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Abstract: Reflection, diffraction and transmission of optical waves at
the interface between a photonic crystal and the surrounding air can be
described by propagating and evanescent Bloch modes. We have found
such modes for one of the canonical two-dimensional photonic crystals,
identical circular cylinders in a square pattern. We present computed
out-of-plane band diagrams for propagating as well as evanescent modes,
obtained with a numerical method based on Fourier-Bessel expansions. For
a given frequency, all the modes are evanescent, except for afew low-order
propagating modes. We find that most of the evanescent modes have a
purely imaginaryz-component of the Bloch wave vector, but many of the
modes have a complexz-component.
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1. Introduction

Accurate calculation of electromagnetic field distributions in photonic crystals (PCs) is of fun-
damental importance to the design of practical micro- and nanophotonics. The motivation for
the work reported below is the fact that we have coworkers whohave fabricated and charac-
terized two-dimensional (2D) PC slabs [1, 2], that often canbe modeled quite accurately by
a planar semiconductor slab with a 2D-periodic pattern of perfectly cylindrical air holes. Our
goal (not reported here) is the simulation of the transmission and reflection of optical waves by
such PC slabs.

A step towards slab simulation is modeling of a single air-PCinterface, as shown in Fig. 1,
where incoming plane waves from above hit the surface of a 2D PC that fills the half-space be-
low thexy-plane. Above the PC, the electromagnetic field can be expressed as a series involving
incident, reflected, diffracted and evanescent plane wavesof two polarizations. Inside the PC,
the field may be expressed as a series expansion of Bloch-wavesolutions for the infinitely ex-
truded PC. In the procedure called mode matching, the amplitudes of the terms are adjusted so
that the electric and magnetic fields match on both sides of the boundaries.

Our contribution is the calculation of the needed series of modes (i.e. Bloch waves) of the
2D PC, needed for the mode matching calculation. We have found that to obtain this series of
modes, we need knowledge about a part of the band structure ofthe 2D PC that in general has
not been investigated before. We present new results on thispart of the band structure below.
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Fig. 1. Plane waves in three dimensions in air hitting the surface of a 2D PC. We would like
to calculate the waves that are reflected and diffracted fromthe interface between air above
thexy-plane and the PC. To do so, modes for a 2D PC extruding infinitely in thez-direction
are needed.

When the series of modes is known, the scattering matrix method reported in [3] can be used
for the mode matching, to compute the reflected and transmitted fields of a PC slab. There is
also commercial software [4] that may possibly be adapted tothe purpose. The actual mode
matching calculation is, however, beyond the scope of the work presented here.

The geometry that we treat is a 2D-periodic pattern of cylindrical rods or air holes, as in
Fig. 1 but extruding infinitely in thez-direction. We model this geometry without approxima-
tions, and describe analytically the E-field discontinuityat the semiconductor surface around
the cylindrical holes. We find that, with the exception of a few propagating low-order modes,
all terms in the Bloch-mode series are evanescent. We have calculated band diagrams for real
values of thez-component of the wave vectors (low-order modes) as well as imaginary values,
corresponding to evanescent modes, modes that decay exponentially away from the boundary
(high-order modes). In addition to modes with real and purely imaginaryz-components of the
wave vector, we also find complex modes (modes with a complexz-component). The existence
of complex modes is intimately related to the existence of bandgaps in PCs, since bandgaps
are frequency intervals where no propagating Bloch modes are allowed. When the Bloch-mode
expansion in the extruded 2D PC is made to match the plane-wave expansion in the air above
the PC, the complex modes are needed for completeness of the series.

The need for complex modes in mode matching was recognized already 20 years ago for a
class of dielectric microwave guides [5]. Complex modes arein general needed to describe PCs
with absorption losses [6–8], but we find that they are also needed to describe lossless PCs. The
importance of complex modes has been noted for calculationsof reflectivity and transmittivity
of semi-infinite non-absorptive PCs, e.g. one-dimensional(1D) gratings [9], 2D PCs that are
terminated in a plane perpendicular to the plane of periodicity [10, 11] and three-dimensional
PCs [12]. However, the case depicted in Fig. 1, where a semi-infinite 2D PC is terminated in a
plane parallel to the plane of periodicity, has not been extensively explored in earlier work.

There are large differences in refractive index between theair, oxide and semiconductor ma-
terials that the PC is made from, which represent a challengefor numerical simulations. Current
methods for analyzing PCs include plane-wave expansion [10–13], finite-element methods [14],
mode matching [15] and rigorous coupled-wave analysis [16,17]. One can also use techniques
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that have been developed for the analysis of PC fibers [18–22], for instance scattering-matrix
method [23–25]. Today, Bloch-wave calculations for 2D PCs can be performed with a number
of software packages, available commercially [17, 26] and as open source [27]. Many of the
commonly used methods are reviewed in [13].

