
TWO-DIMENSIONAL METAMATERIAL

We have already seen how the concept of a metamaterial yields an analytic description of a
planar periodic layer structure. Now let us apply the metamaterial concept to a doubly periodic
array of cylinders. Let the relative permittivity be ε1 inside the cylinders and ε2 between the
cylinders, and let the cylinder radius be a.

Problem 1

Let us first consider the case with the E field pointing in the z direction along the cylinders, i.e.,
transverse magnetic (TM) polarization. In the metamatierial (low—frequency) limit, the E field
is then approximately constant inside a unit cell of the photonic crystal. The effective relative
permittivity εzz of the metamaterial is defined as the mean of the D field over the unit cell
divided by the mean of the E field times ε0 over the unit cell. Show that for a z-polarized field,

εzz = ε2 + (ε1 − ε2) f, (1)

where the fill factor f is the area of the cylinder relative to the area of the unit cell,

f = πa2/Au = πa2/ (bh) . (2)

The area Au of the unit cell is the base line b times the height h.

Problem 2

Let us then consider a TE-polarized field, with the E field lying in the x-y plane, perpendicular
to the cylinders, again in the metamaterial limit. Limiting our analysis to a small fill factor, we
may consider the E field to be approximately constant inside and between the cylinders. There
is then a region near the outside of each cylinder where the field is not constant, and where we
may use the low-frequency approximation that the E field is the gradient of a potential V (r, ϕ)
that is continuous everywhere, and has the form

V1(r, ϕ) = −E0
2ε2

ε2 + ε1
r cosϕ = −E0

2ε2
ε2 + ε1

x for r < a (inside the cylinder) (3)

V2(r, ϕ) = −E0
(
r +

ε2 − ε1
ε2 + ε1

a2

r

)
cosϕ = (4)

= −E0
(
x+

ε2 − ε1
ε2 + ε1

a2x

x2 + y2

)
for r > a (outside the cylinder) (5)

Show that the potential (3) inside the cylinder yields a constant E field that points in the x
direction and is equal to

Ex,1 =
2ε2

ε2 + ε1
E0. (6)

Problem 3

From (5), derive expressions for the x and y components of the E field outside the cylinder
with radius a. Show that the mean of the E field points in the x direction, when the mean is
taken over the cross-sectional area outside the sylinder of radius a and inside the rectangular
unit cell. Show that this mean is equal to E0, regardless of the size of the unit cell.
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Problem 4

Show that when the cylinders are far from each other, we get the following approximations for
the means of Ex and Dx over the unit cell,

Ēx =

(
1 +

ε2 − ε1
ε2 + ε1

f

)
E0, (7)

D̄x = ε2ε0

(
1− ε2 − ε1

ε2 + ε1
f

)
E0, (8)

resulting in the effective relative permittivity

εxx ≈ ε2

(
1− 2 (ε2 − ε1)

ε2 + ε1
f

)
. (9)

Problem 5

Now let us consider the general case with cylinders that are not far from each other, but restrict
ourselves to a rectangular unit cell with width b and height h. We note that if the E field is x-
polarized in the center of the cylinder in a rectangular unit cell, the E field is purely x polarized
in all the mirror planes of the structure, x-z planes and y-z planes going through the centers
of the cylinders and in the middle between cylinders. We note that everywhere inside the unit
cell,

r < d =
1

2

√
b2 + h2. (10)

Instead of a single cosine contribution like in (3), we then need a sum of cosine terms, a socalled
multipole expansion, to represent the E field, both inside and outside the sylinder. Inside the
cylinder (for r < a) we may use the following expressions for the x and y components of the E
field

Ex,1(r, ϕ) =
∑M−1

m=0
Em

2ε2
ε2 + ε1

r2m

d2m
cos (2mϕ) , (11)

Ey,1(r, ϕ) = −
∑M−1

m=0
Em

2ε2
ε2 + ε1

r2m

d2m
sin (2mϕ) . (12)

The corresponding expressions for the E field outside of the cylinders (for r > a) are

Ex,2(r, ϕ) =
∑M−1

m=0
Em

(
r2m

d2m
cos (2mϕ)− ε2 − ε1

ε2 + ε1

a4m+2

d2mr2m+2
cos (2mϕ+ 2ϕ)

)
, (13)

Ey,2(r, ϕ) = −
∑M−1

m=0
Em

(
r2m

d2m
sin (2mϕ)− ε2 − ε1

ε2 + ε1

a4m+2

d2mr2m+2
sin (2mϕ+ 2ϕ)

)
. (14)

We note that for an x-polarized field in a rectangular unit cell, only terms with even multiples
2m of the angle ϕ are needed in the multipole expansions (11)-(14).
Show that with Ex and Ey given by the multipole expansions (11)-(14), the average of Ey

over a rectangular unit cell is zero.

Problem 6 (Matlab)

We can find the expansion coeffi cients Em in the series (11)-(14) via point matching. So let
us require Ey(r, ϕ) in (14) to be minimized in 2M − 1 different positions around the unit cell,
given by 2M − 1 different values for the angle ϕ

ϕp =
π

4M
p, p = 1, 2, ...(2M − 1). (15)
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The corresponding distances from the origin are

rp =
b

2 cosϕp
if tanϕp < h/b and rp =

h

2 sinϕp
if tanϕp > h/b. (16)

Use the 2M−1 equations obtained by setting Ey(rp, ϕp)/E0 = 0 in (14) for p = 1, 2, ...(2M−1)
to set up an overdetermined set of linear equations in Matlab and determine Em/E0 for m =
1, 2, ...(M − 1). Then compute the field in the middle between the cylinders, Ex(r = b/2, ϕ =
0)/E0. Do the calculation for ε1 = 2, ε2 = 1, and M = 10 terms in the series expansion, for
two cases of a rectangular unit cell, a tall cell with b = 3a and h = 4a, and a wide cell with
b = 4a and h = 3a.
Hint: An overdetermined system of linear equations can be solved in Matlab with the help

of the matrix divide operation.
Finally, do a numerical average over the unit cell to obtain Ēx and D̄x for both the tall and

the wide unit cells, and compare the numerically computed averages with the formulas (7) and
(8).
Updated 29 October, 2014.
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