed
for diode laser and integrated optics applications, and the associated field singularity
shows the convergence of all known numerical methods for vector mode field calcu-
lations in such waveguides. This is a problem not usually discussed when numerical
methods for mode field calculations are presented in the literature, probably because
the results in [1-3] are absent from most standard references on optical waveguide
theory.

Most simple methods for vector mode field calculations by design cannot yield mode
fields that are accurate everywhere in the waveguide cross section. Finite-difference (FD)
and finite-element (FE) methods with non-uniform meshes can yield accurate results, but
at a considerable computer program development cost. One of the few simple methods
that also can yield accurate results almost everywhere in the waveguide cross section
is that of film mode matching (FMM). It is eminently suited for analysing a large class
of model waveguides encountered in laser diode and integrated optics applications,
namely those with a cross section consisting of a small number of homogeneous

0963-9659/93/030211 +23 $07.50 € 1993 1OP Publishing Ltd 211



212 A 8 Sudbe

rectangles. It is one of the oldest numerical techniques used for mode field calculations
[4~7], and is widely known as the transverse resonance or equivalent network method
[7-10]. The full vector modes can be calculated with the method, and semivectorial
and scalar approximations emerge in a particularly transparent manner, as does also
the widely used effective index approximation [6].

In its usual formulation [7, ch 117, [8, 9], the equivalent network method encounters
severe numerical problems when the expansion of the mode field in film modes is carried
to high order, because of the evanescent nature of the higher order film modes. Therefore,
in recent work the ability of the method to produce good results with modest size
computations has been emphasized [10]. When a proper formulation is used, however,
there are no inherent numerical problems associated with the method, and the method
is actually the efficient and general pumerical method it is promised to be [8]. The
development of such a formulation is the subject of this contribution. Incidentally, the
equivalent network picture of the method actually provides some mental barriers for
arriving at a numerically well behaved formulation, hence the term ‘film mode matching’
rather than the more widely known ‘transverse resonance’ is chosen for describing the
method.

By way of example, we shall see that the rFMM method yields results that are
more accurate than those obtained with a fully fledged FE method [11], with order-
of-magnitude smaller requirements for computer resources and program development.
For the simple case of an arbitrarily shaped homogeneous core in a2 homogeneous
cladding, methods that are as efficient and accurate as the FMM method are known
f12, 13], but the MM method is more straightforward, and applicable to a much
wider class of waveguide geometries. The method of lines (MoL) [7, ch 6], [14, 15] is,
however, about as efficient and straightforward as the rMM method, as discussed in
section 3.

The strengths of the FMM method are most apparent when it is applied to
vector mode calculations, but a natural course of presentation is to treat the scalar
approximation first and then to generalize to the full vector treatment. For weak guides,
however, almost any standard numerical method developed for solving problems
involving the Laplacian operator works well for mode field calculations, and different
applications favour different methods.

2. Background

Let us review the essential features of the film mode matching (FMp) method, with
reference to the example of a semiconductor ridge waveguide shown in figure 1.
We consider the waveguide cross section to be a sandwich of slices numbered
m=1,2,..., M. Each slice is considered to be cut from a film waveguide with film
layers numbered n = 1, 2,..., N. It is therefore meaningful to use the label m for the
whole film waveguide that slice number m is cut from as well. We will thus say that
slice m is cut from film m, and that there is layer » in film m. Figure 1 should make the
terms ‘slice” and *layer’ clear; the layers are perpendicular to the slices. Layer » in slice
m has index of refraction ™" and relative permittivity ™" = n™"2 We choose our
x~axis paralle] to the film layers and perpendicular to the slice interfaces, our y-axis
perpendicular to the film layers and parallel to the film slice interfaces, and our z-axis
along the waveguide, parallel to the layers and slices. With reference to figure 1, we are
of course free to choose our film orientation parallel or perpendicular to the guiding
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Figure 1. Typical semiconductor ridge waveguide cross section, modelied by a number of
film guide slices. The sloped sides of the ridge have been approximated by staircases.

GaAs layer of the waveguide. In figure 1 there are M = 4 film slices, each with N =7
layers. Symmetry planes (like the plane defined by x = 0 in figure 1) are planes where
a mode fleld component or its gradient perpeadicular to the plane is zero, allowing the
calculation of mode fields to be restricted to one half (as in figure 1) or one quarter of
the waveguide cross section.

The FvMM method involves finding the TE and ™ modes of each film (or just the
scalar modes if the guide is weak), coliecting the modes that have the same z-component
k, of the modal wavevector, and matching the field distributions at the slice interfaces
by adjusting the modal amplitudes in each film. k, will also be identified as the angular
repetency (propagation comstant) of the waveguide mode we seek. Only for certain
values of k, can a set of non-zero film mode amptlitudes with matching distributions at
the slice interfaces be found. Each set constitutes a waveguide mode.

The continuous spectrum of unbound film modes must somehow be discretized.
Usually this discretization is achieved by the introduction of artificial boundaries,
so-called walls, placed sufficiently far from the waveguide core that for the mode(s) of
interest both the field components and their gradients are negligible. An alternative
discretization of the continuous mode spectrum is developed in [107, but the artificial
wall method is more straightforward, and the method in [10] does not have any
numerical advantages over the artificial wall method. Since the influence of the walls
can be easily checked by comparing results obtained with each of the two possibie types
of boundary conditions imposed at the wall (‘electric’ or ‘magnetic’, as discussed below),
we shall use the method with artificial walls.

