
1644 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2002

Analytically Solvable Model of Photonic Crystal
Structures and Novel Phenomena

Shojiro Kawakami, Life Fellow, IEEE

Abstract—The purpose of this work is twofold. First, we
present a new simple model of photonic crystal structures that
can be treated analytically. Second, from the rigorous analysis
of propagation and resonance of the models, we point out two
novel properties of waves in the structure. The first is that there
is a waveguide in which a leakage-free guided mode can have the
same propagation constant (wavenumber) as that of continuum
waves. The second novel property is that there is a resonator in
which the wave can be localized, even in the absence of a “full
bandgap.” These facts disprove some “common beliefs” about
photonic crystal structures: many people believe that 1) in a
photonic crystal waveguide, a radiation-free guided modecannot
have the same wavenumber as that of continuum modes and 2) in
a photonic crystal resonator, lossless localization can take place
only if the host photonic crystal has an absolute bandgap. Our
examples show that such beliefs are overstatements.

Index Terms—Analytic solution, circuit model, optical confine-
ment, photonic crystal, propagation, resonator, waveguide.

I. INRODUCTION

PHOTONIC CRYSTALS gather much attention today be-
cause they have many fascinating properties, such as light

localization [1] or the ability to guide light even along a sharp
bend [2]. In this technical field, there are some fundamental
points that many people take for granted but are not rigorously
proved. This is due to the following two reasons. First, this new
field has grown up very rapidly. Second, because it is difficult to
analyze electromagnetic waves in photonic crystals, one usually
has no other choice than to use computers to derive quantita-
tive results. For example, the structures shown in Fig. 1 are fre-
quently used as examples of photonic crystals, photonic crystal
waveguides, and photonic crystal resonators. The propagation
effects and resonances have been analyzed only numerically.

Our understandings of these systems consist of qualitative (or
empirical in some sense) predictions combined with numerical
results obtained by simulations. For example, as far as the struc-
tures of Fig. 1(c) and (d) are concerned, people apparently be-
lieve that, to realize a lossless ( ) resonator with a lo-
calized mode using a photonic crystal, a full-bandgap property
[1] is a must. Likewise, it seems to be widely accepted that, in
a line-defect photonic crystal waveguide, a guided mode turns
leaky if it has the same longitudinal wavenumber as that of the
continuum modes. (This is not mean to say that pioneers in this
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Fig. 1. Structures of 2-D photonic crystal structures. (a) Perspective. (b) Its
top view. (c) A line-defect waveguide. (d) A point-defect resonator.

field [1], [2] stated these “common beliefs.” Readers and fol-
lowers seem to “extrapolate” earlier findings of pioneers.)

This paper presents a new simple model of two–dimensional
(2-D) photonic crystal and its related structures (with defects)
that can be solved analytically. The model provides rigorous
proof against the above “common beliefs” about photonic
crystal waveguides and resonators, i.e., we can state that 1)
there is a situation in which a leakage-free guided mode has the
same longitudinal wavenumber (propagation constant) as that
of continuum waves and 2) a wave can be localized without
loss even in the absence of a “full bandgap” within a region of
the size comparable to a wavelength in the 2-D plane.

II. A NALYTICALLY SOLVABLE STRUCTURES

We assume a 2-D system uniform in thedirection and that
the electric field is parallel to theaxis and the wave propagates
in the plane (hence, the TE wave). Fig. 2(a), a perspective,
represents an example of such a structure. Suppose it is seen
from above [Fig. 2(b)]. For simplicity, we represent each struc-
ture by the top view. The structure in Fig. 2(c) represents an ex-
ample of a line-defect waveguide, and the structure in Fig. 2(d)
represents a resonator with crossed line defects. The wave equa-
tion for such 2-D systems is

(1)

where stands for . When the permittivity function is peri-
odic with respect to and , analytic treatment of (1) is usually
difficult.