Our numerical method is the obvious method to try to use for the particular geometry with
circular cylinders. We use Fourier-Bessel series expansion for the electromagnetic fields inside
the unit cell, matching the fields analytically at the core-cladding boundary, just like in the
standard theory of single-mode optical fibers [14, 28]. The fields are then matched point-wise
on opposing sides of the unit cell. The method was implemented in MATLAB, and we show
that this series expansion is well behaved and converges very rapidly. The main results that we
present do not, however, depend on the choice of numerical method for the simulations.

2. Theory

We consider time-harmonic electromagnetic fields, with theangular frequencyω , and the struc-
ture shown in Fig. 1, where a 2D PC is extruding infinitely in the positivez-direction and ter-
minated atz= 0 so that we have air forz< 0. The angular frequency,ω , relates to the wave
number for light in vacuum,k0, and the speed of light,c, through

k0 =
ω
c

. (1)

With the standard assumption that the PC material is linear,isotropic, lossless and nonmagnetic,
the displacement fieldD and the electric fieldE are related by a scalar relative permittivityε(r)
[13]. The structure is periodic in thexy-plane, with periodsΛx andΛy in thex- andy-directions
respectively.

For this 2D-periodic structure, by using Bloch’s theorem, we can search for solutions for the
time-harmonic electric field on the form

E(x,y,z, t) = Re [e(x,y,z)exp(ik · r − iωt)], (2)

wherek = (kx,ky,kz) is the Bloch wave vector.e(x,y,z) has the same periodicity as the dielectric
structure, i.e.

e(x,y,z) = e(x+ Λx,y,z) = e(x,y+ Λy,z). (3)

kx andky are chosen in the first Brillouin zone, i.e.|kx| < π/Λx and
∣

∣ky
∣

∣ < π/Λy. Note that the
z-componentkz of the Bloch wave vector can be nonzero only if the PC is perfectly periodic or
uniform in thez-direction. For the rest of this paper the time dependence will be omitted, and
the electric field is represented by the vector phasor

E(x,y,z) = e(x,y,z)exp(ik · r) (4)

that depends on space coordinates but not on time. Similar notation is used for the magnetic
field, H(x,y,z).

2.1. Homogeneous region

The doubly periodic functione(x,y,z) in Eq. (4) may be expressed as a double Fourier series
expansion with the integersqx andqy:

e(x,y,z) = ∑
qx,qy

eqx,qy(z)exp

(

i
2πqx

Λx
x+ i

2πqy

Λy
y

)

(5)
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Using this series expansion in Eq. (2), each term will satisfy Maxwell’s equations in the homo-
geneous region(z< 0) if

eqx,qy(z) = eqx,qy exp(ikz,qx,qyz), (6)

so that each term in Eq. (5) yields a plane wave. The frequencyand thez-componentkz,qx,qy of
the wave vector are related to each other through the equation

ε
(ω

c

)2
= k2

z,qx,qy
+

(

kx +
2πqx

Λx

)2

+

(

ky +
2πqy

Λy

)2

, (7)

whereε is the relative permittivity. The general solution can thusbe written

E(x,y,z) = ∑
p,qx,qy

ep,qx,qy exp

[

i

(

kx +
2πqx

Λx

)

x+ i

(

ky +
2πqy

Λy

)

y+ ikz,qx,qyz

]

. (8)

For each pair of valuesqx andqy there are two possible polarizations for the plane waves, soan
indexp have been introduced in the sum above to include for the two polarizations. We observe
that each term in the series (8) is a Bloch wave.

For plane waves in air, the electric and magnetic field vectors are orthogonal both to each
other and to the wave vector, also if the wave vector has an imaginaryz-component. The smaller
the frequencyω is, the fewer allowed values ofqx andqy exist that yield a realkz,qx,qy. Higher-
order plane waves, corresponding to largerqx andqy, have imaginarykz,qx,qy, corresponding to
evanescent plane waves, i.e. waves that decay exponentially with distance from the PC surface
in thexy-plane.

2.2. Photonic crystal region

The Bloch waves propagating in the PC region must have the same transverse Bloch vector
componentskx andky as those in the air region, since the Bloch form in Eq. (4) is valid in
every period of the PC, whereas mode matching is performed for a single period only. If we
consider incoming plane waves with the wave vectork inc with componentskx,inc, ky,inc and
kz,inc, we therefore get the discrete set of plane waves needed for mode matching by choosing
kx = kx,inc − 2πqx/Λx andky = ky,inc − 2πqy/Λy in Eq. (8). Furthermore, there always exist
integersqx andqy such that the Bloch vector with componentskx andky belongs to the first
Brillouin zone in two dimensions.