We shall limit our discussion to waveguides made of materials that are isotropic,
non-magnetic and non-absorbing, in which case the film modes may be chosen so as
to allow the film mode amplitudes to be real numbers. We shall then obtain a
purely real eigenvalue problem, as opposed to the complex one of the equivalent
network approach [8-10]. Generalization of the =MM method fo treat absorbing or
non-isotropic material is straightforward, but the real formulation must then be
abandoned.
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3. Theory

In this section we shall arrive at a (non-linear) eipenvalue equation for the angular
repetency k, of a waveguide mode. The derivation is quite similar to the one shown in
detail in [8], and only deviations from the derivation in [8] will be emphasized. The
main content of this section is the presentation of a suitable notation for the various
quantities needed. The sub/superscript conventions used are summarized in table 1. The
choice of x- and y-axes and sign of the exponent j{wt — k,z) are the same as in [8].
Again referring to figure 1, let the thickness of layer n be 4% and the position of the
interface between layer n — 1 and n be y, so that

4P =yt _ yom, (1a)

Similarly, let the thickness of film slice m be 4™ and the slice interface positions be at
x™, so that

B = x*D) i, (18)

The vacuum wavelength of the light is 4,5, and the corresponding angular repetency of
the light is

ko = 275/:3-0. (2)
The relative permittivity in film m is

g™y} = g™ for y™ < y < pi* 1), (3)

Table 1. Sub/superscript conventions. Superscripts refer to positions in the waveguide cross
section; subseripts: {a) label compornents of a vector in space, (b} label the modes of a flm.

Range of values Meaning

Superscript

L2,....,M film (slice) pointer

—_ number of film slices
L,2,....,N layer pointer

— number of layers in films
— left or bottom side indicator
— right or top side indicator

= s oy

Subscript

— vsed in k, = w/c
— used in film mode repetency &,
—_ x-direction indicator
—_ y-direction indicator
—_— z-direction indicator
antisymmetric indicator
—_ symmetric indicator
hore polarization (TE or ™)
—_ TE polarization indicator
— T™M polarization indicator
1,2,... film mode pointer
1.2,... film mode pointer

R A =)
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Each film has a set of film modes with mode functions @{")(y) such that in layer n of
film m

G+ ™G ~ kM e = 0. : &)

where @™ is the second derivative of o™ with respect to y and k{™ is the angular
repetency of mode k in film m. In the appendix the properties of the piecewise
trigonometric/hyperbolic mode functions satisfying (4) are listed, and the usual
numerical procedure for obtaining the eigenvalues k{™? of (4) is outlined. For weak
guides, the mode functions @™ (y) are the actual mode fields. Vector modes are of two
types. TE and TM™, depending on polarization. The field components of Te mode k can
be expressed in terms of a mode function @{™(y) satisfying (4) that is continuous
with continuous derivative ¢{™(y), whereas the field components of TM mode k can be
expressed in terms of a continuous function ¥{™(y) also satisfying (4), but with
B (1)/e™ (y) continuous. Table Al in the appendix lists the various field components
expressed in terms of ¢ and ¢ and their derivatives.

3.1, Scalar modes

In the scalar case the mode field in film m is expanded in film mode functions:

o0

o(x, 1) = 3 u"(x)e(y). (5

k=1

As uvsual, the common factor exp[j(ewt — k_z)] has been omitted from the mode field
expression (5). The mode amplitude u{™(x) in slice m satisfies an equation like (4):

G0 + (R — Kl () = 0. ©)

As in the appendix we obtain
uy™ (x) = h(uG", ulp kG, kK (x — x™) (Ta)

() = h@lE?, — kGl kP G — x)) )
where

h(u, v, ) = ucos(y) + v sin(y) (7¢)

K = (g2 — k2 ®
the ampiitude of mode k in film m at the interface between film slices m — 1 and m is

W = ufP (< + 0) ©a)

and its x-derivative is
ulmit = plmyim 4 (), (98

The corresponding quantities at the interface at the other side of slice m, towards slice
m+ 1, are

ulm) = yimxm+ 1 _ Q) (10a)

uler) = gfm(xm* D — Q). . (105)
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The essence of the film mode matching method for computing waveguide mode fields

is that (referring to figure 1) in each homogeneous rectangular region of the waveguide

cross section the mode field is a weighted sum of products of two trigonometric/

hyperbolic functions of the form (7), one for the x direction and one for the y direction,
The relations between the u analogous to (A9) are

uft? = —tfPufd + sPul” (l1a)

uf™ = —s{PuGd + HPul” (11b)
where

™ = kP tan(kPd) (1ic)

s = ki /sin(kd ). (11d)

The FMM method will encounter numerical problems if any one of the ¢{™ vanishes or
diverges for a value of k,/k, very close to one of the waveguide mode indices. For most
film modes this is not a problem, since &' is imaginary for all but a few low order film
modes. It may be necessary to adjust the position of the artificial boundary at y = y)
or y = y™*1) (or the layer thicknesses 4%") slightly to avoid such accidental numerical
problems with the few film modes for which k7 is real.

Let us introduce matrix notation, where & is 2 column vector with components i,
and M is a matrix with elements M,,. We define 47" to be elements of a column vector
w™D, and similarly for the other film mode amplitudes in (9) and (10). If we then
introduce diagonal matrices T™ and S$*™ with diagonal elements

T = i = kP /tan(k{Pd™) (12a)

S = sfm = ki /sin(kid i (12b)
(11) may be written

umh = —Tmgmb | gty mn) (13a)

um) = Glmglmd) L Ty, (13b)
Introducing the inner product notation

Nl
{plyd = (yN+0 — ™t J:l (Y (y) dy (14)
¥

we may define an overlap integral or coupling matrix between modes of film m and
film m'

o™ = Lo o™, (15)
O™ are the elements of a matrix O™ whose transpose is
Qmm)T o Qe (16)

When the orthogonal functions ¢{™ are normalized, O™ is equal to the identity matrix
|, and each matrix Q™™ is a unitary matrix:

O{m.m’)o{m',m) = o(m',mjo(m,m') =1 (17)

The orthogonality relation (17) does not hold exactly when the matrix O™ is
truncated to finite dimensions for practical calculations. Equation (17) must be well
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approximated at each interface between neighbouring film slices before the FMM method
converges. When this requirement is satisfied, the ‘relative convergence’ problem [7, ch
10] often associated with the method is not encountered.

