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Finite-difference time-domain solution of light scattering
by dielectric particles with a perfectly matched
layer absorbing boundary condition

Wenbo Sun, Qiang Fu, and Zhizhang Chen

A three-dimensional finite-difference time-domain ~FDTD! program has been developed to provide a
numerical solution for light scattering by nonspherical dielectric particles. The perfectly matched layer
~PML! absorbing boundary condition ~ABC! is used to truncate the computational domain. As a result
of using the PML ABC, the present FDTD program requires much less computer memory and CPU time
than those that use traditional truncation techniques. For spheres with particle-size parameters as
large as 40, the extinction and absorption efficiencies from the present FDTD program match the Mie
results closely, with differences of less than ;1%. The difference in the scattering phase function is
typically smaller than ;5%. The FDTD program has also been checked by use of the exact solution for
light scattering by a pair of spheres in contact. Finally, applications of the PML FDTD to hexagonal
particles and to spheres aggregated into tetrahedral structures are presented. © 1999 Optical Society
of America

OCIS codes: 010.1290, 010.1310, 010.3920, 290.5850, 290.1090, 280.1100.
1. Introduction

Cirrus clouds, primarily present in the upper tropo-
sphere and lower stratosphere, are globally distrib-
uted and are composed almost exclusively of
nonspherical ice crystals.1–3 Remote-sensing stud-
ies and climate research require precise knowledge of
scattering and absorption by nonspherical ice
crystals.4–6 To date, however, except for some sim-
ple particle shapes,7 such as spheres,8 double-sphere
systems,9 spheroids,10 infinite circular cylinders,11,12

Chebyshev particles,13 finite circular cylinders,14 and
cubes,15 theoretical scattering treatments are not
vailable for scattering and absorption by nonspheri-
al particles. Of the ways other than analytical so-
utions, Rayleigh theory can be applied when the
article-size parameter is much smaller than one.
hen the size parameter is larger than ;40, the

geometric optics method16–18 can be used for non-
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spherical particles. However, in the resonant re-
gion,19 Rayleigh theory and the geometric optics
method are not applicable because of the assump-
tions pertaining to each technique.

It was recently suggested that the anomalous dif-
fraction theory20 would be an appropriate method for
calculating the single-scattering properties of non-
spherical ice particles.21 However, this method is
not able to provide information on the scattering
phase functions. In addition, it is found that the
anomalous diffraction theory presents large errors if
the refractive index is not close to one.6,22,23 Because
ice presents a large range of refractive indices in both
real and imaginary parts, the applicability of the
anomalous diffraction theory to nonspherical ice crys-
tals is limited.

To obtain accurate solutions for light scattering by
particles of arbitrary shapes, numerical approaches
such as the discrete dipole approximation24–27 have
been developed. However, it may work well only for
nonspherical particles with size parameters smaller
than ;15.28,29

Pioneered by the research of Yee30 and many other
electrical engineers, the finite-difference time-
domain ~FDTD! solutions of Maxwell’s equations
have been extensively applied to electromagnetic
problems such as antenna design, radar cross-section
computation, waveguide analysis, and some other
open-structure problems. The FDTD technique is a
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3141
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numerical solution to Maxwell’s equations and is
formulated by replacing temporal and spatial deriv-
atives in Maxwell’s equations with their finite-
difference correspondences. This method can be
accurately applied to general electromagnetic struc-
tures including particles of arbitrary shapes. How-
ever, like other numerical approaches, the FDTD
method requires large computer storage and large
CPU time even for particles with small size parame-
ters. Moreover the stability and accuracy of the
FDTD program are determined by many factors such
as boundary condition, mesh size, and scatterer size.
Topics related to improvement of its accuracy, reduc-
tion of memory and CPU time requirement, and ap-
plications to larger objects, have been actively
pursued over the past 10 years.31–34

In applications of the FDTD technique to problems
in an unbounded space, one of the key issues is the
truncation of the computational domain through ar-
tificial boundary conditions. In the case of studying
light scattering by particles of arbitrary shapes, it is
essential to use the most effective and efficient
boundary treatment. Yang and Liou35 employed the
FDTD method for light scattering by small non-
spherical ice crystals by using a transmitting bound-
ary condition.36,37 They found that the FDTD works
well for particles with size parameters smaller than
10. In this study we have developed a FDTD pro-
gram by employing a newly developed so-called per-
fectly matched layer ~PML! absorbing boundary
condition ~ABC!.38–40 We apply the FDTD program
or light scattering by dielectric particles with size
arameters as large as 40 to show its accuracy and
fficiency. In Section 2 the FDTD with PML ABC
or dielectric scatterers is formulated. In Section 3
he FDTD program is validated by using the exact
olutions. Some applications of the present program
o nonspherical particles are presented in Section 4.
ummary and conclusions are in Section 5.