Since the PC is homogeneous in thez-direction forz> 0, we search for solutionseq(x,y,z)
of the form

eq(x,y,z) = eq(x,y)exp(ikz,qz). (9)

The most general solution is thus a series expansion of Blochwaves

E(x,y,z) = ∑
q

eq(x,y)exp(ikq · r) = ∑
q

eq(x,y)exp[i(kxx+kyy+kz,qz)], (10)

wherekq = (kx,ky,kz,q) is a three-dimensional Bloch vector for the 2D PC. Like for the plane
waves, only a discrete set of values ofkz,q (eigenvalues) yields solutions to Maxwell’s equations
(for a given frequencyω and Bloch vector componentskx andky). Each possible value ofkz,q

corresponds to a modeeq(x,y), and the integerq can be called the Bloch mode index.
Central for the analysis of PCs is the calculation of band diagrams, the relations between

frequencyω andkx, ky andkz,q. For a given frequency, allowed combinations ofkx, ky andkz,q

define 2D surfaces in the(kx,ky,kz)-space. In the homogeneous regions the equations defining
the surfaces take the simple form (7). Also for the PC regions, in analogy with the plane waves,
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there exist a limited number of real solutions forkz,q (low order modes) and an infinite number
of imaginary solutions (higher order modes).

The equation for the modeseq(x,y) is known to be self-adjoint, if it is considered to be an
eigenvalue problem forω2, given thatkx, ky andkz are all real [13]. But, seen as an eigenvalue
problem forkz, the equation is not self-adjoint even if the material is lossless. We find in our
simulations that in addition to the purely real or imaginaryvalues ofkz,q there can also exist
modes for some complex-valuedkz,q. The complex modes must be included when doing the
mode matching atz= 0, where the amplitudes of the modesep,qx,qy andeq are adjusted so that
the series expansions in Eq. (8) and Eq. (10) match. For the PCstructure that we have studied,
we have found that if there is a Bloch mode at theΓ point of the Brillouin zone withkz = kz,q,
then there is also a Bloch mode withkz = −kz,q, and if kz,q is complex, there is also a Bloch
mode withkz = k∗z,q.

2.3. Fourier-Bessel expansion in one period of the crystal

Our method for finding the modes in the 2D PC is divided into twosteps. First, the time-
harmonic Maxwell’s equations [14, 28] are solved analytically inside one period (cell) of the
PC as shown in Fig. 2. Then Bloch’s theorem is used to set up point matching along the cell
boundary, connecting fields at opposing sides of the cell. The analytical solution inside the
unit cell is well-known [14, 23], but the way point matching is used to set up the boundary
conditions is original for our work to the best of our knowledge.

r

ϕ

Core

Cladding

a

Λx

Λy

Fig. 2. One period of the 2D PC. A core with the radiusa is surrounded by a cladding with
either higher or lower refractive index.

We borrow the nomenclature from the fiber-optics, and call the regionr < a thecoreand the
surrounding area thecladding, even though this nomenclature is not standard for cylinders in
PCs. The relative permittivity isε1 in the core andε2 in the cladding. We define the permittivity
contrast as

∆ =
|ε1− ε2|

(ε1 + ε2)/2
. (11)

We introduce cylindrical coordinates as in Fig. 2. Using calculations similar to those in [14],
the longitudinal componentsEz andHz can be obtained solving the equation

1
r

∂
∂ r

(

r
∂U
∂ r

)

+
1
r2

∂ 2U
∂ϕ2 +(εk2

0−k2
z)U = 0. (12)

U denotes eitherEz or Hz. Like in [14], we express the transversal field components interms
of Ez andHz, and solve Eq. (12) using the separation of variables technique, giving a set of
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solutions

Ez,n =







i
√

µ0
ε0

BnĴn(β1r)exp(inϕ)exp(ikzz) , r < a

i
√

µ0
ε0

[

FnĴn(β2r)+GnŶn(β2r)
]

exp(inϕ)exp(ikzz) , r > a
(13)

Hz,n =

{

AnĴn(β1r)exp(inϕ)exp(ikzz) , r < a
[

CnĴn(β2r)+DnŶn(β2r)
]

exp(inϕ)exp(ikzz) , r > a
(14)

whereĴn andŶn are Bessel functions of first and second kind respectively, normalized as ex-
plained below, andn = 0,±1,±2.... SinceŶn(β1r) grows infinitely asr → 0, no such term is
allowed forr < a. For r > a, bothĴn andŶn are needed. For convenience, the definition

