
2D Photonic Crystal, Analytically Solvable

There are very few analytically solvable models of photonic crystal in two dimensions. One
such model was presented by Chen in 1981, and is mentioned at the end of Ch. 5, on page 93
in the textbook.
Let the relative permittivity ε (x, y) be independent of z, with period a in the x direction

and b in the y direction. We introduce the angular repetency in vacuum, k0 = ω/c, for light
waves with angular frequency ω and let us consider z-polarized Bloch waves propagating in
the x-y plane, perpendicular to the z axis. For a z-polarized wave, the E vector points in
the z direction and the H vector lies in the x-y plane, so we have transverse magnetic (TM)
polarization. Maxwells equations then imply that the z component ϕ(x, y) of the E field satisfies
the equation [

∂2x + ∂2y + ε (x, y) k20
]
ϕ = 0. (1)

We may solve Eq. (1) by the method of separation variables, if ε (x, y) can be written as a sum
of two functions, one a function of x only, and the other a function of y only:

ε(x, y) = εx (x) + εy (y) . (2)

Problem 1

Show that when ε (x, y) satisfies (2), there are Bloch-wave solutions of Eq. (1) that are separable
in product form:

ϕ(x, y) = ϕx(x)ϕy(y) = exp (ikxx+ ikyy)ux(x)uy(y). (3)

In (3) kx and ky are the components of the Bloch wave vector in the x-y plane, ux(x) is a
periodic function with period a, and uy (y) is a periodic functions with period b. Show that
ϕx(x) and ϕy(y) satisfy

d2ϕx/dx
2 + (εx (x)− ε) k20ϕx = 0 (4)

and d2ϕy/dy
2 + (εy (y) + ε) k20ϕy = 0, (5)

and show that ε may be chosen freely. Note that we may subtract any number ε from εx (x)
and add the same number to εy (y) without affecting ε (x, y) in Eq. (2). Also note that kx, ky,
ϕx(x), and ϕy(y) all depend on ε.

Problem 2

Let us consider a unit cell consisting of four rectangular areas, each a homogeneous area, and
let the permittivities in the four rectangles be ε11, ε12, ε21 and ε22. The permittivity has the
form (2) if

ε22 = ε12 + ε21 − ε11. (6)

Then we may choose

εx (x) = ε11 for 0 < x < a1 and εx (x) = ε12 for a1 < x < a1 + a2 = a (7)

and εy (y) = 0 for 0 < y < b1 and εy (y) = ε21 − ε11 for b1 < y < b1 + b2 = b. (8)

We have already derived dispersion equations for Bloch waves propagating perpendicular to a
periodic planar two-layer structure, where the E field satisfies an equation of the same form as
(4) and (5), and where the layer structure has the same permittivity distribution as given in
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Eqs. (7) or (8). From our treatment of the periodic two-layer structure we obtain the following
expressions for ϕx(x) and its derivative ϕ′x(x) for 0 < x < a1:

ϕx(x) = ϕx(0) cos(kx1x) + (ϕ′x(0)/kx1) sin(kx1x), (9)

ϕ′x(x) = −kx1ϕx(0) sin(kx1x) + ϕ′x(0) cos(kx1x), (10)

and for a1 < x < a1 + a2 = a we get

ϕx(x) = ϕx(a1) cos(kx2x) + (ϕ′x(a1)/kx2) sin(kx2x), (11)

ϕ′x(x) = −kx2ϕx(a1) sin(kx2x) + ϕ′x(a1) cos(kx2x), (12)

with kx1 =
√
ε11 − εk0 and kx2 =

√
ε12 − εk0. (13)

Show that we get four equations for ϕy(y) and its derivative ϕ
′
y(y), equations very similar to

(9)-(12), with
ky1 =

√
εk0 and ky2 =

√
ε21 − ε11 + εk0. (14)

Problem 3

Use our earlier results on Bloch waves propagating in a planar layer structure to write down an
expression for cos kxa when ϕx satiesfies Eq. (4) with the permittivity (7), and an expression
for cos kyb when ϕy satiesfies Eq. (5) with the permittivity (8).

Problem 4 (Matlab)

For band structure calculations, we are usually not interested in taking k0 and ε as given and
computing kx and ky. We prefer to specify kx and ky, and compute k0 and the corresponding
auxiliary variable ε. The analytic expressions for kx and ky as functions of k0 and ε may,
however, be considered to be two equations connecting four unknowns k0, kx, ky og ε, and the
two equations allow us to compute k0 and ε numerically if kx and ky are given.
Let ε11 = 1, ε12 = ε21 = 2, ε22 = 3, and let a1 = a2 = b1 = b2 = a/2 = b/2. Then the unit

cell of the photonic crystal lattice is a square with side a. Use the two dispersion equations for
kx and ky to find k0 and ε for the two lowest bands of the band structure, for six positions in
the first Brillouin zone, specifically in the points Γ, X andM , and in three points between these
three, along the sides of the triangular irreducible Brillouin zone. Use the results to outline the
corresponding band structure diagram, as done for TM modes in Fig. 2 in Chapter 5 in the
textbook.
Hint: Use 2D false-color plots of the dispersion equations as functions of k0 and ε, to find

the zeros of the equations. Plot ranges: 0 < k0 < 10/a and −1 < ε < 2
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