2. Finite-Difference Time-Domain Method with a
Perfectly Matched Layer Absorbing Boundary Condition

A. Finite-Difference Time-Domain Method

The FDTD formulations of electromagnetic-field
problems is a direct numerical solution of Maxwell’s
time-dependent curl equations. Consider a source-
free medium where Maxwell’s equations can be writ-
ten as

¹ 3 E 5 2m
]H
]t

, (1a)

¹ 3 H 5 e
]E
]t

, (1b)

where E and H are the electric and the magnetic
elds, respectively, m is the permeability, and e is the
ermittivity of the dielectric medium.
Assuming that the time-dependent part of the elec-
142 APPLIED OPTICS y Vol. 38, No. 15 y 20 May 1999
romagnetic field is exp~2ivt!, the electric and the
agnetic fields can be written in the form

E~x, y, z, t! 5 E~x, y, z!exp~2ivt!, (2a)

H~x, y, z, t! 5 H~x, y, z!exp~2ivt!, (2b)

where v 5 kc, k is the wave number, and c is the
speed of the electromagnetic wave in free space. e is
complex for an absorptive medium and can be ex-
pressed as

e 5 er 1 iei. (3a)

Since refractive index m 5 ~em!1y2 and for a nonfer-
romagnetic medium m is unity, the real and the imag-
inary parts of e may be expressed by the real and the
imaginary parts of m in the form

er 5 mr
2 2 mi

2, ei 5 2mr mi. (3b)

To apply the FDTD method for light scattering by
small ice crystals, Yang and Liou35 introduced a way
of transforming Maxwell’s equations to a source-
dependent form that governs the scattering process of
a dielectric particle so that complex calculations can
be avoided when the scatterer is absorptive. Here
the equivalent Maxwell’s equations for an absorptive
scatterer are derived without introducing the effec-
tive current as Yang and Liou35 did.

Inserting Eqs. ~2! into Eq. ~1b! and using Eq. ~3a!,
e have

¹ 3 H~x, y, z! 5 v~ei 2 ier!E~x, y, z!. (4)

Multiplying Eq. ~4! with exp~2ivt! and using Eqs. ~2!
and ~3a!, we obtain

¹ 3 H~x, y, z, t! 5 veiE~x, y, z, t! 1 er

]E~x, y, z, t!
]t

.

(5)

Equation ~5! can be further simplified to

]@exp~tt!E~x, y, z, t!#
]t

5
exp~tt!

er
¹ 3 H~x, y, z, t!, (6)

where t 5 veiyer. Using the central finite-difference
approximation for the temporal derivative in Eq. ~6!
ver the time interval @nDt, ~n 1 1!Dt#, we have

En11~x, y, z! 5 exp~2tDt!En~x, y, z!

1 exp~2tDty2!
Dt
er

¹ 3 Hn11y2~x, y, z!,

(7a)

where the electric and the magnetic fields are evalu-
ated at alternating half-time steps.30

By discretizing Eq. ~1a! over the time interval of
@~n 2 1y2!Dt, ~n 1 1y2!Dt#, which is a half-time step



n11
earlier than the time step when the electric field is
evaluated, we have

Hn11y2~x, y, z! 5 Hn21y2~x, y, z! 2
Dt
m

¹ 3 En~x, y, z!.

(7b)
In Eqs. ~7a! and ~7b!, Dt is the time increment and n
is an integer denoting the time step.

Let d 5 Dx 5 Dy 5 Dz denote the space increment;
the explicit finite-difference approximation of Eq. ~7!
can be derived in the following forms:

Hx
n11y2~i, j 1 1y2, k 1 1y2! 5 Hx

n21y2~i, j

1 1y2, k 1 1y2!

