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Abstract: Different theoretical models for analysis of photonic crysial Jibres are reviewed and compared, The
methads span from simple scalar approaches to full-vectorial models using different mode-field decom positions. The

specific advantages of the methods are evaluated,

1. Imtroduction

In 1987 it was suggested /1,2/ that the electronic bandgaps
of semiconductors had an optical analogy in periodic
dielectric structures (photonic crystals). However, the
theoretical search for such photonic bandgaps (PBGs) was
initially hindered by the lack of suitable theoretical models.
Part of the reason for this lack must be found from the fact
that only structures with a high refractive-index contrast are
able to exhibit photonic bandgap effects (we here disregard
so-called 1D photonic handgap structures, which have been
known for decades and are merely Bragg reflectors as
known from eg, multilayer films, gratings, etc).
Therefore, while scalar modelling of low-index contrast
dielectric structures for the optical domain had been
sufficient for most previous applications, the accurate
modelling of photonic bandgap effects required fully
vectorial models. Today, a wide range of theoretical
models for general analysis of high-index contrast
microstructures exist /3-6/ and photonic crystals are being
extensively exploited.

One the most promising applicational areas where photonic
crystals are finding use is in optical fibre technology. This
specific field of research is today about five vears old /7,8/,
and it addresses the issue of periodically microstructured
optical fibres with a high-index contrast (they typically
consists of air holes in a silica background material). The
fibres in question are often called Photonic Crystal Fibres
(PCFs), and this new class of optical waveguides may
convemiently be divided into two very different groups.
The first is fibres having a high-index core (typically solid
silica) surrounded by a two-dimensional photonic-crystal
cladding-structure. These fibres have properties, which
partly resembles those of conventional fibres due to the fact
that the waveguidance is caused by Total Intemnal
Reflection (TIR); the higher refractive index of the core
compared to the effective index of the photonic crystal
cladding allows for traditional index guiding It is,
therefore, important to notice that these fibres, which we
shall name TIR-PCFs, do in fact not rely on PBG effects at
all. Radically different to the TIR-PCFs are fibres, where
the photoniccrystal-cladding structure is exhibiting PBG
effect, and where this effect is utilised to confine light in
the core region. These fibres, PBG-PCFs, show remarkable
properties among which being the ability to confine and
guide light along a core region having a refractive index
below that of the cladding structure. While the TIR-PCFs
were the first to be fabricated /97, truly PBG-guiding fibres
were only recently experimentally demonstrated /10/. In
this presentation, we shall address both types of fibres and
discuss the various theoretical tools employed for their
modelling. Generally, the analysis of PBG-PCFs requires
advanced fully vectorial models, whereas simple scalar

models may in some cases be used for qualitative analysis
of TIR-PCFs.

The presentations is organised in the following way, We
will firstly describe a simple effective-index approach for
modelling TIR-PCFs, and discuss a few properties of these
fibres. Secondly, a so-called plane-wave method will
presented, which is a very general method that may be
applied to both TIR- and PBG-PCFs. The basic operational
principle of PEG-PCFs will be described in more detail,
and we will present two different methods for modelling
PBG-PCFs. These methods both take basis in the plane-
wave method but use different techniques to account for the
core region.

2. Effective-index approach for TIR-PCFs

In order to establish a relatively simple numerical tool that
could provide qualitative mode-propagation properties of
the TIR- PCFs, Birks et al. /11/ in 1997 proposed a method,
in which sequential use of well-established fibre tools was
applied. The fundamental idea behind this work was first to
evaluate the periodically repeated hole-in-silica structure of
the cladding, and then (based on the approximate
waveguiding properties of this cladding structure) replace
the cladding by a properly chosen effective index. In this
model, the resulting waveguide then consists of a core and
a cladding region that have refractive indices n., and ng,
respectively. The core is pure silica, but the definition of
the refractive index of the micro-structured cladding region
is given in terms of the propagation constant of the lowesi-
order mode that could propagate in the infinite cladding
material (the so-called Fundamental Space filling Mode,
FSM, of the structure). This scalar effective-index method
has also been used as a basis for the approximate dispersion
and bending analysis presented in /12/.

