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Abstract. Photonic crystals form a new class of intriguing building blocks to be utilized in
future optoelectronics and electromagnetics. One of the most exciting possibilities offered by
photonic crystals is the realization of new types of electromagnetic waveguides. In the optical
domain, the most mature technology for such photonic bandgap (PBG) waveguides is in
optical fibre configurations. These new fibres can be classified in a fundamentally different
way to all optical waveguides and possess radically different guiding properties due to PBG
guidance, as opposed to guidance by total internal reflection. In this paper we summarize and
review our theoretical work demonstrating the underlying physical principles of PBG guiding
optical fibres and discuss some of their unique waveguiding properties.
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1. Introduction

Since the first proposals of a photonic bandgap (PBG)
effect by Yablonovitch and John [1, 2], this subject has
received a rapidly increasing research interest [3]. The
fact that periodic dielectric structures may be designed
to exhibit electromagnetic properties that bear a close
resemblance to the electronic properties of semiconductors,
is, naturally, of tremendous scientific interest [4]. Among
the most interesting application-oriented prospects of PBG
structures, or photonic crystals, are their ability to provide
new means of waveguiding. By employment of the PBG
effect as compared with the mechanism of total internal
reflection (TIR), a completely new class of electromagnetic
waveguides has emerged [5–7]. These waveguides possess
properties fundamentally different to conventional TIR-
based waveguides, including the remarkable ability to
provide lossless transmission around 90◦ sharp bends
[6]. Although not demonstrated at optical wavelengths,
such lossless sharply bended waveguides were recently
demonstrated experimentally at millimetre wavelengths in
planar two-dimensional (2D) photonic crystal structures [8].
Due to the scalability of photonic crystals this result holds
great promise for future realization of highly complex, all
optical, integrated circuits. To fulfil the appealing prospects
of high degrees of compactness and integration of optical
circuitry using 2D photonic crystal structures, the major
problem, at present, concerns achieving a good confinement
in the third direction, i.e. in the direction perpendicular to
the periodic plane. 2D photonic crystals are, naturally,
intrinsically unable to provide this vertical confinement

(an essential fact which is nonetheless neglected in most
application-oriented 2D photonic crystal investigations).
Due to this lack of vertical confinement and the finite
height of real 2D photonic crystals, most fabricated PBG
structures suffer from high losses [9]. Sandwiching a film
of photonic crystal between two low-index material layers
is not a sufficient requirement for obtaining leakage-free
bound modes in the photonic film. Only under very precise
conditions may such bound modes be obtained [10], making
careful and detailed three-dimensional (3D) analysis and
design of future planar PBG structures vital.

A second area where waveguiding by the PBG effect
has been seen to break new ground is in the field of optical
fibres [11]. In contrast to planar structures, optical fibres
with a micron-scaled periodic arrangement of air holes in a
silica background material may be readily fabricated [12]. As
these fibres may be drawn to long lengths (using conventional
optical fibre fabrication techniques), 2D photonic crystal of
practically infinite height may be realized relatively easily,
making optical fibres the most mature technology today for
exploring PBG effects at optical wavelengths. Although
silica–air photonic crystals do not exhibit PBGs for wave
propagation refined strictly in the periodic plane, this system
does allow for complete bandgaps (i.e. for any polarization
of the light) to appear for waves propagating with a non-zero
wavevector component in the direction perpendicular to the
periodic plane [13]. This out-of-plane case is exactly the
case of interest in optical fibres, where light is intended to be
guided along the fibre axis.

First efforts into the realization of structures with
a complete out-of-plane PBG for 2D silica–air photonic
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Figure 1. Cross-sectional schematic of honeycomb-based PCF.