Furthermore, with orthonormal film mode functions ™, continuity of the mode
field @(x, y) and its normal derivative across the interface between slices m and m + 1
implies that

[=]

upn = 3, ot vugrt o (180)
=1
&0

WY = Y, O lyfpt o (185)

i=1

or in matrix notation

ugm,r) - 0(m.m+1)u§m+1,!) (lsC)
uim,r) = otm,m-i—ljugm-i—l,!)' (18(2')

Combining (13) and (18) to eliminate #™", 4" and u™" we obtain
(O(m.m - I}T(m— 1) O(m- 1,n2) + Tfm))uﬁm.l)

= o{m.m— l)s(m-l}uém—l.l) + Sfm)o[m.m+1]u£m+ 1,0) (19(1)
for2<m< M, and
(0{2.1;1'(1)0(1,2) + T‘zl)uf’” = 8(2}0(2.3>ui3.1) (19h)
(o(M.M-l)TtM-l)O(M— 1,M) + T‘M’)u_ﬁ“""’
— O(M.M—IJS(M“UM‘(‘M-IJ)' (196‘)
If M =2, we obtain the simpie
(01 ATD £ THOM 2 < 0. (194)

Equation (19) holds if the boundary conditions are u{!" = ¢ = (, If the boundary
condition for x = x is #(*'" = 0, T in (196) and (194) must be replaced by a diagonal
mattix T whose diagonal elements are

T = k02 = kY tan(ki3d®) (20a)

and if the boundary condition for x = x™*1) is &7 = 0, T™ in (19¢) and (194) must
be replaced by a diagonal matrix T whose diagonal elements are

TR = — KO0 = — P tan(dL0). (206)

Equation (19) constitutes a non-linear eigenvalue problem for the angular repetency k,
of the waveguide mode. When this eigenvalue problem is solved iteratively, the coupling
matrices Q™™+ 1) peed to be calculated only once, since they are independent of k..
Only the diagonal matrices T™ and S$™ depend on k, and must be recalculated for
each step in the iteration. When the matrices are truncated to the upper left K by K
corner, corresponding to the K lowest-order film modes being considered in each film,
(19) is a K(M — 1) by K(M — 1) eigenvalue problem of the general form

Mk, )u =0, (21)

where the matrix M has the band structure shown in figure 2(a).
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Null matrix
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Figure 2. (a) Structure of the matrix M of the eigenvalue problem (21) of the mode matching
method in the scalar field case, equation (19). Each square is an L by L matrix, where L is
the number of film modes considered in each film. The total dimension of the matrix is
L(M — 1), where M is the number of film slices used to model the waveguide cross section.
(b) As (a), for the vector field case, equation (33). The total dimension of the matrix is
2L(M — 1), where L is the number of TE or ™™ modes. In (a) and (b), the number of films
is M = 7. Note the band structure of the matrices.

We want a stable and efficient numerical method for solving the non-linear
eigenvalue problem (21) that also works when the dimension of M is large, ie., if we
have a large number of film modes and/or many slices in the model waveguide cross
section. Such a method is described below.

Take any vector v with a non-negligible component along the eigenvector u of (21)
and solve the equation

Mk )u' = v (22)

for ', using a standard linear equations solver. As k. approaches an eigenvalue, the
solution u' diverges. So does the output from the linear equations solver, but if it is
normalized, it approaches the corresponding eigenvector [16]. A procedure for solving
a non-linear eigenvalue problem like (21) (regardless of the dimension of the problem)
is therefore first to plot as a function of k, the norm of the output ' from a linear
equations solver applied to (22), in an interval where an eigenvalue for k. is believed
to exist. The search can then be localized to k. intervals where the norm of #’ is much
largcr than the norm of ». In such an interval, consider the function f(k.) = 1/u,, where

' is the p component of #’. We assume that p is chosen so that the p component of
the eigenvector u of (21) is non-negligible. Sufficiently close to the eigenvalue, f(k.) is
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a continuous function of a single variable with a zero crossing at the eigenvalue, if the
eigenvalue is isolated and non-degenerate. (Exactly degenerate eigenvalues only arise
in symmetric geometries that ought to be analysed in their symmetric halves or quarters.)
Standard simple numerical procedures may then be used to locate the zero accurately.
In the above procedure, the film mode amplitudes u, i.e. the waveguide mode field, are
obtained together with the angular repetency k. of the waveguide mode. The procedure
must be repeated for each waveguide mode, if more than one mode is needed.

A numerically useful property of (19) is the fact that for higher order film modes
the k% are imaginary with large absolute value, so that unless the slice thickness 49"
is small,

S~ 2kl exp(— K14 @3)

is negligible if the mode order k is sufficiently large. Hence the right-hand sides of (19)
vanish for higher order modes. and (19) uncouple into separate sets of equations for
each slice. Thus, instead of being a nuisance, the evanescent nature of the higher order
film modes is numerically helpful. The dimensions of the matrices that need to be
handled direcily may therefore be reduced considerably from the value L{M — 1) of
(19) as it stands.

3.2. Vector modes

The expansion (5) for scalar waveguide mode fields may be generalized to vector mode
fields, with a slight complication: the mode field components of TE and ™ film modes
in the x and z directions depend on the direction of propagation of the modes. In the
equivalent network formulation of the FMM method, the focus is on waves corresponding
to +k, and —k, in table Al, whereas we are interested in the symmetric and
antisymmetric combination of these waves. This choice of variables is necessary to
avoid the numerical problems encountered when evanescent film modes are included
in the equivalent network formulation, and leads to a real formulation. The vector
generalization of (5) is