1
Dt

m~i, j 1 1y2, k 1 1y2!d

3 @Ey
n~i, j 1 1y2, k 1 1!

2 Ey
n~i, j 1 1y2, k!

1 Ez
n~i, j, k 1 1y2!

2 Ez
n~i, j 1 1, k 1 1y2!#,

(8a)
Ex ~i 1 1y2, j, k! 5 exp@2t~i 1 1y2, j, k!Dt#

3 Ex
n~i 1 1y2, j, k!

1 exp@2t~i

1 1y2, j, k!Dty2#

3
Dt

er~i 1 1y2, j, k!d

3 @Hz
n11y2~i 1 1y2, j

1 1y2, k! 2 Hz
n11y2~i

1 1y2, j 2 1y2, k!

1 Hy
n11y2~i 1 1y2, j, k

2 1y2! 2 Hy
n11y2~i

1 1y2, j, k 1 1y2!#. (8b)

The positions of the field components are illustrated
in Fig. 1.

To obtain accurate numerical results, the spatial
increment d must be much smaller than the wave-
length within the scatterer and its minimum di-
Fig. 1. Positions of the electric- and the magnetic-field components in an elementary cubic cell of the FDTD lattice.
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3143
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mension. To guarantee the stability of the FDTD
computation, the time increment Dt must satisfy
the following condition41:

cDt # S 1
Dx2 1

1
Dy2 1

1
Dz2D21y2

, (9)

where c is the wave velocity within the scatterer.
The near fields are computed in the time domain.

To calculate the single-scattering properties of the
dielectric scatterer, the time-dependent fields ob-
tained must be transformed to the corresponding
fields in the frequency domain.35 In this study the
discrete Fourier transform is used throughout the
time-marching steps to get the fields in the frequency
domain from the time series.

B. Perfectly Matched Layer Absorbing Boundary
Condition

One major difficulty encountered in applying the
FDTD method to the open-structure problem is that
the domain where the field is computed is un-
bounded. Since a finite-difference scheme over an
infinite domain is impractical, the extent of the solu-

Fig. 2. Computational domain terminated by the PML. The
conductivity ~s*! in the PML walls is also shown.
144 APPLIED OPTICS y Vol. 38, No. 15 y 20 May 1999
tion region must be limited by using an artificial
ABC.42 The accuracy and stability of the FDTD pro-
gram would be sensitive to the boundary condition
used. Early approaches for the boundary condition
are mostly one-way wave-equation approximation
techniques.43 Among those are Mur’s second- and
third-order ABC,44 outgoing-wave annihilators,45

transmitting boundary conditions,36 and the Higdon
method.46 A recent development in ABC’s was the
PML ABC.38–40 In the two-dimensional case,38 it is
eported that the reflection coefficients of the PML
re as low as 1y3000th of those based on standard
econd- and third-order analytical ABC’s. The PML
or the three-dimensional case40 works as well as in

the two-dimensional case.
To apply the FDTD method with PML ABC to a

three-dimensional light-scattering problem, the orig-
inal finite-difference algorithm developed by Yee30

needs to be modified. Following Berenger39 and
Katz et al.,40 the normal FDTD computational space
is surrounded by PML regions as shown in Fig. 2,
backed up by perfectly conducting walls. The PML
creates a fictitious absorbing layer adjacent to the
outer grid boundary. In the inner volume the finite-

gement of the fictitious electric conductivity ~s! and magnetic
arran
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difference equations are the usual discretizations of
Maxwell’s equations. In the PML regions six Car-
tesian components of electric and magnetic vectors
are split into 12 ~e.g., Hx is split into Hxy and Hxz, and
Ex is split into Exy and Exz!, resulting in 12 modified
Maxwell’s equations, such as

m0

]Hxy

]t
1 sy*Hxy 5 2

]~Ezx 1 Ezy!

]y
, (10a)

m0

]Hxz

]t
1 sz*Hxz 5

]~Eyx 1 Eyz!

]z
, (10b)

e0

]Exy

]t
1 sy Exy 5

]~Hzx 1 Hzy!

]y
, (10c)

e0

]Exz

]t
1 sz Exz 5 2

]~Hyx 1 Hyz!