crystals were performed using a triangular arrangement of
air holes [11,13]. This arrangement was predicted to exhibit
complete bandgaps [13], but the requirement of large air hole
sizes proved difficult to fulfil experimentally, and fabricated
photonic crystal fibres (PCFs) using triangular arrangements
of air holes showed no evidence of PBG effects (albeit other
highly unusual properties are found for these index-guiding
PCFs [14–16]). Our attention was, therefore, shifted to so-
called honeycomb photonic crystals, which have been found
to possess larger bandgaps than triangular crystals, both for
in-plane and out-of-plane propagation [17, 18]. Theoretical
results suggested that PCFs based on such honeycomb
photonic crystal structures (see figure 1) would be able to
exhibit waveguidance by PBG at realistic parameters [18],
and their operation and basic properties were first described
in [5, 19]. Recently these honeycomb-based low-index core
PCFs were fabricated, and experimental results confirmed
the theoretical predictions of PBG guidance [20]. In this
paper, we outline the numerical tool used for the modelling
of the PCFs, and elaborate on our theoretical work presented
in [5,18,19].

In section 2, we present an efficient numerical method for
modelling large photonic crystal structures. Improvements
on silica–air honeycomb-based photonic crystals by using
multiple silica dopants are presented in section 3. The
principle of localization and guidance of light by the PBG
effect is explained in section 4 along with a discussion of
basic properties and future prospects of PBG guiding optical
fibres.

2. Calculating PBG structures

In this section a variational method based on [21–24]
for solving the vectorial magnetic-field wave equation for
periodic structures is presented. The magnetic-field wave
equation

∇ ×
(

1

εr(r)
∇ ×H(r)

)
= ω2

c2
H(r), (1)

is treated as an eigenvalue problem, where a solutionH

represents the eigenvector andω
2

c2 is the corresponding
eigenvalue. In the case of periodic structures a solution may,
according to Bloch’s theorem, be written as a plane wave
modulated by a periodic function with the same periodicity
as the structure. By approximating the periodic function with

a Fourier-series expansion a solution may be written in the
form

H(r) =
∑
G

∑
λ=1,2

hk+G,λe
i(k+G)·r, (2)

wherek is a wavenumber vector,G is a reciprocal lattice
vector andλ represents the two field directions perpendicular
to k + G (since∇ · H = 0). The eigensolutions may be
found using a variational method [3, 21, 23, 25] based on
minimization of the functional

E(H) =
〈∇ ×

(
1

εr (r)
∇ ×H

)
|H〉

〈H|H〉 , (3)

where

〈F |G〉 =
∫
F ∗ ·G d3R. (4)

When the functionalE(H) is at a minimum,H is an
eigenvector andE(H) is the corresponding eigenvalueω

2

c2 .
By inserting a trial vector on the form (2) in (3) the functional
effectively becomes a function of the coefficientshk+G,λ, and
the problem is reduced to varying the coefficients along a path
that minimizes the functionalE(H). An efficient iterative
method that performs this task is described in [23]. Higher-
order eigensolutions are found by restricting the trial-vectors
to being orthogonal to all previously found eigenvectors and
using the same minimization principle. It is vital for the
minimization approach that fast calculation of the left-hand
side in (1) is performed. This is achieved by performing
the rotations∇× in Fourier space, and the operation1

εr (r)

in real space. Fast Fourier transform (FFT) is used to
go from one space to the other. Using this approach,
however, interpolation of the dielectric function in real space
is necessary to achieve good convergence. A method for
interpolation based on effective medium theory [24] and a
tensor representation of the dielectric constant is described
in [21,22].

In order to calculate the electromagnetic properties of a
spatial defect within an otherwise periodic structure—such
as the properties of the core region of the PCFs—the plane
wave method may still be applied, where the smallest region
describing the periodic structure is enlarged to include the
defect (a so-called super-cell approximation). In this way
a super-periodicity is introduced where the defect is also
repeated periodically. Using a super-cell approximation the
properties of the defect region may be accurately determined
if the size of the super-cell is large enough to ensure that
neighbouring defects are uncoupled. The numerical results
presented in this paper have been calculated using the
principles outlined in this section.

3. 2D honeycomb-based photonic crystals

The basic honeycomb structure is illustrated in figure 2, with
an indication of the unit-cell of the structure. We denote
the centre-to-centre distance between nearest air holes,3,
and use this factor for the normalization of frequencies, as
well as for the out-of-plane wavevector component,β, (i.e.
the component in the invariant direction of the crystal). For
a fixed β-value of 6/3, the band structure diagram of a
basic honeycomb structure with an air filling fraction of 30%
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Figure 2. Basic 2D honeycomb photonic crystal structure. The
periodicity of the structure is described through the two simple
lattice vectorsR1 andR2. The invariant direction is out of the
paper.