Fx,y)= 3 Z [uie COF () + 23R ()F ) (1] (24)

p=eh
where F represents any one of the electric (E,, E,, E,) or magnetic (¢B, = ugcH,,
¢B, = pocH,, o1 ¢B, = pycH,) mode field components in slice m. F'7) are the correspond-
ing symmetric film mode components in film m with TE (p="F%) and ™ (p=e)

polarization, and F7) the antisymmetric ones, derived from table Al via

FE(x, y, 2, 0) = [FGUY) — ik F ()] explieot — k(x — x™) — k.2)] (25a)

and listed in table 2. The amplitudes 4%’ (x) of the symmetric film mode field components
are real and satisfy equations 11ke (6) and (7a), whereas the amplitudes of the
antisymmetric file mode film components are the x derivatives 2y (x) of the amplitudes
u,,k’(x), satisfying (7b). Note that the x and y components of the fields F%)(y) and
F{7(y) are real, whereas the z components are purely imaginary. (ko/k'%)*ul%" and
umPare the amplitudes of the symmetric and the antisymmetric ﬁlm mode field
components F&(y) and FIM.(3), respectively, in film m at x = x™ + 0, so that

wf () = h(ko/ kYUl ulmd e, ki (x — x™)) (258)
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Table 2. Symmetric and antisymmetric film mode components. This is derived from table
Al m the appendix, via F = [F,(y) — ik £ ()] explilwt — k.x — k,2)], where w = ckp is
the angular frequency, ¢ is the speed, and k, is the angular repetency of the light in vacuum,
The properties of the mode functions ¢(y} and ()} are discussed in the appendix. The
mode has wavevector k, = k% + k.Z, and the angular repetency of the mode is k; = |&,| =
(k2 4 k22, &, is determined from the film mode equation (A1) for TE modes), and if we
choose a va.lue for k., k, is given by k, = (k2 — k1'%, An overall normalization factor with
the dimension of electric field has been omitted.

TE ™
F E}. 'F;xh -Fse Fﬂr
E, (k. /ko}o(y) 0 0 — (kYD
E, 0 0 (=KHEW (/) 9
E; 0 —ip(p)ky (G /R ) e(p) 0
cB, 0 B(¥)kE (ko) 0
cB, (k3B o) 0 0 0
¢B. (—jk kB0 0 0 =jy(¥)ko

where the function k is defined in (7¢). The corresponding amplitudes at x = x*™" — 0
are (ko/kum)2uim" and uf™y. (The factor (ko/kiy')* is discussed below.) Equations (11)
and (12) are then apphcable also to the vector film mode amplitudes, and (13) takes
the form

b = _Tlmgmd | Gyt (26a)
) = — Gl | Temyimn , (26b)

for p = k (TE modes) and p = e (T™ modes). In analogy with (12} the diagonal matrices
Ti and S have the diagonal elements

T = (ko/ku Yk, tan(kindS™) (27a)
St = (ko/kG 3k /sin(kip d ™) (27b)

where
K, = (k2 — K @)

and k% are the angular repetencies of the film modes. The film mode amplitudes in
films m and m + 1 are coupled at the interface at x = x** ) in a generalization of (18):

) = Qmm+ ylm+ 1.0 (29a)
"[m.r) - O(m,m +!}u(m +1.0 k. 0},’2"""’ ”uﬁ';"" 1, (29b)
ulm = Qmm* Ly m+ 1,1 (29¢)
u(m,r) O(m-l- l.m)Tu(m+1 (3] + k 0(m+1 m)Tu(m+1 o) (29d)

where the coupling matrices O™, Q™™ and Q") have matrix elements

o™ = (o) ™ (30a)
O'mmY = (f(m[ im0 /glm)y (300)

Olma™ = (@™ ™ SRR + L@/ kG (30c)
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and the ¢ and the ¥ are orthonormal:

(oo™ = M e™) = Sy (31)

When we include the factor (ko/kS7)? in (25b) we can retain the simple normalization
(31), we obtain expressions for Oﬁ,’;,’k’,’" and 0% that are independent of the film mode
angular repetencies k¥, and the similarity between the scalar and the vector case is
emphasized. On the other hand, the presence of the factor (ko/k!?)* in (25b) is then a
manifestation of the essential difference between scalar and vector fields, namely that
the scalar field is, and the vector field is not, continuous across the slice interfaces.

The matrix Of™ is identical to the matrix O™ of the scalar case, and satisfies
(16) and (17). The matrix O™ also satisfies (17), i.e., the inverse of Q™™ js Q"™
but O™ is not the transpose of O™™), The TE-T™ cross coupling matrix 0‘"‘""
vanishes for m" = m, and satisfies

0fr™IQ™ + O™ O™ = 0, (32)
The vector mode generalization of (19) is then obtained from (26) and (29):

(O™ T N0G™ 1™ + T)uly
= Oﬁ:;:m— l)ss:w—l}ugr}:x—l,l) + S}[m}ogg,m-ﬁ- 1)u;z:+ 1.0}

— &, Offm 1O Ltz (330)

(04~ HmT = DOt 1 ()i
= O(el:— l.m]ngn" 1)ugzt— 1,1} -+ Si,m)ogg,m+ 1)u§r:+ i.h

+ kO™ L mTO " VTl (336)

for 2 <m < M. Like in (19) for m = 2 and m = M, u{}" and «{¥ * 1), respectively, must
be set to zero in (33). The band structure of the eigenvalue problem matrix represented
by (33) is illustrated in figure 2(b). As in the scalar case, we have two possible boundary
conditions at x = x'¥ and x = x™*1): The vanishing of E,, E, and B, (so-called electric
wall), corresponding to the vanishing of 4{f’(x) and u$(x), or the vanishing of E,, B,
and B, (so-called magnetic wall), corresponding to the vanishing of u{l’(x) and u‘""(x)
Like in (19), T or T in (33) must be modified according to (20) (with the additional
factor (kO/k‘"’])2 asin (27)) if the boundary conditions are ', = 0 or #%*” = ( instead
of uy? = 0 or ul¥" = 0, respectively.

The overlap mtegral or coupling matrices in (30) can be identified among the P, Q,
R and § matrices in [8], and the derivation of (2%) closely paraliels corresponding
derivations in [8] and [9]. The coupling matrices in (30) and the film mode amplitudes
i (x) in (24) (and the amplitudes and derivatives in (26) and (29)}) are all real, whereas
in the equivalent network formulation [8], the corresponding ‘voltages’ and ‘currents’
are complex. Thus we have a formalism that is as simple as that of the equivalent
network, involves only real matrices, and can be used as a general numerical method
for calculating mode fields in dielectric waveguides.

