TWO-DIMENSIONAL METAMATERIAL

We have already seen how the concept of a metamaterial yields an analytic description of a planar periodic layer structure. Now let us apply the metamaterial concept to a doubly periodic array of cylinders. Let the relative permittivity be ε_{1} inside the cylinders and ε_{2} between the cylinders, and let the cylinder radius be a.

Problem 1

Let us first consider the case with the E field pointing in the z direction along the cylinders, i.e., transverse magnetic (TM) polarization. In the metamatierial (low-frequency) limit, the E field is then approximately constant inside a unit cell of the photonic crystal. The effective relative permittivity $\varepsilon_{z z}$ of the metamaterial is defined as the mean of the D field over the unit cell divided by the mean of the E field times ε_{0} over the unit cell. Show that for a z-polarized field,

$$
\begin{equation*}
\varepsilon_{z z}=\varepsilon_{2}+\left(\varepsilon_{1}-\varepsilon_{2}\right) f \tag{1}
\end{equation*}
$$

where the fill factor f is the area of the cylinder relative to the area of the unit cell,

$$
\begin{equation*}
f=\pi a^{2} / A_{u}=\pi a^{2} /(b h) . \tag{2}
\end{equation*}
$$

The area A_{u} of the unit cell is the base line b times the height h.

Problem 2

Let us then consider a TE-polarized field, with the E field lying in the $\mathrm{x}-\mathrm{y}$ plane, perpendicular to the cylinders, again in the metamaterial limit. Limiting our analysis to a small fill factor, we may consider the E field to be approximately constant inside and between the cylinders. There is then a region near the outside of each cylinder where the field is not constant, and where we may use the low-frequency approximation that the E field is the gradient of a potential $V(r, \varphi)$ that is continuous everywhere, and has the form

$$
\begin{align*}
V_{1}(r, \varphi) & =-E_{0} \frac{2 \varepsilon_{2}}{\varepsilon_{2}+\varepsilon_{1}} r \cos \varphi=-E_{0} \frac{2 \varepsilon_{2}}{\varepsilon_{2}+\varepsilon_{1}} x \quad \text { for } r<a \quad \text { (inside the cylinder) } \tag{3}\\
V_{2}(r, \varphi) & =-E_{0}\left(r+\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}} \frac{a^{2}}{r}\right) \cos \varphi= \tag{4}\\
& =-E_{0}\left(x+\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}} \frac{a^{2} x}{x^{2}+y^{2}}\right) \quad \text { for } r>a \quad \text { (outside the cylinder) } \tag{5}
\end{align*}
$$

Show that the potential (3) inside the cylinder yields a constant E field that points in the x direction and is equal to

$$
\begin{equation*}
E_{x, 1}=\frac{2 \varepsilon_{2}}{\varepsilon_{2}+\varepsilon_{1}} E_{0} \tag{6}
\end{equation*}
$$

Problem 3

From (5), derive expressions for the x and y components of the E field outside the cylinder with radius a. Show that the mean of the E field points in the x direction, when the mean is taken over the cross-sectional area outside the sylinder of radius a and inside the rectangular unit cell. Show that this mean is equal to E_{0}, regardless of the size of the unit cell.

Problem 4

Show that when the cylinders are far from each other, we get the following approximations for the means of E_{x} and D_{x} over the unit cell,

$$
\begin{align*}
& \bar{E}_{x}=\left(1+\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}} f\right) E_{0} \tag{7}\\
& \bar{D}_{x}=\varepsilon_{2} \varepsilon_{0}\left(1-\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}} f\right) E_{0} \tag{8}
\end{align*}
$$

resulting in the effective relative permittivity

$$
\begin{equation*}
\varepsilon_{x x} \approx \varepsilon_{2}\left(1-\frac{2\left(\varepsilon_{2}-\varepsilon_{1}\right)}{\varepsilon_{2}+\varepsilon_{1}} f\right) \tag{9}
\end{equation*}
$$

Problem 5

Now let us consider the general case with cylinders that are not far from each other, but restrict ourselves to a rectangular unit cell with width b and height h. We note that if the E field is xpolarized in the center of the cylinder in a rectangular unit cell, the E field is purely x polarized in all the mirror planes of the structure, x-z planes and y-z planes going through the centers of the cylinders and in the middle between cylinders. We note that everywhere inside the unit cell,

$$
\begin{equation*}
r<d=\frac{1}{2} \sqrt{b^{2}+h^{2}} . \tag{10}
\end{equation*}
$$