Figure 3. Band diagram for a basic honeycomb photonic crystal
with an air filling fraction of 30%.k3 is the normalized
frequency, wherek is the free-space wavenumber (= 2π/λ). The
three high-symmetry points of the honeycomb crystal are indicated
by O, M and X.

is shown in figure 3. We assume the refractive index of
undoped fused silica to ben = 1.45. From the figure we
observe the appearance of two complete bandgaps: a primary
gap between bands 2 and 3, and a secondary gap between
bands 6 and 7. In order to increase the two bandgaps, we
now focus on a strongly modified honeycomb-based optical
lattice, where the effects of introducing several differently
doped silica glasses is studied. Current doping technologies
allow us to modify the dielectric constant of silica up to
3% and down to 1% of its nominal undoped value. A
schematic of the structure is shown in figure 4, where the
rhomboidal solid line represents the unit cell. The structure
has a background material which comprises of interstitial
holes and up to three different dopant levels of silica. The
interstitial holes are easily introduced in a photonic crystal
realized by the fabrication techniques currently used for PCFs
[26]. These interstitial holes have already been demonstrated
to be beneficial for the honeycomb structure, but to reduce
the PBG effect in triangular structures [18]. In figure 5
the relative size of the primary gap is illustrated for the
basic honeycomb structure with an air filling fraction of
30%. The relative bandgap size is defined as the difference
between the upper and lower frequencies of the gap divided
by its centre frequency. Although no PBGs exists for the
in-plane case of silica–air structures (β = 0), complete
PBGs are found to open up when moving out of the plane.
The figure also includes three cases of modified honeycomb

(b)

Figure 4. 2D modified honeycomb-based photonic crystal. Two
differently doped silica glasses are used as well as undoped fused
silica. The silica type 1 represents a capillary tube, and type 2 a
solid cane from which the honeycomb silica–air photonic crystal
may be fabricated. The unit cell of the structure is marked by the
solid-line rhombus.

Figure 5. Relative bandgap size as a function of the normalized
wave constant for the basic honeycomb lattice (f = 30%), and
three modified versions of the honeycomb lattice.

structures: (a) interstitial holes introduced (fint = 8%), (b)
interstitial holes and three differently doped silica glasses
(n1 = 1.44, n2 = 1.45, n3 = 1.47), and (c) three differently
doped silica glasses (n1 = 1.47, n2 = 1.45, n3 = 1.44). The
indices refer to the three silica types indicated in figure 4,
and for the structures comprising three silica dopants the
outer diameter of the tube and cane (silica types 1 and 3,
respectively) have been set as large as possible (= 3). For
the basic structure (undoped silica and air) a maximum PBG

479



J Broenget al

size of 5.3% atβ = 6.5/3 is observed. This size may be
increased to 6.4% by adding interstitial holes to the structure,
and further increased to 7.1% by lowering the refractive index
of the silica surrounding the air holes (silica type 1) while
increasing the index of the silica forming the canes (silica
type 3). By regarding the honeycomb photonic crystal as a
structure with high-index nodes (the region with silica type
3) connected by bridging veins (the silica region between
two air holes), we find that the results in figure 5 agree
with the belief that increasing the node-index and narrowing
the connecting veins is a fruitful route for designing large-
bandgap photonic crystals [5]. To further support this, we
observe how the size of the primary bandgap is, indeed,
decreased for the structure (c) modified by lowering the
index of the nodes, while increasing the index of the silica
surrounding the air holes. Although not illustrated here, we
found the same conclusions also to be valid for the size
of the secondary bandgap. This result demonstrates the
advantages of introducing differently doped silica glasses in
the honeycomb-based photonic crystal.