Shepherd and Roberts [3] and other authors [4] circumvented
the mathematical difficulty assuming that the function is a sum
of delta functions. (Delta functions mean infinitely thin dielec-
tric sheets with an infinite epsilon. The dielectric contrast is
infinite and therefore physically unrealizable. Therefore, their
model serves as an asymptotic model.)
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Fig. 2. Structures to be considered. (a) Perspective. (b) Top view. (c) A line-defect waveguide. (d) A crossed line-defect resonator.

We propose a new realizable alternative to it in which the
dielectric contrast is finite. The point of our model is to assume

(2)

for which the wave (1) becomes separable. Assume
, and we obtain

and

(3)

where is the free space wavenumber ( ), and
is a constant of separation. There are many types of and

that allow analytic treatment. The structures in Fig. 2(b)
are typical. For the structure of Fig. 2(b), we consider

(4)

where , is shown in Fig. 3, and and
are identical. The structures of Fig. 2(b), (c), and (d) all

belong to the family of the analytically solvable and physically
realizable structures. The permittivity function can be
represented as ; hence, the scalar wave
equation becomes separable. The structures of Fig. 2(b), (c), and
(d) are analyzed in Section III.

III. A NALYSIS OF PERFECTCRYSTAL, LINE-DEFECT

WAVEGUIDE, AND A RESONATOR

In this section, we explain analytical approaches and present
dispersion/resonance characteristics.

A. Perfectly Periodic Photonic Crystals

We consider a photonic crystal shown in Fig. 2(b). It has a
square unit cell. The wave equations are given by (3), where

and is shown in Fig. 3. The differential equa-

Fig. 3. Periodic rectangular potential function.

tion can be treated by an electrical circuit analog [5], [6]: for
each value of (the separation constant), the circuit analog
(Fig. 4) gives an eigen phase shift for the eigen excitation be-
tween and , which is identical to , where is the
propagation constant (wavenumber) in the direction of the
photonic crystal. Similarly, (in the direction) is obtained
from the circuit analog corresponding to . For simplicity,
we assume and focus only on the part in the
following. One half of the eigen phase shift multiplied byis
the same as the “image transfer constant” of the smallest unit
11–22 in Fig. 4(b). We will use the method of image parameters
[5], which is ideally suited for closed-form analysis of periodic
circuits. The method of an electrical model is very effective for
two reasons.

1) The electrical model changes a differential equation
system into a simple matrix algebra.

2) The image impedance and the image transfer constant
directly give the eigenvector and the eigenvalue of the
system.

With the knowledge of image parameter analysis, we could
write down equations almost automatically. For the reader’s
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Fig. 4. (a) Cascaded transmission line analog representation of (3) with Fig. 3, whereW = W =(� + H + K) , W = W =(� + K) , � =
k(� +H +K) , �s = k(� +K) , andW = 120�. (b) Transverse resonance model of the line-defect waveguide.

convenience, some important formulas are summarized in the
Appendix. The transfer matrix of the section 11–22 is given by

(5)

(6)

and

(7a)

(7b)

(7c)

(7d)

(7e)

The image transfer constant
in the photonic crystal terminology) and the image impedances
(from left and from right) are given by

(8)

where and represent at 11 or 22 in the eigenstate,
respectively.

Next, we proceed to draw the dispersion curves of the 2-D
photonic crystal of Fig. 2(a) and (b). For simplicity, we assume

, . There are two ways this can be
done.

1) We assume an arbitrary value for (the free-space
wavenumber) and assume some separation constant
and obtain image transfer constants in thesystem

and the system, respectively. By keeping (or )
constant and sweeping, one obtains the equifrequency
dispersion curve in the wavenumber space.

2) It is convenient to draw an diagram along
some representative directions, such as, , etc. Let
us explain how to draw the curve along , i.e., .
Using (8), we rewrite as or since
we have . We explicitly write the subscript to

and to emphasize focus on thesystem. It means,
given some , we solve or
for . Once we have this , we replace by and
calculate to obtain using it.
We follow similar steps for , etc., to finish the
dispersion curves of Fig. 5(a) in the primitive Brillouin
zone. Note that there is no “full bandgap.”

We recalculated these curves using a finite difference time
domain (FDTD) simulation program. As expected, the results
completely agreed with the analytical results.