]z
, (10d)

where the subscript 0 denotes the vacuum medium
and s and s* are the fictitious electric and magnetic
conductivities, respectively, which satisfy

s

e0
5

s*
m0

. (11)

Equation ~11! allows the impedance of the fictitious
medium equal to that of free space, and thus no re-
flection occurs when a plane wave propagates across
a vacuum–PML interface.

On the six sides of the PML regions the absorbing
PML layers are matched to each other by having
transverse conductivities equal to zero. As a result
the outgoing waves from the inner vacuum would
propagate into these absorbing layers without reflec-
tion. At the 12 edges two conductivities are equal to
zero but the other four are equal to those of the ad-
jacent side PML’s. Thus there is also no reflection
from the side–edge interfaces. In the eight corners
of the PML the conductivities are assigned to those of
the adjacent edges; all of the 12 conductivities are not
zero. Therefore the reflection equals zero from all
the edge–corner interfaces. The arrangement of fic-
titious conductivities in the PML is shown in Fig. 2.
In theory only the ideal continuous PML media can
have a perfect match without reflections. In the nu-
merical PML, owing to step-type variations of con-
ductivities between the PML sublayers and the
break in the fields, a certain amount of numerical
reflection and dispersion would occur. To reduce
this reflection and dispersion, the conductivities
should increase smoothly from a small value on the
vacuum–PML interfaces to a large value on the outer
boundaries. Thus, to approximate a continuous me-
dia, the number of PML cells used should be suffi-
cient to approximate a continuous media.

After crossing the PML layer, the wave is reflected
by the perfectly conducting conditions that end the
PML region, and then, after a second crossing, it can
come back into the normal FDTD computational
space. So, for a PML layer of thickness d, an appar-
ent reflection factor is found to be

R~u! 5 expF2
2 cos u

e0 c *
0

d

s~r!drG , (12)

where u is the angle of incident radiation relative to
he normal direction of the PML surface.

Berenger38 proposes that the conductivities should
increase with depth within PML as

s~r! 5 smSr

dD
n

, (13)

where n can be 1, 2, 3, etc. but unnecessarily an
integer. In this study we set n 5 3. From Eqs. ~12!
nd ~13! the apparent reflection can be expressed as

R~u! 5 @R~0!#cos~u!, (14)

where R~0! is the reflection factor at normal inci-
dence. R~0! is a key user-defined parameter that
can be expressed as

R~0! 5 expS2
2

n 1 1
sm d
e0 c D . (15)

For grazing incidence u is close to py2, and then the
factor R~u! is close to unity with any given s. So the
grazing incidence may cause some numerical reflec-
tions. Therefore the scatterer and the PML should
not be too close so that there will not be scattered
waves impinging on the PML at grazing angles.
Furthermore Eq. ~15! suggests that the PML should

ave sufficient thickness, or a sufficient number of
ells, to achieve small reflections, which is another
mportant reason why the number of PML layers
hould be kept at a reasonable level.
The PML scheme has been successfully extended to

he transmission-line-method-based FDTD method31

and for the absorption of nonlinear electromagnetic
waves.32 The reflection factor has been found to be
better than 1026 with 16 PML layers even in nonlin-
ear cases.

C. Wave Source

We implement, based on the equivalence theorem,47,48

a plane-wave source by using the closed surface of a
rectangular box within the vacuum region of the com-
putational domain. The equivalence theorem states
that the existence of a wave-excitation source can be
replaced by the equivalent electric and magnetic cur-
rents on a closed surface for the spatial domain inside
the surface. If there is a scatterer inside this closed
surface, the interior fields will be the total fields ~inci-
ent and scattered! and the fields outside are just the

scattered fields. On the closed surface both electric
and magnetic sources are added to the fields as

H4H 2
Dt

m0Ds
~Ein 3 n!, (16a)

E4E 2
Dt

e0Ds
~n 3 Hin!, (16b)
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3145
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where H and E are the incident fields, n is the
inward normal vector of the closed surface, and Ds 5
d. For numerical implementation, note that the
nodes of E and H are at different spatial grid points.
Furthermore Hin and Ein may come from arbitrary
directions. Therefore light scattering by an arbi-
trarily oriented particle can be computed.