4. Waveguidance by the PBG effect

By locally breaking the periodicity of a photonic crystal,
a spatial region with optical properties different from the
surrounding bulk photonic crystal can be created. If such a
defect region supports modes with frequencies falling inside
the forbidden gap of the surrounding full-periodic crystal,
these modes will be strongly confined to the defect. This
is the principle on which the operation of the PBG guiding
fibres relies, namely a complete out-of-plane 2D bandgap
exhibited by the photonic crystal cladding, and a correctly
designed defect, forming a spatial region to which very
strong transverse confinement can be achieved. For this
defect region to exhibit optical properties different from
the surrounding periodic structure (i.e., be able to support
a localized mode) it is important to notice that it is not a
requirement that the defect region has a higher index than
its surroundings. For a homogeneous dielectric surrounding
media this would be the only case under which localization
can occur (which is, of course, the case of TIR utilized in all
conventional optical waveguides). Leakage-free guidance
of light confined to a region with a lower index than its
surroundings would, therefore, not be expected to be possible
from index guidance waveguide theory, but if the surrounding
material exhibits PBG effects even a low-index defect region
may be able to localize the light, and thereby act as a (new)
highly unusual waveguide. In the following, we will be more
specific in our description of the PBG guiding fibres and
illustrate the influence of introducing a defect in the full-
periodic honeycomb structure. In figure 6 we have depicted
the bandgaps for the primary and secondary bandgap of the
honeycomb PCF shown in figure 1 with a cladding air filling
fraction of 10% and a defect hole with the same size as the
cladding holes. Inside the primary gap, we observed a single
defect-mode traversing the gap fromβ3 ≈ 5 to≈17. This
mode is caused solely by the introduction of the defect air hole
in the honeycomb structure. For the full periodic structure,
we find exactly the same PBGs (with no modes inside)
with identical boundaries to those of the crystal including

Figure 6. Illustration of the two first bandgaps (primary and
secondary gaps) of a honeycomb PCF with a cladding air filling
fraction of 10% and a defect hole with same size as the cladding
holes. Within the primary bandgap the extra air hole in the core of
the fibre causes a single degenerate mode to appear. This ‘defect’
mode is localized around the core of the fibre, and does not couple
to the cladding structure (as it is here forbidden due to the PBG
effect). The field distribution of the core mode is illustrated in
figure 7. For a fibre with3 = 2.0µm the core mode falls within
the primary bandgap in a wavelength range which corresponds
approximately to 1.0–3.0µm. Leakage-free, single-mode
waveguidance is thus obtained over this wavelength range. The
dotted curve relates to the effective index of the cladding structure.
16 384 plane waves were used for the calculation.

the defect. We expect this defect mode to be strongly
localized to the region comprising the extra air hole (albeit
this is a low-index region), and have in figure 7 illustrated
its calculated squared amplitude of theE-field. The mode
was calculated for aβ3 value of 8.0. For this value, the
defect mode is approximately in the middle of the bandgap,
and the expected strong localization of the mode is apparent.
This mode does not couple to cladding modes in the PCF,
(since the mode is falling inside the bandgap of the photonic
crystal cladding) and lossless guidance may therefore, in
principle, be achieved over long lengths. Although almost
all of the field of the defect mode for this particular PCF is
distributed in the silica, full confinement of light in air is—
in principle—possible for PBG guiding fibres. Using the
illustration of figure 6, this requires a defect mode falling
inside a bandgap, where both extend tokβ > 1 (i.e. crossing
the air line). Such fibres would, naturally, have a tremendous
potential in both telecommunications and sensor areas. Also
included in figure 6 is the radiation line (dotted curve), defined
as the lowest frequency allowed mode in the full periodic
structure—and relates to the effective index,neff,cladding, of the
cladding structure as 1/neff,cladding. Below this line is a semi-
infinite ‘bandgap’, where no modes exist. This is the region in
which all TIR-based fibres (including triangular PCFs [12])
operate, since a high-index defect causes at least one mode
to appear below this line. Such index-guided modes are seen
not to be a feature of the low-index core honeycomb-based
PCFs.