Instead of a single cosine contribution like in (3), we then need a sum of cosine terms, a socalled multipole expansion, to represent the E field, both inside and outside the sylinder. Inside the cylinder (for $r<a$) we may use the following expressions for the x and y components of the E field

$$
\begin{align*}
& E_{x, 1}(r, \varphi)=\sum_{m=0}^{M-1} E_{m} \frac{2 \varepsilon_{2}}{\varepsilon_{2}+\varepsilon_{1}} \frac{r^{2 m}}{d^{2 m}} \cos (2 m \varphi), \tag{11}\\
& E_{y, 1}(r, \varphi)=-\sum_{m=0}^{M-1} E_{m} \frac{2 \varepsilon_{2}}{\varepsilon_{2}+\varepsilon_{1}} \frac{r^{2 m}}{d^{2 m}} \sin (2 m \varphi) . \tag{12}
\end{align*}
$$

The corresponding expressions for the E field outside of the cylinders (for $r>a$) are

$$
\begin{align*}
& E_{x, 2}(r, \varphi)=\sum_{m=0}^{M-1} E_{m}\left(\frac{r^{2 m}}{d^{2 m}} \cos (2 m \varphi)-\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}} \frac{a^{4 m+2}}{d^{2 m} r^{2 m+2}} \cos (2 m \varphi+2 \varphi)\right), \tag{13}\\
& E_{y, 2}(r, \varphi)=-\sum_{m=0}^{M-1} E_{m}\left(\frac{r^{2 m}}{d^{2 m}} \sin (2 m \varphi)-\frac{\varepsilon_{2}-\varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}} \frac{a^{4 m+2}}{d^{2 m} r^{2 m+2}} \sin (2 m \varphi+2 \varphi)\right) . \tag{14}
\end{align*}
$$

We note that for an x-polarized field in a rectangular unit cell, only terms with even multiples $2 m$ of the angle φ are needed in the multipole expansions (11)-(14).

Show that with E_{x} and E_{y} given by the multipole expansions (11)-(14), the average of E_{y} over a rectangular unit cell is zero.

Problem 6 (Matlab)

We can find the expansion coefficients E_{m} in the series (11)-(14) via point matching. So let us require $E_{y}(r, \varphi)$ in (14) to be minimized in $2 M-1$ different positions around the unit cell, given by $2 M-1$ different values for the angle φ

$$
\begin{equation*}
\varphi_{p}=\frac{\pi}{4 M} p, \quad p=1,2, \ldots(2 M-1) \tag{15}
\end{equation*}
$$

The corresponding distances from the origin are

$$
\begin{equation*}
r_{p}=\frac{b}{2 \cos \varphi_{p}} \quad \text { if } \tan \varphi_{p}<h / b \quad \text { and } \quad r_{p}=\frac{h}{2 \sin \varphi_{p}} \quad \text { if } \tan \varphi_{p}>h / b \tag{16}
\end{equation*}
$$

Use the $2 M-1$ equations obtained by setting $E_{y}\left(r_{p}, \varphi_{p}\right) / E_{0}=0$ in (14) for $p=1,2, \ldots(2 M-1)$ to set up an overdetermined set of linear equations in Matlab and determine E_{m} / E_{0} for $m=$ $1,2, \ldots(M-1)$. Then compute the field in the middle between the cylinders, $E_{x}(r=b / 2, \varphi=$ $0) / E_{0}$. Do the calculation for $\varepsilon_{1}=2, \varepsilon_{2}=1$, and $M=10$ terms in the series expansion, for two cases of a rectangular unit cell, a tall cell with $b=3 a$ and $h=4 a$, and a wide cell with $b=4 a$ and $h=3 a$.

Hint: An overdetermined system of linear equations can be solved in Matlab with the help of the matrix divide operation.

Finally, do a numerical average over the unit cell to obtain \bar{E}_{x} and \bar{D}_{x} for both the tall and the wide unit cells, and compare the numerically computed averages with the formulas (7) and (8).

Updated 29 October, 2014.