The first step of the effective-index method is to determine
the cladding mode field. ‘¥, by solving the scalar wave
equation within a unit cell centred on one of the holes
(which are placed in a trangular lattice structure). The
diamcterofﬂmscunﬂl:e]lseqm]sﬂupitc]], AL between the
holes of the cladding structure. The hexagonal shapes of
the cells are approximated by circular ones in order to
make a general circular-symmetric mode solution possible.
By reflection symmetry, the boundary_condition at the cel]
edge (at radius A/2) 1s d¥P'/ds = 0, where s is the coordinate
normal to the edge. The propagation constant of the
resulting fundamental space-filling mode, Prsy, is used to
define the effective index of the cladding as ngr = Pea/k
(where k is the free-space propagation constant of light
with wavelength i). It should also be noted that we in the
calculation of this cladding field (together with the



effective-index value) have assumed the normal weakly
guiding field assumption /13/, although the index step
between central hole (refractive index 1.0) and surrounding
silica (refractive index around 1.45) actually is
considerable. However, the hereby-introduced inaccuracy
15 considered to be less significant than the approximation
of the guided-mode field in the effective-index fibre
compared to the actual field in the PCF.

Now having determined the cladding- and core-index
values, the approximate propagation properties of the PCF
may be calculated as for a step-index fibre with core index
Ty, core radius A/2, and cladding index ng = ngr. As an
extension to the cladding-mode model originally described
in 11/, it was in /12/ added that the refractive index for
silica was wavelength dependent. This was done through
the introduction of the generally applied Sellmeier formula
114/ The effective-index approach should primarily be seen
as a rapid method for gaining a qualitative impression of
the waveguiding properties of TIR-PCFs, and it has (as
such) only been applied on fibres with a triangular cladding
index structure.

Despite their resemblance with conventional optical fibres,
the TIR-PCFs persist a number of unusual properties. The
main reason for this is attributed to the very strong
frequency dependence of the effective refractive index of
the cladding structure. As the frequency is increased
(moves towards shorter wavelengths) in TIR-PCFs, the
field of the cladding modes are expelled from the air holes.
Thus, the mode-index of both the cladding modes, and the
core modes approach the index of silica (as well as that of
each other). and a low-wavelength bending-loss edge
appears. For longer wavelengths, the mode field will spread
into the holes of the cladding structure, and consequently
average out the refractive index regions, resulting in an
ordinary upper bending-loss edge. It is actually these
bending-loss properties, which eventually may limit the
spectral operational range of the TIR-PCFs and not so
much their additional umusual features, namely their
possibility of being (nearly) endlessly single mode /11/.
The TIR-PCFs have also been predicted to show a
remarkably high dispersion /12/, and their novel dispersion
properties has also demonsirated TIR-PCFs as potentially
useful for wide bandwidth generation of visible light
through non-linear effects in the low-loss waveguide /15/.

It is, therefore, obvious that the TIR-PCFs allows for new
and highly interesting waveguiding properties. However,
the next fundamental step towards a new dimension in
optical waveguiding appears when the PBG effect is
brought in effective use /10/. However, for this step to be
taken, more complex numerical tools had to be developed,
and we will address these in the following paragraphs.

3. Basic plane-wave method

In 1990, the first method for finding PBGs in photonic
crystals was described /3/. The method was closely related
to methods used for calculating electronic bandgaps in
semiconductor crystals, in that it described the magnetic
field H as a plane wave multiplied by a Bloch function U
with the periodicity of the photonic crystal:

H(k.r)=e**Ulk,r) 0]

For a two-dimensionally periodic structure, the periodicity
of the photonic crystal may be described by the two
primitive lattice vectors Ry, R;. Then:

z
Hkr) =% bk +Gle;(k +G)e'*C @

G j=1

Where (k+G), e(k+G), ¢,(k+G) form a triad (since the
magnetic field is transverse). The sum is over all possible
reciprocal lattice vectors defined by GR = N2x, where R
is any one of the primitive lattice vectors. Basically, (2) isa
Fourier transform of the magnetic field. We may, therefore,
insert this form into Maxwell's equation:

1 o)
Vx(ﬂr]‘?xﬂ(k.r}]- [fcw} H(k,r) (3)

By Fourier transforming the dielectric function of the
structure e(r), equation (3) may be formulated as an
eigenvalue problem, which may be solved for a truncated
number of shortest reciprocal lattice vectors.

