

Answer:

• Arbitrary code execution: the ability to execute any command of the attacker's
choice.

• Information disclosure: the ability to access information the vulnerable software did
not intend to disclose.

• Denial of service: the ability to make the vulnerable software unavailable to its
legitimate users.

2 points for each

Arbitrary code execution may be used both to obtain information and for denial of service
and for running any other code.

Answer:

• Confidentiality is about preventing unauthorized disclosure of information
(unauthorized reading)

o An information disclosure exploit is an attack on confidentiality
o Arbitrary code execution can be used for an attack on this principle

• Integrity is about preventing unauthorized modification of information (unauthorized
writing)

o Arbitrary code execution can be used for an attack on this principle
• Availability is the property of being accessible and usable upon demand by an

authorized entity
o A denial of service exploit is an attack on availability
o Arbitrary code execution can be used for an attack on this principle

1p for each correct definition of confidentiality, integrity and availability
1p for each principle associated with the correct exploit types

Answer should contain:

• PID 4092, process identity, which can be used as an ID number for finding the correct
process for example in process monitor or a debugger.

• This process runs as IEUser. Integrity level Medium shows that it is a non-admin token. (The
non-admin token of IEUser)

• The path to the executable (C:\Windows\Syst..), name of the company (Microsoft
corporation), description (Paint)

• ASLR is on for this process, meaning that the address space layout of the process is not
deterministic. Makes it more difficult for an attacker to predict addresses.

• The lower pane shows the dlls (libraries) currently loaded by this process. These libraries
contain additional functionality used/needed by the executable, but not included in the
executable itself.

1p for each of these. If one is missing, and private bytes/working set are well described, a point
should be given for those instead.

Answer:

• Shows the activity of the process (registry activity, network activity, file system activity,
process/thread activity)

• The screenshot has a filter which makes only the activity of mspaint.exe show.
• Shows registry access requests. Most are not found, but HKCU is opened with read access.
• Shows files that are read. An initialization file win.ini. Several dlls
• Only a fraction of all events of paint.exe are visible in the screenshot. Next step would

typically be to add a filter for only write file activity and afterwards a filter for only set
registry value activity. In other words: Add specific filters for interesting, more specific,
events and study these more closely.

1 p for each of these. Similar or other reasonable answers should be accepted, but maximum 5 p
total. Filters must be mentioned to achieve full score.

Answer:

1. 1p for (Stack) buffer overflow
2. 3p for sending in a too long buffer, overwriting the return address, making the function

return to code you want to run (shell code in the buffer or ROP)
3.

• 2p for a stack cookie is a value placed on the stack as a canary at the beginning of
the function, and this value is checked before returning to the return address. If the
cookie is changed (e.g. overwritten by an overflow), the program fails instead of
returning to the value in the return address field.

• 2p for this would prevent a simple stack overflow which overwrites the return
address and makes the function return to the new address in this field. (Descriptions
of how to bypass a cookie are of course accepted)

4.
• 1p for ASLR is Address Space Layout Randomization, which means that the

addresses of stack, executables and libraries are randomized.
• 1p for this would make it difficult to find a static address to return to. (Descriptions

of how to bypass ASLR are of course accepted)

Answer: 1p for each correct answer, 1p for each correct bit calculation.

1. 128 + 8 = 1000 00002 + 10002 = 1000 10002 = 136
2. 253 + 6 = 1111 11012 + 1102 = 1 0000 00112 (first bit removed, since 8-bit int) => 112 = 3
3. 2p for: 128 is not possible to write in signed 8-bit integers. The highest possible number is

127.
4. -123 – 8 = 1000 01012 + 1111 10002 = 1 0111 11012 (first bit removed, since 8-bit int) =>

0111 11012 = 125

Answer:

1. Linux
• 1p for passwords are not stored in /etc/passwd but in a shadow file

(/etc/shadow) that can only be accessed by root.
• 2p for passwords are hashed with a salt and stored together with the salt (and

info about which hashing algorithm that was used).
2. Windows

• 1p for passwords are stored in the SAM (Security Account Manager), a hive
in the registry. (SAM is stored in a file on disk. This file is not readable while
windows is running)

• 2p for passwords are stored as unsalted NTLM hashes.

Answer:

1. 2p for a hash function is a one-way function, an encryption function has a corresponding
decryption function, such that encryption can be reversed (if the key is known).

2. 2p for when a password is stored as a hashed value, the hash function cannot be reversed to
obtain the password. Password cracking is therefore done by guessing a password, hashing it
and comparing the value with the stored hash value. Several strategies can be used to guess
passwords: brute force, word lists, word lists with rules.

3. 2p for storing the passwords as salted hash values together with a random salt makes it
more difficult to crack passwords because

• Precomputed hash tables (or rainbow tables) cannot be used
• Each password must be cracked individually

Answers mentioning using strong passwords with large character set/passphrases or other
relevant answers should also be accepted, but some explanation is needed for full score.

Answer:

For 1-2: 1p for correct access control decision. 2p for right description of how the ACEs influence the
decision.

1. ACE1 does not apply. Alex is not in the thread token. ACE2 grants read and write access since
group C is in the thread token. The requested access, read and write, is given.

2. ACE1 does not apply. Alex is in the thread token, but execute access is not requested. ACE2
grants read access since group C is in the thread token. The requested access, read, is given.