Herein a Gaussian pulse is used as a plane-wave
source in the form

E~t! 5 expF2S t
30Dt

2 5D2G . (17)

3. Validation of the Perfectly Matched Layer
Finite-Difference Time Domain

In principle the FDTD method can be accurately ap-
plied to particles of arbitrary shape. However, there
are numerical errors involved in the FDTD tech-
nique. These errors can be attributed to the numer-
ical dispersion of the finite-difference analog, the
approximation of a specific particle shape by a
pseudostructure constructed by cubic grid cells, the
representation of the near field by the discretized
data that do not account for the field variation within
each cell, and reflections from the PML ABC. These
errors are dependent on the grid size, the cell number
in the free space between the scatterer and the PML,
the cell number in the PML, etc. Yang and Liou35

pointed out that the errors in the FDTD technique
can also be attributed to the residual energy inside
the computational domain when the time-marching
iteration of the near field based on the pulse tech-
nique is terminated.

Throughout this paper, we set a R~0! of 1025 and
used a six-cell PML and kept seven cells for free space
between the scatterer and the PML. The sensitivity
study for these parameters was reported in the study
by Sun.22 It was found that when PML ABC is used,
the computational domain is reduced significantly
when compared with traditional ABC approaches.
In this study the computations were performed on a
SunSparc workstation and Cray J90 machine for par-
ticles with size parameters of #20 and .20, respec-
tively. In the following the PML FDTD scheme for
scattering by dielectric particles is examined by use of
Mie theory for spheres and the exact scattering solu-
tion for a pair of spheres in contact.

Figure 3 shows the extinction efficiency Qe, the
absorption efficiency Qa, and the asymmetry factor g
of spherical ice crystals computed by Mie theory and
the PML FDTD method at a wavelength of 10.8 mm
~m 5 1.0891 1 0.18216i!, which is a particularly
important wavelength in satellite remote sensing.
Also shown are the absolute and the relative errors of
the PML FDTD results. In the FDTD calculations a
grid size of Ds 5 ly20 is used. We can see that the
FDTD errors for both extinction efficiency and ab-
sorption efficiency are very small. For a size param-
eter larger than 2.0, the relative errors for Qe are
within ;1.0% and the relative errors for Qa are

ithin ;0.5%. The errors in asymmetry factors due
146 APPLIED OPTICS y Vol. 38, No. 15 y 20 May 1999
o the FDTD are ;0.1%. These results are true even
hen the size parameter reaches 40. In consider-
tion of the trend of the error, it is safe to believe that
he PML FDTD can produce Qe and Qa with errors
ithin ;1.0% for quite large size parameters. For a

ize parameter smaller than 2.0, the relative errors
ecome larger for Qe, Qa, and g, because, when Ds 5

ly20 is used, the sphere is approximated by only a
few cubic cells ~e.g., for a size parameter equal to 1.0,
it must have only approximately six cubic cells in
diameter to approach a sphere!. Numerical results
show that using a smaller cell size would result in
more accurate results.

Noted that when Ds 5 ly20 is used, errors due to
the FDTD with the conventional boundary condition
are ;5% for the extinction and the absorption effi-
ciencies at a size parameter of 10, as reported in Fig.
5 of Yang and Liou.35 Their errors also increased as
the size parameter increased. It may be concluded
that the accuracy of the FDTD method is sensitive to
the boundary conditions used.

Figures 4–6 show the scattering phase functions
for spherical ice crystals computed by Mie theory and
the PML FDTD scheme using a wavelength of 10.8
mm for different size parameters. Also shown are

Fig. 3. Extinction efficiency, absorption efficiency, and asymme-
try factor for spherical ice crystals as functions of the size param-
eter, 2payl, where a is the radius of the sphere and l is the
wavelength. These results are computed by Mie theory and the
PML FDTD method at a wavelength of 10.8 mm ~m 5 1.0891 1
.18216i!. Also shown are the absolute and the relative errors of
he FDTD results. A grid size of Ds 5 ly20 is used in the FDTD

calculation.



the absolute and the relative errors of the FDTD
results. We can see that the errors in the scattering
phase functions are typically smaller than 5%.
Larger errors due to the FDTD occur only when the
scattering phase functions are minimum. These er-
rors can be largely related to the numerical disper-
sion of the finite-difference analog and the
approximation of a sphere by cubic grid cells as well
as the representation of the near field by the dis-
cretized data. To reduce the errors, finer cells
should be used but larger CPU time and storage
space are required.