For the two-dimensional photonic crystal structures of
interest in the fibres, the plane wave vector k may have a
non-zero longitudinal component k, /16/, which will remain
unchanged due to the uniformity of the structure in the 2-
direction. This out-of-plane wave wvector relates to the
propagation constant, i, from standard optical fibres. An
example of the photonic bandgaps that may be exhibited by
a full two-dimensionally periodic array of air holes in a
silica-background material is illustrated in Fig.1. The
calculation 1s for a k-value equal to 1/A, where A describes
the mimimum center-to-center spacing between two air
holes. An important aspect to be aware of is that the
refractive-index contrast between silica and air is to low to
provide a PBG effect for waves propagating strictly in the
penodic plane, i.e. with a k-value equal to zero. However,
in the case of out-of-plane propagation. i.e., non-zero k, -
values, full PBGs may be found to form in the silica/air
photonic crystals.

Fig. 1: Band structure diagram for a honeycomb-lattice
structure consisting of air holes in a silica-background
material. The air-filling fraction is 30%. Two so-called

out-of-plane photonic bandgaps are indicated. Notice
that a minimum frequency limit exists below which no
mode solutions exists. The minimum frequency relates
to the fundamental space-filling mode of the structure.
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The out-of-plane photonic bandgaps illustrated in Fig.]
indicates how a periodic cladding structure may prevent
transverse power dissipation, and thereby be used to form a
waveguide. However, in order to do so, a fibre core region
has to be included; By locally breaking the periodicity of a
photonic crystal, a spatial region with optical properties
different from the surrounding bulk photonic crystal can be
created. If such a defect region supports modes with
frequencies falling inside the forbidden gap of the
surrounding full-periodic crystal, these modes will be
trapped at the defect. This is the principle on which the
operation of the PBG guiding fibres relies, namely a
complete out-of-plane 2D bandgap exhibited by the
photonic crystal cladding, and a correctly designed defect,
forming a spatial region to which very strong transverse
confinement can be achieved.

4. An efficient plane-wave method and super-cell
approximations

The method based on the solution of equation (3) is well
suited for calculating the PBGs of a periodic dielectric
structure, since it describes the field and the structure as a
Bloch function /17/. However, to include a core, one has to
impose an artificial periodicity, which is handled
numerically by creating a supercell with periodically
repeated core-defects. This yields correct guided solutions,
if the supercell is much larger than the guided mode-area
/18/. Such a supercell approach requires a high number of
plane waves, which initiated an interest in models capable
of handling a large number of eigenvalues.

The eigenvalue equation (3) is Hermitian /19/. Therefore,
fast iterative schemes for finding the eigenvalues by a
Rayleigh quotient method exist /20/. If one has a guess of
the weights hi(k+G) in (2), then the curl of the magnetic
field is quickly found (it scales linearly with the number of
plane waves). By using a FFT to find the curl in real space,
we may creale a situation, where we may easily divide by
the dielectric function in (3). We may then use the FFT to
transform the result back into Fourier space, which makes
it casy to take the last curl in (3). Since the FFT scales like
NlogN, where N is the number of plane waves, we may
solve equation (3) for a large number of plane waves using
this method /18/, by applying a suitable preconditioning
f20¢. When only finding the lowest eigenvalues as in TIR
fibres, this method solves the problems extremely fast.
However, the memory demands and the calculation time
increases, if a large number of eigenvalues must be found,
and this is typically the situation in analysing PRG-PCFs.

5. Basic properties of PBG-PCFs

For the illustration in Fig.2, we have employed the above-
described  supercell approximation to calculate the
bandgaps of a PBG-PCF with a honeycomb cladding
structure and an extra, centrally placed defect hole (more
details on the Honeycomb PBG-PCF may be found in /21/
and /22/).

Inside the bandgap, we observed a single defect-mode
traversing the bandgap from approximately /A = 1 to 3.
This mode is caused solely by introducing a defect air hole
in the honeycomb structure. For the full periodic structure,
we find exactly the same PBGs (with no modes inside)
with identical boundaries to those of the crystal including
the defect. This defect-mode is strongly localised to the

core region (albeit this is a low-index region), and does not
couple to cladding modes in the PCF, (sinte the mode is
falling inside the bandgap of the photonic-crystal cladding).
Loss-less guidance may, therefore, in principle, be
achieved over long lengths. Although not illustrated, most
of the field of the defect mode for this particular PBG-PCF
is distributed in the silica. Also included in the Fig.2 is the
effective cladding index defined using the lowest-
frequency allowed mode in the full periodic structure.
Above this cladding-index line is a semi-infinite 'bandgap’,
where no modes exist. This is the region in which all TIR-
PCFs operate, since a high-index defect causes at least one
mode to appear above this line. Such index-guided modes
are not featured by low-index core PBG-PCFs.