3. 2p for: ACE1 denies access. Alex is in the thread token, and execution access is requested.
No access is given.

4. 2p for: Adding an ACE4 at the end of the list would not change the decisions. In fact all the
above decisions were made without using the ACE3 as well. If a new ACE is added on top of
the list, the decision may change in all cases, depending on the added ACE. If a new ACE is
added between ACE1 and ACE2, it may change the decision in the first two cases.

Answer:

1.
• 1p for directory or not, access mask, user name of owner (Doffen), group (student),

size, date and time, name of file (tent.make)/folder (tricks)
• 1p for Doffen can read and write to tent.make, and Doffen can read, write and

execute the folder tricks
2. 2p for Ole can read the file tent.make, but has no access to the folder tricks.
3. 1p to Dole can read the file tent.make, but has no access to the folder tricks. (same as above

since the same access mask for group and others)
4. 3p for Doffen gains execute access to tent.make. Ole loses read access, since the group loses

read access. No changes for Dole, since there is no changes for “others”.

Answer:

1p for each bullet point (or similar answers)

1. Minimize attack surface
• To minimize the externally accessible interface (e.g. input – only allow specific types

of input/features – not more accessible features or functions than necessary.)
• If there is a large external interface/many possible types of input, the probability

that there will be an exploitable bug in code that can be reached by an attacker
increases.

• Few functions/features externally accessible, and good input validation. Input
validation is easier if only specific types of input are allowed. For example not text,
only allowed to pick elements from lists.

2. Fail securely
• If an error/exception occurs, make sure to handle it. Don’t continue execution if an

error is detected.
• An error may be exploitable (or caused by an attacker), and continuing may give the

attacker the possibility to use the error to own advantage.
• Abort the process if an error is detected, or go to an error handling routine which

secures assets and cleans up.
3. Avoid security by obscurity

• Security by obscurity means that if the code/executable is difficult to understand for
example because of obfuscation or secret source code, it is difficult to find out how
to exploit it. This should be avoided.

• Security by obscurity should be avoided, since it may also be difficult to understand
how to secure it, and it may become vulnerable for example if source code is leaked
and security relies on the source code being secret. (It should particularly be avoided
as the only security mechanism, but of course keeping the source code secret if the
source code is well written is not a security risk.)

• Write tidy and clean code, not too complicated. Makes it easier to review the code
and prevents logical errors.

Answer:

An answer with the following detail level is sufficient. Both elements in bold must be included to
obtain full score:

The attacks want to gain access to a secret. The attacker makes the secret be used indirectly in a
speculatively executed instruction (also accepted: out of order execution), for example as an index
of an array. This instruction stores an array element into an internal cache on the processor. The
index of the array element depends on the secret. We then looping through all array elements,

measuring the load time of each element. The index of the array element stored in cache by the
speculative instruction is the one with shortest load time.

Answer:

1. 1p for each
• Type I hypervisor runs below the operating system, is usually very small and has high

performance. Hardware support can be an issue.
• Type II runs on a host operating system, uses the host services for memory

management, scheduling and drivers, has a performance penalty and is easier to
use.

2. 2p for something like Type II hypervisor on a laptop with Windows 10 as host
kernel/operating system, Virtual box as virtual machine monitor and the Windows course
VM as the virtual machine (i.e Windows 10 as guest kernel)

• We expect most students to have used type II hypervisor, but of course type I
answers are accepted if the answer makes sense.

• The students need not answer their actual virtualization solution, as long as they can
describe a possible virtualization solution correctly.

3. 1p for each of these, maximum 3 p:
• Efficient use of hardware and resources
• Improved security (Isolated VMs, safe testing and analysis of malware)
• Distributed applications bundled with the operating system
• Powerful debugging (Snapshot of current state, step through program and operating

system execution, reset system state)

Answer:

1. 2p for: The attacker takes advantage of poor input validation by providing an input that
influences the SQL query of the web application, either by trying to execute his own SQL
query or by modifying the original query to gain access or information.

2. 1p for each example. 4p maximum:
• Provide any html element, including javascript
• Redirect the page to another site to mislead the user
• Rewrite the document content/deface the site
• Get cookie/session variables
• Key logging
• Phishing
• Launch browser exploits

3. 2p for: The attacker modifies the session variables through the cookies to get access to
unavailable sites. The attacker gains access to or guesses the session cookies of another user
which has access.

4. 1p for each bullet point, maximum 2p:
• Through information disclosure (e.g. session variable in the url)
• Steal session cookie through vulnerability (e.g. XSS)
• Steal through social engineering (e.g. link in e-mail)
• Predictable session variable makes it possible to guess
• Brute forcing

Answer:

1. 4p if these steps are described:
a. Google publishes AOSP release
b. Silicon manufacturers modify chip related code
c. OEMs add their own apps and overlays
d. Carriers test OEM updates, add their own apps
e. Users receive OTA updates

Also accept answers considering newer versions (Project Treble, from Android 8.0), where step 2
was removed.

2.
a. 1p for each bullet point

• Isolated processes
• User based permissions

b. 1p for each bullet point
• Each app has its own UID, meaning that apps are isolated as users are in

Linux.
• SELinux extends the android sandbox with MAC.

Also accept answers explaining Seccomp (secure computing mode) or
Chrome/Webview.

