
PERIODIC MULTILAYER FILM

We have a periodic layer structure with two layers in the period. Layer 1 has index of refraction
n1, relative permittivity ε1 = n2

1, and thickness d1, whereas layer 2 has n2, ε2 and d2. The period
of the layer structure is then

d = d1 + d2. (1)

The layers are oriented in the x-y plane, perpendicular to the z direction, and have unity relative
magnetic permeability. In each layer harmonic electromagnetic waves with frequency f travel
up and down in the z direction. Let us define

k0 = 2πf/c = ω/c, (2)

k1 = n1k0 and k2 = n2k0, (3)

where ω is the angular frequency, c is the speed of light in vacuum, and ki, i = 0, 1, 2 are the
the angular repetencies in vacuum, layer 1 and layer 2, respectively. Let the E and D fields
point in the x direction, so that the B and H fields point in the y direction. We then have the
following expression for the E field in layer 1:

E (z) = E+ exp(ik1z) + E− exp(−ik1z), (4)

and a corresponding expression for layer 2.
Eq. (2) yields the following expressions for the E field and the derivative of E with respect

to z,

E(z) = E(0) cos(k1z) + (E
′(0)/k1) sin(k1z), (5)

E ′(z) = −k1E(0) sin(k1z) + E ′(0) cos(k1z). (6)

If we have different materials in the two layers, there is a discontinuity in the index of refrac-
tion and permittivity when we go in the z direction from one material into the other material.
Maxwell’s equations then imply that E, B, andH are alle continuous across the layer interfaces.
D is equal to the permittivity times E, so D must be discontinuos across the interface. Further-
more, Maxwell’s equations imply that E ′ = dE/dz is proportional to B, and hence continuous,
whereas H ′ = dH/dz is proportional to D and hence discontinuous across the interface.
Let us introduce three coloumn vectors

E0 =

[
E(0)
E ′(0)

]
, E1 =

[
E(d1)
E ′(d1)

]
, E2 =

[
E(d1 + d2)
E ′(d1 + d2)

]
(7)

and two matrices

M1 =

[
c1 s1/k1

−s1k1 c1

]
, M2 =

[
c2 s2/k2

−s2k2 c2

]
, (8)

with

cp = cos(kpdp) and (9)

sp = sin(kpdp) for p equals 1 or 2. (10)

Then the continuity reqirements for the fields yield the following matrix equations

E2 =M2E1 =M2M1E0. (11)
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Then we have obtained what is called a transfer matrix formulation. It is very transparent
and easily generalized to the case of more than two layers per period in the structure.
We seek solutions of the socalled Bloch wave form, where

E(z) = exp(ikz) u(z), (12)

where k is the angular repetency of the wave, and u(z) is periodic with period d. For such
solutions we get

exp (ikd)E0 = E2 =M2E1 =M2M1E0. (13)

The above equation is an eigenvalue equation for the matrix M2M1, where the eigenvalue of
the matrix is

e = exp (ikd) = exp [ik (d1 + d2)] . (14)

Problem 1)

Show that the eigenvalue equation (13) implies that e satisfies the equation

e2 − e
[
2 cos(k1d1 + k2d2)− ((k1 − k2)

2/(k1k2))s1s2

]
+ 1 = 0, (15)

further implying that

cos(kd) = cos(k1d1 + k2d2)−
(k1 − k2)

2

2k1k2

sin (k1d1) sin (k2d2) . (16)

Equation (16) is a relationship between ω and k, and hence called a dispersion equation. This
equation permits us to define three central properties of photonic crystals, namely band, band
gap and band edge.

1. Band: A continuous frequency interval where the dispersion equation (16) has real solu-
tions for k, i.e., where the absolute value of the right-hand side is less than 1.

2. Band gap: A continuous frequency interval where the dispersion equation (16) has no real
solutions for k, i.e., where the absolute value of the right-hand side is greater than 1.

3. Band edge: The beginning or the end of a band, i.e., where the absolute value of the
right-hand side of (16) is equal to 1.

Problem 2)

Let us assume that we have a nonzero refractive index contrast, i.e.. that d1 and d2 are both
nonzero, and n1 6= n2. Show that the dispersion equation (16) implies that we have a band
gap if

k1d1 + k2d2 = Nπ, (17)

where N is a nonzero integer.
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Problem 3)

As shown in Problem (2), we have a band gap if the angular frequency is equal to an integer
multiple of

ω0 =
πc

n1d1 + n2d2

. (18)

Let us note that in Eq. (16), cos(k1d1 + k2d2) is equal to (−1)N for ω = Nω0. Let us then
consider the case of a small refractive-index difference n∆ between the layers:

|n∆| = |n1 − n2| << n1. (19)

We note with a small refractive index difference, the absolute value of the last term on the right
hand side of (16) is much smaller than 1. Consequently, we need only a small deviation

ω∆ = ω −Nω0. (20)

in the angular frequency to make the right-hand side of (16) equal to (−1)N
Do a second-order power series expansion of the right-hand side as a function of ω∆/ω0, and

obtain an analytic approximation for the distance ω∆ between the band edge and the band gap
center Nω0.
Hint: In the series expansion of the right-hand side with respect to ω∆ we get a first-order

term from the product of the sines:

sN = ∂ω (sin (ωn1d1/c) sin (ωn2d2/c)) , (21)

with the partial derivative evaluated at ω = Nω0.

Problem 4)

Let us consider the case when ω is an integer multiple N of ω0, and let us again consider the
case of a small refractive-index difference n∆ between the layers. Then we have the following
expression for k

k = Nπ/d+ k∆, (22)

where N is an integer and k∆ is small compared to π/d.
Do a second-order series expansions of the left-hand side of Eq. (16), and find an analytic

approximations for k∆ .

Problem 5)

Let us consider the case of small frequency,

k1d1 + k2d2 << 1, (23)

and let us define what is called the effective index the Bloch wave in the layer structure,

n = ck/ω. (24)

Show that Eq. (16) for small frequencies implies that the square of the effective index can be
expressed as the mean value of the square of the refractive index in the layer structure:

n2 =

(
ck

ω

)2

=
n2

1d1 + n2
2d2

d1 + d2

. (25)
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Problem 6)

The transfer matrix formalism expressed in Equation (11) is a recursive formula where the E
field and its z derivative on top of layer 2 are expressed as a layer-2 matrix times the E field
and its z derivative on top of layer 1, which in turn are expressed as a layer-1 matrix times the
E field and its z derivative on top of layer 0. Equation (11) can be generalized to

Ep =MpEp−1. (26)

For numerical stability we prefer to have a recursion relationship for Zp = E ′p/Ep instead of Ep
og E ′p . Find a recursive formula where Zp can be computed from Zp−1.

Problem 7) (Coding)

Use Eq. (16) to find the angular frequency ω as a function of k for the lowest 3 bands of the
first Brillouin zone, i.e., for −π/d < k < π/d. Let n1 = 1, n2 = 1, 5 and d1 = d2. Make
plots of ω versus k . Also make plots of ω versus k with k spanning 3 Brillouin zones i.e., for
−3π/d < k < 3π/d. In the last plot, include only the solutions of (16) that are close to the
straight line given by the equation

(ω/c) (n1d1 + n2d2) = k1d1 + k2d2 = k(d1 + d2). (27)
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