For comparison with the (realistic) PCF havingf =
10%, in figure 8 we have illustrated the modes of a
honeycomb PCF withf = 30%, and a defect hole size also
corresponding tof = 30%. Remarkable is the fact that the
defect mode for this PCF configuration does not fall inside
the primary bandgap, but in the secondary. The gaps are,
however, much wider for the PCF withf = 30%, giving a
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Figure 7. PBG guided mode for a honeycomb PCF with
f = 10%. The figure shows the electric field squared for the
‘defect’ mode illustrated in figure 6. Light areas indicate high field
intensity. The real-space structure has been superimposed to
illustrate the localization of the ‘defect’ mode to the extra air hole
in the core of the fibre.

Figure 8. Illustration of defect mode falling inside the secondary
bandgap for a honeycomb PCF with a cladding air filling fraction
of 30% and a defect hole with same size as the cladding holes.

wider range for ‘tuning’ the properties of the guided mode.
For3 = 2.0 µm the mode in figure 8 is guided from 1.3–
2.2µm. Whereas for a PCF with the same cladding air filling
fraction, but a much smaller defect hole, corresponding to
f = 10%, a defect mode was found in the primary gap,
and guided (as the only defect mode) over a wavelength
range as large as 1–3.0µm for 3 = 2.0 µm. For a
larger defect air hole, corresponding tof = 60% no defect
modes were found neither in the primary gap nor in the
secondary. Since real 2D PBG structure do not extend
infinitely in the periodic plane, the size of the bandgaps will
be of importance for the performance of PBG guiding fibres
in practical applications. Larger bandgaps mean a stronger
confinement of the defect mode, and will, therefore, not only
be of importance for wider ‘tuning’-ranges of the fibres, but

Figure 9. Dispersion of the PBG guiding PCF. The material
dispersion of silica is included through the Sellmeier dispersion
relation. Similar results are presented in [27].

also for very robust operation of these with respect to low
propagation and bending losses. Although here we have not
elaborated on honeycomb PCFs having improved cladding
structures, as those investigated in section 3. We will, in
future work, be addressing such improved PCFs.

The dispersive properties in the bandgap guiding PCFs is
an important issue, where the novel guidance mechanism may
provide optical components with characteristics unlike any
others. To investigate this, we have calculated the dispersion,
D = − λ

c
d2n
dλ2 for a honeycomb PCF withf = 18% and a

defect hole size corresponding tof = 7% for a series of
3 values (see figure 9). To include the material dispersion
in the calculations, we used an iterative scheme to account
for the wavelength dependence of the refractive index of
silica. From figure 9 it is noted that the dispersion can
be increased significantly above the material dispersion, an
unusual feature for a single-mode fibre. To be specificD ≈
150 ps nm−1 km−1 is found at 1.55µm for3 = 1400 nm.
Another important feature is found for3 = 2000 nm, namely
a very flat dispersion around 1.55µm. Looking at the
value ofλ with near-zero dispersion, we notice that PBG-
guiding PCFs appear to make it possible to have fibres with
a dispersion arbitrarily close to zero at a desired wavelength.

5. Summary

In this paper we have addressed the physical principle behind
waveguidance by the PBG effect in dielectric waveguides.
We have outlined the theoretical tools currently used for
the modelling of PCFs, and basic properties of bandgap
guiding PCFs have been discussed. Larger bandgaps
were found for realistic honeycomb-based photonic crystal
cladding structures, where the optical lattice was modified
by including several differently doped silica glasses as well
as small interstitial air holes. For PBG-guiding fibres to
become standard components in future optical systems, such
improvements may be of significant importance, resulting in
very robust operation through low propagation and bending
losses. Finally, the dispersive properties of bandgap-guiding
fibres were investigated, and as a completely novel quality
we found the fibres were able to exhibit very large positive
dispersion for single-mode operation. This might be utilized
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for dispersion management in fibre systems with negative
dispersion. Another important dispersion feature was found
for fibres with similar geometry as the large-dispersion
fibres, but fabricated at larger dimensions, namely a very
flat near-zero dispersion over a very broad wavelength range.
Although the research in PBG-guiding fibres is still in its
infancy, and important issues must be addressed such as e.g.
drawing long, uniform, low-loss lengths of the fibres, their
potential as ultralow-loss transmission fibres, as well as their
dispersive properties may pave the way for PBG fibres to
become of commercial interest in optical communications.
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