β j = (ε jk
2
0−k2

z)
1/2, for j = 1,2 (15)

has been made, where the branch Re(β j) ≥ 0 is used.
In our MATLAB code, we use normalized Bessel functions for small function arguments,

dividing the Bessel functions of first and second kind respectively with its value forr equal
to the distance from the center of the core to the corner of theunit cell or with its value for
r equal the cylinder radius. This normalization of the Besselfunctions is designed to yield
numerically well-behaved expansion coefficientsAn, Bn,Cn, Dn, Fn andGn in the series Eq. (21)
and Eq. (22), by ensuring that

• the order of magnitude of the coefficients are roughly the same for all values ofβ1 and
β2

• the coefficients are continuous functions ofβ1 andβ2.

The coefficientsAn, Bn, Cn, Dn, Fn andGn in Eq. (13)–(14) are related to each other through
the boundary conditions atr = a (continuousHz, Ez, Hϕ , Eϕ , Hr and εEr ). When the field
components satisfy Maxwell’s equations and the boundary conditions are met for four of these
six field components, the remaining two boundary conditionswill automatically be satisfied. So
we have four equations for the boundary conditions, and are left with two unknown coefficients
that can be chosen arbitrarily so far. We chooseAn andBn as independent variables and express
the other four coefficients in terms of these two:

Cn =An
β2Ĵ′n(β1a)Ŷn(β2a)−β1Ĵn(β1a)Ŷ′

n(β2a)

β1Nn
+Bn

(ε2− ε1)k0nkzĴn(β1a)Ŷn(β2a)

aβ 2
1 β2Nn

(16)

Dn =An
β1Ĵn(β1a)Ĵ′n(β2a)−β2Ĵn(β2a)Ĵ′n(β1a)

β1Nn
+Bn

(ε1− ε2)k0nkzĴn(β1a)Ĵn(β2a)

aβ 2
1 β2Nn

(17)

Fn =An
(ε2− ε1)k0nkzĴn(β1a)Ŷn(β2a)

aβ 2
1 β2ε2Nn

+Bn
β2ε1Ĵ′n(β1a)Ŷn(β2a)−β1ε2Ĵn(β1a)Ŷ′

n(β2a)

β1ε2Nn
(18)

Gn =An
(ε1− ε2)k0nkzĴn(β1a)Ŷn(β2a)

aβ 2
1 β2ε2Nn

+Bn
β1ε2Ĵn(β1a)Ĵ′n(β2a)−β2ε1Ĵn(β2a)Ĵ′n(β1a)

β1ε2Nn
(19)

Common for all denominators is the factor

Nn = Ĵ′n(β2a)Ŷn(β2a)− Ĵn(β2a)Ŷ′
n(β2a). (20)

The factori
√

µ0/ε0 that is included in Eq. (13) ensures that the coefficientsAn, Bn, Cn, Dn,
Fn andGn get same dimension (magnetic field strength), and avoids having the imaginary unit
i explicitly in Eq. (16)–(19). We then approximate thez-components of the generalE andH
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fields by a sum of 2N + 1 contributions from Eq. (13)–(14), whereN is the highest order of
Bessel functions used:

Ez =
N

∑
n=−N

Ez,n (21)

Hz =
N

∑
n=−N

Hz,n (22)

2.4. Search for Bloch modes in the square periodic PC

The next step is to use Bloch’s theorem to match the fields at points r1 and r2, at opposite
sides of the unit cell, chosen such that they differ with a lattice vector. We assume a square unit
cell, i.e.Λx = Λy = Λ, to allow the points to be equidistant. Since we have 2(2N+1) unknown
coefficientsAn andBn, we need 2(2N+1) equations to determine the unknowns.

(a) (b)

Fig. 3. Point matching for 12 sampling points around the unitcell of the PC, for thez
components of theE andH fields (a) and for the transversal components (b). The small
arrows in (b) indicate which transversal component that is matched.

Thez-components of the electric and magnetic fields are matched at N +1 point pairs as in
the example in Fig. 3(a). We getN equations by matching both the electric and magnetic fields
at point pairs with

r2 = r1 + Λx̂, (23)

wherer1 is one ofN/2 points at the left edge andr2 is one ofN/2 points at the right edge. We
getN equations by matching

r2 = r1 + Λŷ, (24)

wherer1 and r2 are one of the points on the lower and the upper edge respectively. x̂ and ŷ
are unit vectors in thex- andy-directions respectively. We also get two linearly independent
equations by matching thez-components with

r2 = r1 + Λx̂+ Λŷ. (25)