Figure 7 shows the scattering phase functions for
spherical ice crystals computed by Mie theory and the
PML FDTD method at wavelengths of 0.55 mm ~m 5
1.311!, 10.8 mm ~m 5 1.0891 1 0.18216i!, and 12.99
mm ~m 5 1.4717 1 0.3890i! for a size parameter of 6.
We chose the three wavelengths to demonstrate the
effectiveness of the PML FDTD for a wide range of
refractive indices. In the PML FDTD calculation we
used three different cell sizes of ly20, ly30, and ly60
to show the effect of using smaller cells on the accu-
racy. Also shown are the absolute and the relative
errors of phase functions computed by the PML
FDTD. For a different refractive index we cannot
see a significant difference in errors. Figure 7 shows
that the PML FDTD program is insensitive to the
refractive index or the wavelength in our application.

Fig. 4. Scattering phase functions for spherical ice crystals com-
puted by Mie theory and the PML FDTD method at a wavelength
of 10.8 mm ~m 5 1.0891 1 0.18216i! for different size parameters.
Also shown are the absolute and the relative errors of the FDTD
results. In the FDTD calculations a cell size of Ds 5 ly20 is used.
Fig. 5. Same as Fig. 4 but for size parameters of 15, 20, and 25.
Fig. 6. Same as Fig. 4 but for size parameters of 30, 35, and 40.
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3147
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We can also see that the relative errors decrease
when higher-resolution meshes are used for each
wavelength. When Ds 5 ly60 is used, the relative
errors in the scattering phase function are smaller
than ;4%.

The exact solution of light scattering by a double-
sphere system is available with the multipole meth-
od.9 Figure 8 shows a comparison of the scattering
phase functions from a pair of spheres ~r 5 ly2 for
each sphere! in contact, illuminated end-on. The
PML FDTD program was used with a cell size of Ds 5
ly30; m 5 1.53 1 0.001i was used to approach the
refractive index of biological spores49 at a wavelength
of 0.55 mm. For this nonspherical double-sphere
system, only a small discrepancy exists between the
calculated results of the two models. Therefore the
PML FDTD is shown to work well for nonspherical
particles as well as for spherical particles.

4. Applications to Nonspherical Particles

A. Hexagonal Ice Crystals

From in situ aircraft observations, it has been known
that cirrus clouds are largely composed of nonspheri-
cal plates, columns, and bullet rosettes50 with a basic
hexagonal structure. The size parameter for these

Fig. 7. Scattering phase functions for spherical ice crystals com-
puted by Mie theory and the PML FDTD method at wavelengths of
0.55 mm ~m 5 1.311!, 10.8 mm ~m 5 1.0891 1 0.18216i!, and 12.99

m ~m 5 1.4717 1 0.3890i! for a size parameter of 6. Also shown
re the absolute and the relative errors of the FDTD results. Dif-
erent cell sizes of Ds 5 ly20, ly30, and ly60 are used in the FDTD

calculations.
148 APPLIED OPTICS y Vol. 38, No. 15 y 20 May 1999
ice crystals can range from ;1021 to 103 at thermal
IR wavelengths ~;4–100 mm!. This wide size-

arameter range introduces tremendous difficulty in
he modeling of optical properties of nonspherical ice
rystals.28

In both climate and remote-sensing applications,
calculations involving scattering and absorption by
nonspherical ice crystals at thermal IR wavelengths
are usually highly simplified. Mie theory is often
used but nonspherical particles must be converted
first into spheres.51,52 Other commonly used ap-
proximations include the anomalous diffraction the-
ory53 ~ADT! and the geometric optics method16

~GOM!. For example, Sun and Shine54 applied the
GOM for hexagonal ice crystals with size parameters
of greater than 30 and Mie theory for size parameters
of less than 30.