Fig, 2: Dllustration of the first bandgap of a honeycomb-
based PBG-PCF as a function of the normalised
wavelength /A. Within the primary bandgap, the extra
air hole in the core of the fibre causes a single
degenerate mode to appear. This "defect’ mode is
localised around the core of the fibre, and does not
couple o the cladding structure (as it is here forbidden
due to the photonic bandgap effect). For a fibre with
A =1.0 pm, the core mode falls within the bandgap in a
wavelength range from approximately to 1.0 pm to well
above 3.0 pm. Leakage-free, single mode waveguidance
is thus obtained over this wavelength range. A supercell
size of 5x5 simple honeycomb cells and 16384 plane
waves were used for the calculation.
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The supercell approach for inclusion of the PBG-PCF core
in the model may for many analyses imply very high
demands on computer memory. Consequently, a number of
researchers have been developing alternative methods, in
which the localised nature of the guided mode fields of the
PCFs is utilised /23-25/. In the following section, the idea
behind this approach is discussed.

6. Method based on localised functions

The eigenvalue equation (3) is quite general, in that it is
also valid for anisotropic materials. However. since silica is
isotropic, we may choose o exploit this by choosing the
well-known vectorial transverse eigenvalue equation:

[v+rk* - g2, = e, -7, mbs?)) @)

In this formulation, the transverse wavevector k is scalar.
Therefore, this formulation is suitable for finding guided
solutions (which in principle are the same for all G-vectors
(2)). Such formulations, therefore, avoid the supercell



formulation of the core. One may then describe the
cladding by a Fourier formulation (cosines), while the core-
defect and the transverse electric field is described by
localised functions /23/. The eigenvalue equation may then
be recast into a Hermitian matrix eigenvalue problem /23/,
where the matrix elements are found from overlap
integrals, which may be found analytically.

Since there is no supercell, the number of cosines needed to
describe the cladding is limited for TIR-PCFs. This is
important since each basis function, used to describe the
structure, adds an extra overlap integral to each matrix
element. The size of the eigenvalue matrix on the other
hand is determined by the number of localised basis
functions used to describe the field

One solves equation (4) by choosing a k-value, and then
finding the eigenvalues, . Thus one obvious advantage of
the (4) over the (3) formulation, 1s that material dispersion
is more easily introduced. Further, it has been reported that
relatively few basis functions are needed to describe the
solutions accurately /23/.

As previously described, an efficient modesolver exist for
the plane-wave method. However, to our knowledge no
quick method (as an FFT analogy) exist for finding the
overlap integrals in 23/, In a sense, we are forced to choose
between an efficient mode-solver and efficient basis
functions. When ing this choice, it should be
remembered that the operator based plane-wave method is
relatively more efficient, when a limited number of
eigenvalues are needed (TIR-PCFs), while the localised
function approach is relatively more eflicient, when many
eigenvalues are required (PBG-PCFs). Also, notice that (4)
becomes particularly simple in the scalar case, which may
be applied to TIR-PCFs with small air holes /24/. In this
case, the gradient becomes a simple differentiation, while
the terms on the right side vanish.

7. Conclusions

In conclusion, it should be noted that the appearance of the
new class of optical waveguides represented by the
photonic crystal fibres not only have opened up for new
waveguiding properties, but it has also placed new and
stronger demands on fibre modelling. Where most
problems previously could be address by a well-developed
scalar theory, an accurate description of both TIR-PCFs
and PBG-PCFs generally requires a full vectorial mode
solver. This naturally becomes very important, keeping in
mind that a large part of the fundamental understanding of
conventional fibres does not directly apply for PCFs. We,
therefore, have to develop a complete range of new
theoretical understanding of a novel type of waveguides,
and in this process the numerical modelling is going to play
a central role.
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