
2D+1 Metamaterial

Let us consider an optical metamaterial that is uniform in the z direction, and has a unit cell
in the x-y plane. Let the length of the longest of the two diagonals of the unit cell be du. In
a metamaterial, du is much smaller than 1/k = c/ω, where c is the speed of light in vacuum,
ω is the angular frequancy of the light, and k is the angular repetency of the light in vacuum.
In the textbook by Joannopolous et al we find the Maxwell equations for a linear nonmagnetic
dielectric material as number (6) in Chapter 2:

c∇×E (r)− ikη0H (r) = 0, (1)

cη0∇×H (r) + ikε (r)E (r) = 0. (2)

To make the two equations above look similar, we have introduced the vacuum wave impedance
η0 =

√
µ0/ε0 = 377Ω, so that η0H and E are measured in the same units. Let us consider

waves propagating in the posive z direction with angular repetency kz. Then we may write

E (ρ,z) = Re
(
E (ρ) eikzz

)
, (3)

H (ρ, z) = Re
(
H (ρ) eikzz

)
, (4)

Waves propagating in the z-direction are called modes of the electromagnetic field, and come in
two classes, EHmodes and HEmodes. The main electromagnetic field components of EHmodes
are Ez, Hx and Hy, and the main electromagnetic field components of HE modes are Hz, Ex
and Ey. For a given frequency, EHmodes propagate with an angular repetency kE = nEk, where
nE is called the mode index, and HE modes propagate with a different angular repetency kH
and mode index nH .
The EH modes are represented by (2):

η0∂yHz (ρ)− ikEη0Hy (ρ) = −ikε (ρ)Ex (ρ) , (5)

ikEη0Hx (ρ)− η0∂xHz (ρ) = −ikε (ρ)Ey (ρ) , (6)

η0 (∂xHy (ρ)− η0∂yHx (ρ)) = −ikε (ρ)Ez (ρ) , (7)

(1) implies that H (r, t) is proportional to a curl, and hence has vanishing divergence:

∂xHx (ρ) + ∂yHy (ρ) + ikEHz (ρ) = 0. (8)

With the frequency equal to zero, k = kE = kE = 0 , and the EH mode fields have the simple
static transverse magnetic (TM) form for nonmagnetic materials

∇2||ΦE (ρ) = 0 η0H0x = E0y = E0x = E0z = 0, (9)

η0H0|| (ρ) = −∇||ΦE (ρ) , η0H0z (ρ) = −ikEΦE (ρ) . (10)

For the TM field in a nonmagnetic metamaterial, the magnetic field is the gradient of a potential
ΦE (ρ) that depends linearly on x and y, and gives the orientation of a uniform static fieldH0||
in the x-y-plane.
In contrast, the HE modes are represented by (1)

∂yEz (ρ)− ikHEy (ρ) = ikη0Hx (ρ) , (11)

ikHEx (ρ)− ∂xEz (ρ) = ikη0Hy (ρ) , (12)

∂xEy (ρ)− ∂yEx (ρ) = ikη0Hz (ρ) , (13)

(2) implies that ε (ρ)E (r, t) is proportional to a curl, and hence has vanishing divergence:

∂x (ε (ρ)Ex (ρ)) + ∂y (ε (ρ)Ey (ρ)) + ikHε (ρ)Ez (ρ) = 0. (14)
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With the frequency equal to zero, the HE mode field is a static transverse electric (TE) field.
This electric mode field is the gradient of a potential ΦH (ρ) satisfying the following equations:

∇|| ·
(
ε (ρ)∇||ΦH (ρ)

)
= 0 E0z = η0H0y = η0H0x = η0H0z = 0, (15)

E0|| (ρ) = −∇||ΦH (ρ) , E0z = −ikHΦH . (16)

The formulas given above for the TM and TE mode fields represent a very compact de-
scription of the metamaterial. (16) is a very useful relation for small nonvanishing frequency,
and allows us to give an estimate of the ratio between the maximum variation of ΦH (ρ) and
the maximum magnitude of E0|| (ρ), the variation obtained by varying the position ρ inside
the unit cell of size du. An order-of-magnitude estimate of this ratio is kHdu. This ratio ap-
proaces zero linearly with frequency. Similar reasoning allows us say that the ratio between
the maximum variation of E0z (ρ) and the maximum magnitude of E0|| (ρ) approaches zero
quadratically with frequency.
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