Most of what was said about numerical computations in the scalar case (19) also
applies to the vector case (33). The dimension of the eigenvalue problem matrix is
doubled, since both TE and T film modes must be considered. In addition to the unitary
overlap integral matrix Off™* 1 of the scalar case, a total of three other overlap integral
matrices Q™+ 1) Qi e and OfF" '™ must be calculated at each film slice interface.
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Figure 3. Mode index calculated for the fundamental mode of the model square waveguide
described in the text, as a function of number of TE/TM film mode pairs included in each
film in the calculation.

If the TE-TM mode coupling at the interfaces is neglected, only the first matrix is needed,
and (33) decouple into a TE and a T™™ case for the whole waveguide. The TE case (33a)
and the scalar case (19a) then look identical. The ™ case (33b) looks slightly different,
since O™™*1) is not unitary like Q2™+, What makes the TE case different from the
scalar case is the factor (ko/kg,?)2 that appears in the definitions (255) of #™(x) and
{27) of Tt and $¢".

4. Results

For illustration purposes we consider a square single mode waveguide with an index
of refraction in the core significantly different from that in the cladding. This is a kind
of guide where we expect pronounced differences between the results obtained with the
various approaches, scalar, semivectorial and vectorial. (In practical structures like
semiconductor ridge waveguides, the differences are expected to be much smaller,
because the field is confined mainly to regions with small variations in the refractive
index.) To show how the method tackles the singular behaviour of the vector mode
field at the corners of the waveguide core we consider a core small enough that the
mode field extends into the cladding and is non-negligible near the corners of the square
waveguide core.

The waveguide chosen for this purpose is one with a core 4/2 on the side, where 4
is the wavelength of the light, and with an index of refraction of 1.5 in the core and 1.0
in the cladding. Artificial electric or magnetic walls were placed at y = +0.764 and at
x = +3.014. The program for calculating the effective indices and field components of
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Figure 4. Surface plot of the distribution of the major transverse electric component (the y
component) of the fundamental mode field of the model square waveguide described in the
text, calculated with the film mode matching method for one quadrant of the waveguide
cross section. The region bounded by x =0, x = 0.54, y =0, and y = 0.5] is shown. The
four plots correspond to 10, 20, 40 and 80 TE/T™ film mode pairs included in the waveguide
mode field expansion. The top corner of each plot is at the centre of the guide, the x-axis
runs to the right from the top and the y-axis runs to the left. The field is y-polarized.

the waveguide modes was written in the programming language Matlabt, and the
calculations were performed on a personal computer with an 80486 processor.

The properties of the method for vector field calculations are clearly displayed in
figures 3 and 4. All the results and the graphics presented in figures 3 and 4 were obtained
in a few minutes of processing time on the personal computer. As the order of approxi-
mation is increased (i.e. more film modes are included in the expansion of the waveguide
mode field), the mode index k,/k, rapidly converges to six digits, as shown in figure 3.
Figure 4 shows the distribution of the major transverse component of the electric field
of the fundamental mode, calculated for one quadrant of the square waveguide, for
different orders of approximation. The numerically troublesome continuity requirement
on the field near the corner of the core/cladding interface is well satisfied, even in
low-order approximations. For the highest order approximation the cusp associated

T *Matlab’ is a registered trade mark of The MathWorks, Inc., 21 Eliot Street, South Natick, MA 01760, USA.
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Figure 5. Mode index calculated for the fundamental mode of the model square waveguide
described in the text, as a function of the number L of TM film modes included in the
calculation. Expansions based on T modes only (top trace), dominated by ™ modes
(centre) and dominated by TE modes (bottom) are shown. As in figure 3, results were
calculated for all L values between 4 and 20, and for L equal to 29, 30, 49 and 50.

with the divergence of the field at this corner is apparent. The cusp is very clearly
displayed, also in lower order approximations, in the other transverse E-field component
(not shown). The cusp is more clearly displayed in the results presented in [3], where
both transverse E-field components are shown, and where more film modes were used
in the calculation, so that the spatial resolution was four times better than in figure 4.

There are small ripples in the calculated mode field near the (artificial} interface
between the two films defined by the mode matching method. The ripples are a
numerical artifact introduced by the singular behaviour of the field at the corner of the
waveguide core. Only the two diverging transverse components of the electric mode
field exhibit these ripples; the longitudinal electric and the three magnetic field
components (that are continuous) calculated all look smooth.

Figure 5 shows the calculated mode index k./k, of the fundamental mode as a
function of number of film modes included in the calculation, for both x- and y-polarized
full vector modes, and for the best semivectorial approximation. Figure ¢ shows
distributions of the major (x or y) component of the transverse electric mode field. The
scalar field approzimation is shown together with x-polarized (i.e. dominated by TE film
modes), and y-polarized (i.e. dominated by ™ film modes) fields, for semivectorial and
vectorial expansions. 50 film modes (or T&/TM mode pairs) were included in each film
in the calculation.

The full vector mode expansion where ™ film modes dominate and the expansion
where TE modes dominate yield very similar results, and the semivectorial approximation
based on ™™ film modes only is hardly distinguishable from its full vector mode
counterpart. From figure 5 we see that the convergence properties of the above three
expansions are quite similar, with the semivectorial approximation introducing an error
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Figure 6. Distribution of the major transverse electric component of the fundamental mode
field of the model square waveguide described in the text, calculated with the film mode
matching method for one quadrant of the waveguide cross section. The scalar field
approximation (top), two semivectorial approximations (centre), and the two possible
polarizations of the vector field (bottom) are shown, with TE film mode dominated cases to
the left and T dominated cases to the right. Axes are as in figure 4.

of about 6 x 107* in the calculated mode index in this particular example. (The
difference between x- and y-polarized cases is mainly due to the non-square shape of
the artificial enclosure, and vanishes for a square enclosure, or if the artificial walls are
moved further from the waveguide core.) The semivectorial approximation based on
the TE film modes only is, however, linearly polarized and almost as inadequate as the
scalar approximation. Both approximations yield mode field distributions that at best
can be considered qualitatively correct.
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Table 3. Comparison between the results in [17] and those obtained with the FMM method.