In total we get 2(N+1) equations for thez-components.
For the transversal components we chooseN point pairs between the former ones, as shown

in Fig. 3(b). For thex-components we match the electric and magnetic fields at points separated
by Λ in they-direction, giving usN equations, and for they-component we use points separated
by Λ in thex-direction, giving us additionallyN equations. Thus, for the transversal components
we get 2N equations, and in total 2(2N+1) equations.
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Bloch’s theorem (2) yields for the electric field and for the magnetic field respectively

E(r2) = E(r1)exp[ik · (r2− r1)] (26)

H(r2) = H(r 1)exp[ik · (r2− r1)]. (27)

By using Eq. (16)–(19) in Eq. (13)–(14) and inserting into Eq. (21)–(22) the fieldsHz andEz can
be expressed in terms of the unknown constantsAn andBn. Likewise, transversal components
can be expressed in terms ofAn andBn. Finally the boundary conditions Eq. (26) and Eq. (27),
for the point pairs shown in Fig. 3 and in Eq. (23)–(25), are used to get a homogeneous linear
set of equations for the variablesAn andBn:
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= 0 (28)

This equation system can have nonzero solutions for discrete valueskz,q of kz, as already stated
in Sec. 2.2. Since the matrix elements are nonlinear functions ofkz, Eq. (28) represents a non-
linear eigenvalue problem forkz. This equation system can be written more compactly as

M(kz)u = 0, (29)

whereM (kz) is the matrix in Eq. (28) andu is the vector containing the 2(2N+1) elementsAn

andBn. This nonlinear eigenvalue problem can be solved by solving

M(kz)u′ = v (30)

for an arbitrary, nonzero vectorv and search for values ofkz for which |u′| diverges [15].
Actually, Eq. (28) can be considered a nonlinear eigenvalueproblem for either one of the four
quantitiesk0, kx, ky, or kz, allowing the other three to be specified.

3. Numerical results

The method described in Sec. 2 was implemented in MATLAB, andwas used to calculate
the modes for the geometry in Fig. 2 with the parametersΛx = Λy = Λ anda = 0.2Λ. This
geometry is the same as one in reference [13], and our method has been verified against the band
diagram presented there in Fig. 5.2, wherekz is set to zero andω is calculated as a function of
kx andky. An independent verification of our code is the fact that it yields results that converges
to the analytical plane-wave result (7) as the permittivitycontrast∆ approaches zero.

For mode matching, we need to find the set of allowed values ofkz for specifiedω , kx and
ky. We confine our attention tokx = ky = 0, at theΓ point of the 2D Brillouin zone, believing
that the numerical method that findskz at theΓ point will find kz anywhere in the 2D Brillouin
zone. The band diagrams that we calculate correspond to Fig.5.11 in reference [13], but are
extended to include modes for imaginarykz as well.

Our algorithm for calculating the band diagrams starts withfinding eigenvalues forkz = 0,
considering Eq. (28) as an eigenvalue problem fork0 instead ofkz, finding zeros of 1/ |u′|. For
each eigenvalue,k0 is then either iteratively increased or decreased in small steps. In each step
the previous value ofk2

z is used as a starting guess in the calculation of the new one (now with
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Fig. 4. Automatically computed band diagram for a high-contrast structure.ε1 = 8.9,
ε2 = 1.0. Λx = Λy = Λ anda = 0.2Λ. kx = ky = 0. The highest Bessel function order
is N = 10. Two occurrences of complex-conjugated pairs of complexmodes are indicated
with dotted lines, where the black dotted lines represent Re(k2

z)/k2
Λ and the blue dotted

lines represent[Re(k2
z)+ Im (k2

z)]/k2
Λ. Eigenvalues that are used in Fig. 9 are here marked

with small red circles.

Eq. (28) considered as an eigenvalue problem forkz). If no real solution fork2
z is found, Muller’s

method [29] is used to find complex zeros of 1/ |u′|.
In Fig. 4 the band diagram for a structure with large permittivity contrast (ε1 = 8.9 and

ε2 = 1.0, giving ∆ = 1.6) is shown. The calculations were done withN = 10. kz andk0 are
normalized with respect tokΛ, defined as

kΛ =
2π
Λ

. (31)

One of the important features in the band diagram is that the dispersion curves fork2
0 as a

function of k2
z appear to have minima and maxima, leaving intervals (bandgaps) of k2

0 where
pairs of modes with complexkz exist, as indicated with dotted lines in Fig. 4. To compute the
band diagram in Fig. 4, a preliminary computation with low resolution ink0 was first done. The
resolution was then manually increased at some intervals ofk0 that were troublesome, and the
whole band diagram was recomputed. This was then repeated a few times. The last computa-
tion, which produced the band diagram in Fig. 4, took approximately 10 minutes to compute
on a standard personal computer (including a separate computation for complex-valuedkz).