B. Line-Defect Photonic Crystal Waveguide

Our mathematical tool (separation of variables) works
for more complicated structures, such as waveguides and
resonators. Since no closed-form solution for such systems
has been known, our system can serve as reference systems.
(Previous analytical investigation [3], [4] did not consider such
modified structures.) Again for simplicity, we start from the
structure we just treated in Section III-A. Let the central “air”
portion be widened by , as shown in Fig. 2(c). Note that
the dielectric function is the sum of a function of
and that of . We are interested in the wave function of the
form . We need a solution decaying for
and propagating in the direction. The electrical model for,
bisected at , is shown in Fig. 4(b). In order to have an
even symmetric guided mode, the bisected circuit seen at
should be open circuited; therefore, we have

(9)

Given and solving (9) for , we obtain . The dispersion
curve in Fig. 5(b) (indicated by the solid line) stands for the even
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Fig. 5. (a) Band structure of a perfect crystal of Fig. 2(b). (b) Dispersion curve for the lowest guided mode (solid line) of a line-defect waveguide of Fig. 2(c).

guided mode. We find very interesting behavior of the mode
along [see Fig. 5(b)].

To help readers understand the situation, let us briefly sum-
marize the situation of a “classical” dielectric waveguide where
the cladding is uniform and a higher refractive-index core ex-
ists. In such structures, “continuum modes” fill the entire por-
tion above the “clad line” roughly similar to [without a gap,
such as the white stripe above in Fig. 5(b)]. The guided
modes form a finite number of curves lying in . If one of
the curves crosses the line , then it turnsleakybeyond it.

Relating this to the crystal waveguide, note that the disper-
sion curve for the guided mode enters the “projection” of con-
tinuum modes [7]. In other words, the part of the disper-
sion curve has the same wavenumber with a continuum mode
(whereas the guided mode stays in the “bandgap region” when it
is between and ). One may be tempted to think our “guided”
mode will couple to the continuum and therefore will leak along

. This guess is wrong, because this approach rigorously
guarantees the existence of a lossless guided mode. The shape
of equifrequency curves at point in the wavenumber space
is shown in Fig. 6. The guided mode and the (degenerate) con-
tinuum mode are in different “branches”: the guided mode lies
in the stopband portion of branch A, while the radiation mode
is in another branch B. The amplitude/intensity profiles are also
shown. A computer simulation of this waveguide was done to
confirm the propagating property [8]. As expected, the results
agreed with our analysis.

Many groups work on photonic crystal waveguides, and their
waveguides are more complicated; therefore, it is difficult to
judge whether similar situations (degeneracy) exist. However,
some experimental studies and simulation studies can be ex-
plained if there are leakage-free guided modes that degenerate
with a continuum mode. For example, a recent study of a pho-

tonic crystal waveguide [4] reports that experiments and FDTD
simulations indicate that there is a waveguiding effect beyond
the “pure” guided wave region, where the guided modes do not
overlap with any of continuum modes. This suggests the exis-
tence of a lossless (or at least low-loss leaky) guided mode be-
yond the “pure” region.

C. Crossed Line-Defect Resonator

Our technique of factorization also works for resonators. In
the following, we present and solve a simple model. However,
there will be a surprise—a completely localized mode exists in
the absence of a complete bandgap in the host photonic crystal.
The details follow.

The structure in Fig. 2(d) can localize a wave near the origin
( ): the factorization applies again.
The same function works also in thedirection. We solved the
resonance condition (assuming and are identical) to
obtain the resonance frequency , and the field
pattern for [or ] is shown in Fig. 7. For the reader’s
convenience, the resonant frequency is shown by the horizontal
dotted line ( ) in Fig. 5(a). The important point
is that the mechanism of wave localization does not rely on the
full-bandgap characteristics of the host photonic crystal. In fact,
Fig. 5(a) shows the nonoverlapping property of bandgaps for
different directions, so “classically” we do not expect wave lo-
calization.