Computational TFype of Mode index

window height artificial

(um) wall TE ™ TE (asym.)

20 [17] 325516633 3124107891 319206793

6.0001 e 325610751 324191129 3.19335741
m 325611495 324191117 119338222

4.0001 e 325610915 3.24191522 3.19332159
m 3.25610581 324190723 319339435

20001 e 325517265 324314389 319100017
m 325699872 324058788 3.19536688

The square waveguide described above is useful for illustration purposes, but it is
not very practical. A recently published calculation on a diode laser amplifier structure
provides such a practical example [11]. The waveguide analysed consists of two parallel
slab waveguides on top of each other, both 1.5 um wide, the bottom one 0.2 pm thick
with an index of refraction of 3.4, the top one 0.15 pm thick with an index of refraction
of 3.53, spaced 0.1 um apart in a medium with an index of refraction of 3.17. The struc-
ture was analysed in [11] with an e method using a non-uniform grid, even though the
structure is perfect for the application of the much simpler FMM method described above.

In table 1 results obtained for the mode index k./k, with the FMM method are
compared with the ¥E method results in the first line of table VI of [11]. Three
computational windows were considered, each 20 pm wide as in [11], with heights of
2.0001 pm, 4.0001 pm and 6.0001 pm, as compared to the 20 um of [11]. The waveguide
core was offset 0.000 15 pm vertically from the centre of the computational window.
Results were calculated both for electric and magnetic wall boundary conditions on the
top and bottom sides of the computational window, for a wavelength of 1.55 pm. To
obtain the same spatial resolution in the solutions, 25 T/T™ film mode pairs were used
in the mode field expansion with the 2.0001 um high computational window, 50 mode
pairs with 4.0001 pm, and 75 mode pairs with 6.0001 pm.

Table 3 indicates that for the fundamental TE and T™™ modes the spatial resolution
considered yields results for the mode index that are accurate to between five and six
decimal places. Calculations with 100 mode pairs for the 2.0001 wm high computational
window confirm this conclusion. The results for the fundamental modes do not seem
to be affected by the artificial walls when they are more than about 2 pm from the core,
while the results for the lowest order asymmetric mode are affected in the fifth decimal
place. Artificial walls only 1 um from the core affect the results in the third decimal
place. The results in [11] are about 0.001 smaller than those obtained here and in a
calculation with the method of lines [17].

5. Discussion

Film mode matching is a well established method for calculating approximations to
mode fields in dielectric waveguides. The present work establishes its efficiency as an
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accurate numerical method. As mentioned already, the formulation discussed here is in
terms of real vectors and matrices, instead of the complex ones obtained if the equivalent
network analogy [8-10] is used. Since the real formulation is obtained without an
accompanying doubling of the dimension of the matrices and vectors, we gain numerical
efficiency by abandoning the equivalent network analogy. Furthermore, a computer
program for mode field calculations based on the real formulation is as straightforward
as-one based on the equivalent network formulation. The ‘mesh’ geometry of the model
waveguide cross section considered here is, however, more general than the geometry
usually considered with the equivalent network. Last, but not least, no numerical
problems associated with the evanescent nature of the higher-order film modes are
encountered. This last feature of the method is a result of the particular choice of
unknowns u{m%" in the eigenvalue problem (33), not that this choice leads to a real
formulation.

- Figures 3 and 4 and table 3 lead one to believe that film mode matching is probably
one of the most accurate and efficient methods available for the calculation of vector
mode fields in dielectric waveguides. The analytic problems at the corners of the
waveguide core appear as oscillations in the calculated mode fields, localized near the
interfaces between film slices defined by the method. The oscillations are well behaved
and well understood from completely analogous behaviour of the standard Fourier
expansion of a discontinuous function of a single variable. For aesthetic purposes, they
can be eliminated by extrapolation everywhere except in the immediate vicinity of the
analytic singularity. When the results obtained with the FMM method are compared with
the results obtained with a well developed FE method (table 3) the accuracy of the much
simpler and faster FMM method is striking.

Detailed accuracy of the kind seen in figure 6 for the computed mode fields
provided by the MM method can only be matched by an F£ method with an impractically
fine mesh. The same can be said about finite-difference methods. The resalts in table 3
for the mode indices are accurate to better than a few parts in 10%, the accuracy claimed
in [11]. The differences between the FmM results and the FE results [11] are actually one
order of magnitude larger. One possible explanation for the differences is the omission
of the penalty parameter extrapolation in [11]. The sign of the differences is consistent
with this explanation. The conclusion is clear: use the FMM instead of any FE method
whenever waveguide geometry allows.

From the comparison of figure 6 of scalar and semivectorial approximations with
the full vector results, it is evident that the field of modes with a polarization such that
they can be expanded in ™ film modes only are as accurate as their full vector
counterparts, for all practical purposes. Similar statements cannot be made about the
semivectorial approximation based on TE modes only or about the scalar approximation.
These approximations have problems that one encounters whenever one is interested
in the actual magnitude of the mode field near non-planar interfaces with large index
of refraction differences. (A practical example is a DFB laser with a grating at the interface
between the semiconductor and an oxide cover.) That an expansion based on T modes
only is better than one based on TE modes only is reasonable, since the discontinuity
of the mode field near the corners of the core is explicitly present in the T™™ modes only.

A few pros and cons of the FMM method are detailed below.

Pros: 1. The method is straightforward. Writing a computing program implement-
ing the method is easy, especially if 2 programming language incorporating
matrix aigebra is used. This is by far the most important feature of the
method.
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2.

Cons: 1.
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The method can be used both as a quick method of approximation and
as a fully fledged accurate numerical method for mode field calculations.
In the formulation discussed above, no numerical stability problems pop
up when the number of film mode basis functions is increased. In particular,
there are no problems associated with the evanescent nature of the
higher-order modes, as discussed already.

. The method handles both scalar and vector fields, formally with

almost equal ease. Semivectorial approximations emerge with the same
ease.