The dispersion relation for a structure with lower permittivity contrast (ε1 = 4.0 andε2 = 1.7,
giving ∆ = 0.81) is shown in Fig. 5 (black lines). We have also plotted the straight lines (green)
that Eq. (7) yields for plane waves in a medium with a relativepermittivity that equals the
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Fig. 5. Automatically computed band diagram (black lines) for a low-contrast structure,
ε1 = 4.0 andε2 = 1.7. The unit cell geometry is as in Fig. 4. Green lines show plane
waves forεavg = 2.0 (the average dielectric constant for the low-contrast structure). Fig-
ure (b) shows a magnification of the marked area in Fig. (a) where two of the bands form a
complex-conjugated pair ofk2

z (marked with dotted lines).

average relative permittivity

εavg = (ε1− ε2)
πa2

Λ2 + ε2. (32)

The relative permittivitiesε1 andε2 are chosen such that the average relative permittivityεavg is
the same in both Fig. 4 and Fig. 5. We observe that many of the bands are nearly straight lines
lying close to the plane-wave results.

We explored the dependence of one of the band gap regions in the band diagram on per-
mittivity contrast, expecting the band gap to close with decreasing contrast. We observe the
plane-wave approximation (7) to be better, the smaller the permittivity contrast is. Figure 6(a)
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Fig. 6. (a) The largest value of Imk2
z in the bandgap as a function of the permittivity contrast

∆. (b) The upper and lower boundaries (ofk2
0) of the bandgap and the bandgap size, as a

function of the permittivity contrast.
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shows the maximum of the imaginary part ofk2
z in the bandgap. This value clearly decreases

as the contrast decreases. We fail, however, to observe a significant reduction in the band gap
size (Fig. 6(b)), and the two modes with a complexkz seem to exist at a significant range of
frequencies, also when the two modes are nearly degenerate andkz is well approximated by the
plane-wave result for both modes. To verify that this behavior is not an artifact of using too few
orders of Bessel functionsN, we have also computed Fig. 6 withN = 18, with no significant
changes.

To visualize the electromagnetic mode patterns fork2
0 = 0.36k2

Λ and for three of the eigen-
values marked with red circles in Fig. 4, we calculate the quantity

Sz(x,y,z) =
1
2

[Ex(x,y,z)Hy
∗(x,y,z)−Ey(x,y,z)Hx

∗(x,y,z)]

=
1
2

[ex(x,y)hy
∗(x,y)−ey(x,y)hx

∗(x,y)]exp[−2Im (k · r)] , (33)

over one period of the PC. Taking the real part ofSz(x,y,z) we get thez-component of the
time-average Poynting vector, i.e. the power per unit area crossing thexy-plane.

In Fig. 7 and Fig. 8 the real respectively the imaginary values of Sz(x,y,z = 0) is shown,
representing the average power and the reactive power respectively at the planez= 0. The cal-
culation was done withN = 22 as the highest order of the Bessel functions. For each eigenvalue
kz, Sz(x,y,z) has been normalized so that its largest absolute value inside the unit cell is one.

Whenkz is real,Sz(x,y,z= 0) is purely real too, which is seen in Fig. 8(a), where the imag-
inary part ofSz(x,y,z= 0) is negligible. So there is an average power flow in thez-direction,
concentrated in the core of the PC. For purely imaginarykz (Fig. (b)) the situation is the oppo-

k
z
2 = 0.79 kΛ

2

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

k
z
2 = −3.32 kΛ

2

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

k
z
2 = −0.18 + 0.14i kΛ

2

 

 

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

−1

0

1

(a) (b) (c)

Fig. 7. Average power per unit area perpendicular to thexy-plane, Re[Sz(x,y,z= 0)], within
one period of the PC, for some allowedkz.
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Fig. 8. Reactive power, Im[Sz(x,y,z= 0)], within one period of the PC, for some allowed
kz.
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site, with a negligible real part ofSz(x,y,z= 0), meaning that even if the fields are oscillating,
on average no power is transported through the PC by these modes. The mode shown is a higher
order mode, with larger spatial variation than in Fig. (a). The modes with complexkz have a
complexSz(x,y,z = 0) (Fig. 7(c) and Fig. 8(c)), implying that these modes in principle carry
power, but that the power exhibit exponential decay or growth as a function ofz. Such a power
flow, decreasing in thez-direction, is unphysical in a lossless PC. Hopefully, the two modes
with kz = kz,q andkz = −k∗z,q combine to provide a net zero power.