Using Fig. 7, we can clearly explain why, in the absence of
a full bandgap, we still have a lossless ( ) resonance
mode not coupling with radiation. At the resonance, the equiin-
tensity contour of the mode envelope forms straight lines with
the tilt 45 with respect to the and axis. Because of expo-
nential decay of the envelope with respect toand at the
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Fig. 6. Transverse field (or intensity) pattern of the guided mode and a continuum mode and their interpretation in the Brillouin zone.

Fig. 7. (a) Resonant field factorsX(x) andY (y) for the lowest mode of the structure of Fig. 1(d). (b) The mechanism of wave trapping in the absence of a full
bandgap.

same speed, the envelope has a factor such as .
The line defects divide the entire space into four quadrants in
each of which one single Bloch wave represents the field: The
Bloch wave is represented by a complex point near the point
in the Brillouin zone as shown in Fig. 7(b). The phase shift is
the same as , but small attenuation exists in the direction of

. (This resonance is different from the model of Sakoda [10],
which considers uniform 2-D photonic crystal slabs and derives
a lossless resonance where the field extends to infinity in the
2-D plane.)

Once again, this analysis was compared with a computer sim-
ulation [8]. The results (resonance frequency and the modal
field) agreed again.

IV. COMMENTS

The structures discussed thus far are infinitely long in the
direction and difficult to realize. They also require three kinds
of dielectric materials and are inconvenient to fabricate as com-
pared with usual two-material systems. We are curious whether
similar “myth-breaking” effects take place in more “realistic”
structures. The first question is, Can we avoid using infinitely
long pillars? The answer is (practically) yes: we can localize
waves near the plane by increasing the dielectric con-
stant of pillars near [as discussed in [11], Fig. 1(a)], at
the expense of slightly impairing the TE nature of waves. The
second question is, Can we expect similar effects in a two-mate-
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Fig. 8. (a) The smallest unit. (b) The whole chain of cascaded nonsymmetric circuits.

rial system? At present, we collaborate with simulation workers
and have had positive results, which will be published in the
near future. Furthermore, our principle can and is planned to be
tested in microwave planar circuit models.

V. CONCLUSION

We proposed a new group of analytically solvable photonic
crystal-related structures. Since such structures can be rigor-
ously analyzed, they can serve as a reference crystal, wave-
guide, or resonator. They show some unexpected properties: ex-
istence of a nonleaky guided mode having an identical axial
wavenumber with that of radiation modes and existence of a
lossless resonance in the absence of a full bandgap. These facts
add some new dimension to the existing theory of photonic
crystal waveguides and resonators. We have to examine some
of the common beliefs about photonic crystals more carefully.

APPENDIX

BASIC PROPERTIES OFIMAGE PARAMETERS

The method of image parameters [5] is ideally suited for
the analysis of infinitely cascaded identical two-terminal-pair
networks. Roughly speaking, the “image impedance” tells the
eigenexcitation at the terminal pair, and the “image transfer
constant” gives the phase shift (or decay of the amplitude)
between excitations at neighboring terminal pairs.

Consider a circuit shown in Fig. 8(a). Assume that the input
impedance seen from 11 is when 22 is terminated by ;
likewise, the impedance seen from 22 is when 11 is termi-
nated by .

After a few calculations, we have

(A1)

where the matrix is defined by

(A2)

When one considers an infinite chain of circuits shown in
Fig. 8(b) and assumes an eigen Bloch state (i.e., only the Bloch

wave propagating to the right exists), the voltage to current ratio
at 11 is while that at 22 is .

The image transfer constant between 11 and 22, defined by
, is given by

(A3)

and are real numbers, and and are pure imaginary
numbers. When and are positive real numbers, the cir-
cuit is in the passband and the eigen phase shift is real. When
they are imaginary, the circuit is in the stopband and the eigen
phase shift turns imaginary, which means a real eigen attenua-
tion.

Thus far we have focused on the smallest unit, 11–22, in
Fig. 8(b). When we consider “one full period,” e.g., 11–22–11,
its image transfer constantis given by 2 . Then simplifies
to

(A4)

[see Fig. 8(b)].
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