. The method is much more efficient than finite-clement, finite-difference or

orthogonal-function-expansion methods, for waveguides composed of
homogeneous regions with well defined interfaces. The reason is that it is
a kind of boundary integral method, i.e. the mode field in the entire
waveguide cross section does not have to be considered in the eigenvalne
problem to be solved, only the field along the boundaries represented by
the interfaces between the film slices defined by the method.

The method works best for waveguide cross sections consisting of z

smalil number of homogeneous rectangles. Because the description of this
geometry is simple, it is the preferred geometry for many model waveguide
calculations for practical applications. The rectangles have corners where
the index of refraction is different inside and outside the corners. As
discussed above, such corners represent an analytical problem for the
calculation of vector mode fields, in that the fields diverge at the corner
[1-3]. In the vector case it is therefore more important than in the
scalar case to have pumerically efficient methods, if there are corners
in the waveguide cross section. The mode matching method provides
numerical efficiency that allows the field divergence at the corner to be
represented numerically, as shown in figures 4 and 6, and even clearer
in [3].
The eigenvalue problem (33) that one eventually arrives at is non-linear,
and each separate eigenvalue and corresponding eigenvector must be found
by iteration. Many other numerical methods for mode field calculations,
like finite-element, finite-difference or orthogonal-function-expansion
methods, yield eigenvalue problems that are linear. Linear problems are
faster than non-linear omes to solve numerically, especially if many
cigenvalues and eigenvectors are needed.

. In vector mode calculations, the analytical problem associated with the

presence of sharp right-angle corners in the waveguide cross section can
be viewed as a problem with the FMM method, not with the waveguide
itself. The waveguide may well have a cross section that is better modelled
by rectangles with rounded corners or by graded index distributions than
the sharp corners with index steps required by the FMM method. Many
real waveguide structures, however, actually have cross sections with
numerically troublesome corners, ie., well defined interfaces with a local
radius of curvature much smaller than a wavelength.

. When the geometry of the waveguide cross section deviates from the

rectangular (c.g. the slanted sides of the ridge waveguide of figure 1),
corners that are not present in the real guide are introduced in the model
guide by the method (see figure 1). In light of what has been said above
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about the trouble of corners in vector mode calculations, these artificial
corners are clearly undesirable.

4. The number of basis functions needed for a given accuracy increases when
the distance from the core to the artificial boundaries of the film guides
increases. This is a problem for modes near cut-off, because their mode
fields extend far into the cladding, so that the artificial walls must be placed
far from the core. The distance to the walls can be minimized, however,
by comparison of mode fields and repetencies calculated for each of the
two possible boundary conditions at the artificial boundaries,

5. A troublesome problem with the method has been the ‘relative con-

© vergence’ phenomenon [7, ch 10]. This problem is not encountered with
the purely dielectric waveguides usually considered for integrated optics,
unless the waveguide structure is such that the approximate orthogonality
of the overlap integral matrices O™m*1) eap omly be satisfied with
impractically large dimensions of the matrices.

Finally, let us consider a viable alternative, the method of lines (MoL). It is a rather
close relative of the FMM method, as discussed in [7, ¢h 6]. For the class of waveguide
geometries considered here, both methods are quite straightforward and computa-
tionaily efficient. The expansion of the mode field in film modes is roughly equivalent
to an equidistant sampling of the field in the direction perpendicular to the film, in the
high order limit. Thus the number of modes considered in the FMM method corresponds
to the number of lines in the MoL, and the computational efficiency of the FMM method
as presented here is about the same ag that of the MoL with equidistant lines. They both
yield non-linear eigenvalue problems of the form (21), of comparable dimensions. The
dimension of the eigenvalue problem can be reduced by non-equidistant sampling of
the fieid, e.g. near field singularities, where high spatial resolution is needed, and in the
cladding far from the core, where low resolution is needed. With the FMM method a
non-equidistant sarnpling can be achieved with a change of basis, e.g. by expanding the
functions @ and ¥{™ in other function sets, whereas for the MoL a formulation with
non-equidistant lines is more straightforward and is already developed [15]. In this
respect the MoL has an advantage over the FMM method. Otherwise, there is no reason
to expect one method in general to be preferable over the other. Most of what is said
above about the advantages of the FMM method over e and Fb methods is equally
applicable to the MoL.

6. Conclusion

The old film mode matching method for calculating mode fields in rectangular dielectric
waveguides has been re-examined. A numerically stable formulation that is optimized
for exploiting standard computer libraries for numerical linear algebra has been
developed. The method is straightforward, numerically efficient, accurate, and applicable
to scalar and vector field calculations with almost equal ease. The method does not
circumvent the fundamental analytic problem with vector fields in rectangular wave-
guides, but its numerical efficiency is comparable to that of the method of lines, and
permits a brute-force treatment of the problem. For waveguide geometries where it is
applicable, the method is much simpler, faster and more accurate than finite-element
and finite-difference methods.
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Appendix. Film modes

In this section the most important quantities describing film modes are listed together
with relations useful when a computer program for waveguide mode field calculations
based on the film mode matching method is written.

We shall consider real solutions of the film mode equation

¢ + (MK — ko =0 (A1)

where the film is made up of homogeneous layers, so that &(y) is a piecewise constant
function given by

&(y) =™ for y" <y <yt (A2)

The film layer interfaces are at positions y™, n=2,3,...,N. é(p) is the second
derivative d*p/dy? of the mode function ¢(y), and k; is the angular repetency of the
film mode. Let us for a moment limit our attention to scalar modes, so that the mode
field @(y) and its derivative ¢(y) are both continuous functions. The boundary
conditions we consider are that either ¢(y) or ¢(y)iszerofor y = yMand y = y¥+1),

In layer n of thickness 4" between y™ and y“*" g(y) has the form

p(y) = o cos[k (y — y)] + (p&I/k™) sin[kM(y — y™)] (A3)
where
k;(vn) — (gtn)ké — k%)llz (A4)

k{™ is either real or purely imaginary, so that ¢(y) is real if " and ¢! are real. ¢{"
is the function value at the bottom (equivalently: left-hand} side of layer n,

o = (¥ + 0) (A5a)
and ¢ is the y-derivative at the bottom side of the layer,
o = g(y™ + Q). (ASh)

The use of ¢ as a variable instead of of/k™ has the advantage that (A3) is well
behaved for vanishing k.