In the band diagrams in Fig. (4)–(5) the highest order of the Bessel functions used isN = 10,
giving a 42×42 matrix in Eq. (29). To estimate how the truncation of the sums in Eq. (21)–(22)
affects the accuracy of the calculation ofkz, we gradually increase the number of terms used in
the calculation ofkz, and see how the value changes. The result for a few selected eigenvalues
(marked with red circles in Fig. 4) is shown in Fig. 9, where the values obtained forN = 46 are
used as a reference.
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Fig. 9. An estimate of the error in the calculation ofkz/kΛ, as a function of the highest
order for the Bessel functions,N. The value obtained forN = 46 is used as a reference.

The general trend is that the truncation error decreases exponentially with the number of
terms used in the Fourier-Bessel series, and that more Bessel function orders are needed to
achieve a given accuracy, the larger the imaginary part ofkz is. That can be understood via the
observation that modes with a large imaginarykz (high-order modes) in general have fields that
vary more rapidly as a function of position in space than low-order modes. This trend does not
prevent some low-order results from being accurate by coincidence, like fork2

z = −14.6k2
Λ and

N = 22.
The most time-consuming part of the calculations can be divided into two steps; the calcu-

lation of the matrixM(kz), and to solve foru′ in the equation system (30). For large matrices
the time needed to compute all the matrix elements is proportional to the number of elements,
i.e. to (4N + 2)2, and the time for solving the equation system is known to be proportional to
(4N + 2)3 [29]. It is interesting to see which step that is most time-consuming in our calcula-
tions. In Fig. 10 computation times for the matrix calculation and the equation system solving
(matrix inversion) are compared. Together with the data a quadratic fit,t ∼ (4N+2)2, is shown
for the matrix computation and a cubic fit,t ∼ (4N+2)3, for the matrix inversion.

Even if the matrix inversion time asymptotically grows morerapid asN increases, it is clear
from Fig. 10 that the calculation of the matrix itself dominates for reasonable values ofN
(N < 100). Due to the large amount of memory needed, no calculations have been done for
very largeN to determine where the matrix inversion time start to dominate, but one can still
tell that the crossing point occurs for a very large value ofN — much larger than anything
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Fig. 10. Computation times for calculating the matrixM(kz) and taking the inverse, on a
standard personal computer.

needed to get a reasonable accuracy, as can be seen in Fig. 9. So, for the range ofN values
that is needed for our calculations, most of the computing time is spent on evaluation of the
elements of the matrixM(kz) in Eq. (30), and not on solving the equation for the unknownu′.

4. Discussion

The aim in this work is to calculate the Bloch modes in a 2D PC ofcircular cylinders that
extends infinitely in thez-direction, to be able to expand the electromagnetic field ina series
expansion as in Eq. (10), for a given frequency. For high-order modes, the order of a mode is
mainly determined by the imaginary part ofkz, thez-component of the Bloch vector. We need
to find all the modes: the low-order propagating modes with a realkz, the high-order evanescent
modes with a purely imaginarykz, and the many modes with complexkz that are found in PC
structures even if they are lossless with a very small permittivity contrast.

4.1. Comparison with other methods

Cylindrical coordinates and Fourier-Bessel expansions have been used by others, i.e. scattering-
matrix method [23–25] and an early method for multicore fibers [18]. In the analysis of photonic
crystal fibers (PCFs) [19–22], geometries with cylinders ina periodic pattern appear frequently,
but mostly in models using a large but finite number of objectsWe, on the other hand, are
interested in an infinite, perfectly periodic array of cylinders, a 2D PC with a single cylinder
per unit cell. We have not found anyone else describing our application of the Fourier-Bessel
expansions for Bloch-mode calculations in this PC, with point matching along the edge of the
unit cell, and solving a nonlinear matrix eigenvalue problem for the out-of-plane component of
the Bloch wave vector.

Our analysis differs from that of PCFs in what 2D modes are needed and how they are used.
The evanescent higher-order modes that decay along the direction of the cylinders are usually
not relevant for the analysis of PCFs, but those are the modeswe are interested in.

Other methods exist that like ours have the advantage of using 1D expansions instead of
2D-expansions, like mode matching in rectangular coordinates [15] and rigorous coupled-wave
analysis [16, 17]. Here the structure is approximated by a set of homogeneous rectangular
boxes, which has the drawback that, analytically, the electric field perpendicular to the edge
diverges at the edge [30], and more so the larger the permittivity contrast is. Therefore a relative
large number of orders are needed to obtain accurate results, which have been noted for 1D
gratings [31]. To retain an accurate description of the fieldaround the cylinder, independently
of the number of terms used in the field expansion, cylindrical coordinates are better suited than
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rectangular coordinates.
One benefit of our method is that the computed Bloch-wave vector depends continuously

on the cylinder radius, also when very few terms are includedin the Fourier-Bessel series
expansion. A continuous dependence allows the Bloch-wave vector to be easily tracked of as a
function of cylinder radius.