Figure 9 shows the absorption efficiency of ran-
domly oriented hexagonal ice crystals as a function of
the size parameter at a wavelength of 12.99 mm ~m 5
.4717 1 0.3890i!. The aspect ratios ~lengthywidth!
or these nonspherical ice crystals roughly follow ob-
ervations reported by Ono55 and Auer and Veal.56

The results are derived from different scattering al-
gorithms: Mie theory for a sphere using an equiva-
lent projected area, the ADT, the GOM, and the
FDTD technique. In Fig. 9 we see that in the reso-
nant region Mie theory overestimates the absorption
efficiency whereas the ADT and the GOM underesti-

Fig. 8. Scattering phase function for a pair of spheres ~r 5 ly2! in
contact, illuminated end-on. The results are calculated using the
multipole method and the PML FDTD program with a cell size of
Ds 5 ly30; m 5 1.53 1 0.001i is used to represent the refractive
index of biological spores at a wavelength of 0.55 mm. Also shown
are the absolute and the relative errors of the FDTD results.
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mate it. The absorption efficiency from the ADT ap-
proaches one for large size parameters because the
ADT does not consider the external reflection. Dif-
ferences between the ADT and the GOM for small
size parameters can be explained by the absence of
refraction and reflection in the ADT.

Using the single-scattering properties of hexagonal
ice crystals derived from the GOM for large size pa-
rameters and the FDTD technique for small size pa-
rameters, we6,23 have developed a composite scheme
that appropriately interpolates results for size pa-
rameters between ;10 and ;50. Applying this com-
posite technique, we examined errors in the
broadband emissivity of cirrus clouds associated with
conventional approaches.6 It was found that the rel-
ative errors due to Mie theory, the ADT, and the
GOM can be as large as ;30%. We have developed
an accurate parameterization of the IR radiative
properties of cirrus clouds for climate models by using
the single-scattering properties from the composite
method.23

B. Irregular Tetrahedral Aggregates

One type of nonspherical particle whose optical prop-
erties are of interest is the cluster of biowarfare agent
spores. When a liquid solution containing such
spores is aerosolized and the liquid evaporates, the
compact, nearly spherical clusters of these spores re-
main. Early warning systems depend on rapid iden-
tification of these particles, and elastic and
fluorescent light scattering may play a crucial role in
the development of such systems.57

Herein the PML FDTD is applied to an aggregation
of spores that is approximated by four spherules in a
tetrahedral orientation as shown in Fig. 10. The log
of the scattering intensity as a function of the zenith
and the azimuthal angle for the tetrahedral structure
is shown in Fig. 11 for an incident angle of 0° ~z

irection!. We can see the enhancement at three
zimuthal angles of 60°, 180°, and 300° when the
enith angle is ;40°. More discussions on the ap-

Fig. 9. Comparison of absorption efficiency for randomly oriented
hexagonal ice crystals derived from a different scattering program:
Mie theory for spheres with an equal projected area, ADT, a GOM,
and a FDTD technique. The results are shown as functions of size
parameter, 2prpyl, where rp is the radius for a projected area
equivalent sphere.
plication of the PML FDTD method to light scattering
from irregular tetrahedral aggregates are reported by
Videen et al.58

5. Summary and Conclusions

A finite-difference time domain ~FDTD! program has
been developed in this study to obtain an accurate
solution of light scattering by nonspherical particles.
The perfectly matched layer ~PML! absorbing bound-
ary condition ~ABC! has been used. This PML
FDTD program is validated by Mie theory for spheres
and by the multipole method for a nonspherical
double-sphere system. Compared with these refer-
ence results, the relative errors in absorption and
extinction efficiencies due to the PML FDTD are

Fig. 10. Diagram of the tetrahedral scattering system. Four r 5
ly2, m 5 1.53 1 0.001i spheres are in contact.

Fig. 11. Angular dependence of the scattering intensity of the
system illustrated in Fig. 10 when the light is incident in the
positive z direction.
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within ;1% for particles with size parameters as
arge as 40. The relative errors for the scattering
hase function are typically within ;5%. The accu-

racy of this technique guarantees its reliability in
applications to remote-sensing and climate studies.

The PML FDTD scheme has been applied to hex-
agonal ice crystals at IR wavelengths. It is shown
that conventional approaches to light scattering by
nonspherical particles introduce significant errors,
especially in the resonant region. This scheme has
also been applied to light scattering by irregular tet-
rahedral aggregates, which has potential application
to early warning systems to identify clusters of bio-
warfare agent spores.

Because of the use of the PML ABC, the computa-
tional domain for the FDTD is reduced significantly.
In this study the computations were performed on a
regular workstation even for particles with size pa-
rameters as large as 20.
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