Let ws also introduce the corresponding quantities at the top (equivalently:
right-hand) side of the layer:

o = g(y* 1) — ) (ASc)
P = Gyt D — Q). (Asd)

Alternative expressions for @(y) and ¢(y) that are particularly useful when k¥ is
imaginary are

@(y) = (5" sin[kP (y*=* D ~ y)]

+ @1 sin[k™(y — y*™)])/sin(k{"d™) (Aba)
3(y) = (& sin[kP(p*=* 1) — y)]
+ @@ sin[kM(y — y™)])/sin(kd™) (A6b)

where

4 = ylrt iy _ {A6c)
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Dropping the layer label n and the subscript y on k% we have a number of ways of

relating the quantities in (AS):
o = oW cos(kd) + (k) sin(kd)
¢ = oW cos(kd) — Pk sin(kd)
o) = % cos(kd) — (k) sin(kd)
o = o cos(kd) + o™ sin(kd)
o = k[ — @B tan(kd) + ¢/sin(kd)]
@ = kLoD /tan(kd) — o/sin(kd)]
o = [p/tan(kd) — @ /sin(kd)]/k
e = [— oP/tan(kd) + ¢ /sintkd)]/k.
Within a homogeneous layer ¢(y) can also be written
() = ko, 0P/k, k(y — y9))
and its derivative

$(y) = Mo, — ko, k(y — y¥)

(A7a)
(A7H)
(A8a)
(A8D)
(A9a)
(ASb)
(Al0a)
(A10b)

(Allg)

(Al1b)

where y is the position of the bottom of the layer and the trigonometric/hyperbolic

function A is a function of three variables
h(1, v, 1) = u cos(y) + v sin(y)
satisfying
Shfon = h(v, —u, n).

Of interest for overlap integral computations are integrals of the type

0= J. oy ea(y)y dy
Q

where
() = h(eQ, 0k, ki )
for k =1 and 2. Generalizing (A5) we define
o3 = o(d) = h{ol, 0Q/ky, kid)
o = ¢u(d) = h(oQ, — k08, k,d)

and obtain

4
0= J e (¥ e(y)dy

0

= (pQlel] — ollof — olled + oLl eNkT — kI).

(A124)

(A12b)

(A13)

(Al4)

(Al3a)
(A15b)

(A16)

The expression is numerically inaccurate when |k? — k2|d® « 1, in which case either
a power series expansion of (Al15) or a re-expression of (Al6) in terms of k; — &,
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and k, + k; are useful. The special case k; =k, =k is needed for mode function
normalization

d 1
J o(y)* dy = T — o0 — PP + - [qo"’2 + (oK
0

2k'*‘- 3 @0 — oDy + - [fp“’z-!-(fp"’/k)z]- (A17)

A numerical solution of (A1) (so-called shooting method) involves the iterated use of
(A7) starting from the bottom and using the bottom side boundary condition, and (A8)
from the top, for a given k.. The continuity requirement on ¢(y) and ¢(y) imply that

(pin.r) = (Pg” 1.2) aIld (DE,H 5 ) N ‘;D(an-i-!.f) (Alg)

which must be exploited together with (A7) and (A8). A particular layer interface
position " is chosen where a field mismatch, expressed as

A(n'} — (pgn',rJqDLuW 1,1y (pgn‘,r)qogn’+ 1,1) (Alg)

is computed. In (A19) o™ and %" are calculated by iterating (A7) and (A18) from
n = 1, whereas @ **¥ and ¢ *!? are calculated by iterating (A8) and (A18) from
n = N. The zeros of A™) as a function of k, then yield the film modes. For numerical
reasons #' should not be at a boundary,”’ =lorn' =N + 1.

The vector modes of the film are of two kinds, TE or T, depending on polarization.
The TE mode field components can be expressed in terms of a scalar mode field function
of the type ¢(y) discussed above, as shown in table Al. The T™ mode field components
can be expressed in terms of a scalar mode field function () satisfying (A1) everywhere
except at the layer interfaces, where {(y)/s(y) instead of w(y) is required to be
continuous. Thus for ¥(y) we may define quantities ™, ™0, ™ and " in analogy
with (AS), satisfying relations like (A7)—(A10). For ™ modes, however, (A18) takes the
form

‘bgn,r) = 'Jlgﬂ- 1,0y and [j’in.r)/gfnj = lf/f,"“'”/&‘""' L) (AZO)

Table Al. Film mode field components. All components are to be multiplied by an arbitrary
normalization constant with dimension of electric field, and by exp[jlwt — k.x — k.2)],
where @ = ck, is the angular frequency, ¢ is the speed and X, is the angular repetency of
the light in vacuum. The properties of the dimensionless mode functions ¢{y) and ¥(y) are
discussed in the appendix. The mode has wavevector &, = k.2 + k. and the angular
repetency of the mode is k; = M| = (k2 + kD' k, is determined from the film mode
equation {(A1) for TE modes) and, if we choose a value for k., &, is given by &, = (k% — k342

F TE ™

E. (+kfRo)e(y) (+ ik, /REW (V) e(y)
E, 0 (= R/ e(3)
E. (—k./ko)o (3} (+ik TV y)e(y)
B, (—ik kB o(») (+kfRo) ()

B, (+k}/k)oly) 0

cB, (=ik./kE)d(5) (=ka k()
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and (A19) takes the form
A(n') = B(n')wgn'.r)win'*- 1.0y 8(n'+ ljwin'-l— 1.!)!"1311'.1‘). (A21)

The ™ mode field components are also listed in table Al.

As to the boundary conditions, if ¢(y} = 0 at a boundary, then {(y) = 0 at the same
boundary, corresponding to vanishing E,, E, and B, (so-called electric wall), and if
¢(y) = 0 at the boundary, ¥(y) = 0 at the same boundary, corresponding to vanishing
E,, B, and B, (so-called magnetic wall).
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