Figure 3 indicates that if we do the field matching in 2N points (whereN = 6 in Fig. 3) around
the unit cell of the 2D PC, we get a spatial resolution in the mode field that roughly corresponds
to (N/2)2 sampling points inside the unit cell. The analysis of Sec. 2.4 then shows that we need
matricesM of dimension 2(2N+1)×2(2N+1) in Eq. (29)–(30) to obtain the(N/2)2 samples
of the Bloch mode field inside the unit cell. A large number of very clever methods have been
developed for efficient calculation of the two lowest-orderBloch modes, or a few of the lowest-
order modes, of a perfect 2D PC, and many of the methods are reviewed in Appendix D of [13].
As pointed out on p. 257 of [13], if we want to find as many as(N/2)2 modes, however, the
time taken to perform the matrix operations needed to find allthese modes will in general be
proportional toN6. Similar reasoning allows us to conclude that the time needed to find(N/2)2

modes using Eq. (29) is proportional toN4 if the computation is dominated by matrix element
evaluation, and proportional toN5 if the computation is dominated by matrix inversions. So we
should get a gentler scaling of computing time withN, by exploiting the knowledge that the
unit cell has cylinder geometry.

4.2. Considerations on the method used

There is a wide range of conceivable choices for the point matching around the unit cell bound-
ary. Care must be taken to ensure that the matching procedurealways yields a set of equa-
tions (28) that are linearly independent, except when a solution for kz is found. Not all of them
will work, so in our work we have tested quite a few different options, and we would like to
point out that our paper provides a prescription for settingup point matching equations that
fulfills the requirement above. Among the six field components in Eq. (26)–(27), we have cho-
sen to match the components that are parallel to the edges of the unit cell, in points that are
evenly spread around the unit cell boundary. The point matching is always done along a curve
(a square) where all electric and magnetic field components are analytically well-behaved, re-
sulting in series expansions that converge very rapidly, asshown in Fig. 9.

It should be noted that with the scheme for setting up the equations as in Fig. 3,N must be
an even number. Furthermore, for the symmetric case where the core is centered in the unit
cell, andkx = ky = 0, N cannot be a multiple of 4, for the scheme to yield a set of linearly
independent equations. The option to use path integrals instead of point matching to set up the
boundary conditions has not been tested, since point matching works well and no problems in
converging have been encountered as the number of points is increased. The time needed for
the calculations would not scale differently with the number of Bessel orders that is used, if
path integrals were used instead of point matching.

With our method an eigenvalue to Eq. (28) appears atkz = k0
√

ε1. An eigenvalue also ap-
pears for a value ofkz > k0

√
ε1. This eigenvalue approacheskz = k0

√
ε1 asN increases. These

eigenvalues are obviously unphysical, and have been discarded.

5. Conclusion

We have studied propagating and evanescent Bloch waves inside one of the canonical two-
dimensional photonic crystals (2D PCs); identical circular cylinders in a square pattern, with
the interface perpendicular to the cylinders. For a given frequency, all waves are evanescent,
except for a few low-order propagating waves. We have presented computed out-of-plane band
diagrams for propagating as well as evanescent Bloch waves in the 2D PC. We have found
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that many of the evanescent Bloch modes do not have a purely imaginaryz-component of the
Bloch wave vector, but a complexz-component. We believe that the existence of modes with
a complex z-component is a property of PCs in general, intimately related to the existence of
band gaps in PCs.

To compute the band diagrams, we have used a numerical methodbased on Fourier-Bessel
expansions of the electromagnetic fields, well suited to treat the fields inside and surrounding
a cylinder. The method is numerically very well behaved, to the extent that the accuracy of the
calculated Bloch vector improves exponentially with the number of terms included in the series
expansions. The method involves manipulation of matrices with small dimension, making fast
exploration of complex dispersion maps feasible on a desktop computer. To provide assurance
that our computer code can be trusted, we have reproduced theband diagrams published in
[13] for a structure with high permittivity contrast, and wehave observed the computed band
diagrams to converge to the analytic plane-wave results when we let the contrast approach zero.

Finally, we believe that our results represent a contribution to the development of a modal
expansion method to calculate transmission and reflection coefficients of 2D PC slabs. The ex-
istence of modes with a complexz-component of the Bloch wave vector represents a challenge
for modal expansions methods in general, regardless of the method used to compute the 2D
modes.
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