
1. 1p for each category like through malicious web sites, e-mail attach-
ments, unprotected/vulnerable network interfaces, Trojan horses ...
Max 3p.

2. 1p for each category like ransomware, botnet, key logger, wiper, back-
door ... Max 3p.

3. 3p for a reasonable way of categorizing, with reasonable categories.
For example:

1

– Categorize depending on who the target is. Targeted malware for
a specific person/organization vs mass-distributed malware.

– Categorize depending on the attacker. Script kiddies, hacktivists,
organized crime, advanced persistent threats.

2

3

1. 1p for reads salarylist.docx. 1p for writes tmp.bin. 1p for starts process
lsass.exe with PID 4652.

2. 1p for each of: Check for network activity in procmon, investigate the
process lsass.exe in procmon, look for registry activities in procmon,
or other reasonable actions. Max 2p.

3. 1p for each of these: (Other reasonable ways to locate in IDA where
salarylist.docx, tmp.bin and lsass.exe are accessed are accepted)

– Locate where in calc.exe the files salarylist.docx and tmp.bin are
accessed, either by finding the file paths/names or look for the
operations CreateFile/WriteFile you saw accessing them in proc-
mon.

– Locate where lsass.exe is started, either by finding the file path/name
or look for the operations Process Create you saw in procmon.

4. Max 2p. Possible answers: locating the file lsass.exe and analyze it in
IDA, check what tmp.bin contains, check for network activity by both
lsass.exe and calc.exe, ... Make sure to see this question in relation to
the previous answers. Extensive answers earlier, which have exceeded
the requirements, can be given points here.

NOTE: Full score to the entire exercise should not be given without
pointing out that lsass.exe with PID 4652 is another file than the legitimate
lsass.exe with PID 632.

4

1p for each correct answer, 1p for each correct binary calculation with
explanation.

1. Unsigned: 120 + 17 = 011110002 + 100012 = 100010012 = 137. No
problems.

2. Signed: 120 + 17 = 011110002 + 112 = 100010012 = −119. Signed
8-bit integers go from -128 to 127 before they wrap around.

3. Unsigned: 5−36 = 1012−1001002 = 111000012 = 225 Unsigned 8-bit
integers go from 0 to 255, so they wrap around at 0.

4. Signed: 5 − 36 = 1012 − 1001002 = 111000012 = −31. No problems.

5

1. 1p for stack buffer overflow. 1p for missing length check of input. 1p
for seeing that the input argument in the screenshot is larger than the
local buffer.

2. Half score if value is missing. Max 4:

– 1p for: Strcpy takes two arguments, first argument: destination
(value: 0019ff08), second argument: source (value: 00448caf, the
address to the string “AAABBBCCCDDDEEEFFFGGGHHHI-
IIJJJKKKLLL”, but not the string itself)

– 1p for: Local variables (buf): The value is what is located at
0019ff08 and 20 bytes further, but what is there now is trash

6

from earlier. Will be overwritten. (values: 0019fe90.....) Here an
explanation is more relevant than the actual values

– 1p for: Saved EBP (value: 0019ff28)

– 1p for: Saved EIP (return address) (value: 004015ca)

– Not so relevant: Argument to copyBuf: value 00448caf. May give
a point for identifying this if not 4 points are reached.

3. 3p for an explanation like: Starting from address 0019ff08 (destination,
address of local variable buf), the string “AAABBBCCCDDDEEEFF-
FGGGHHHIIIJJJKKKLLL” is written over what was there, resulting
in:
0019ff08 AAAB
0019ff0c BBCC
0019ff10 CDDD
0019ff14 EEEF
0019ff18 FFGG
0019ff1c GHHH Saved EBP
0019ff20 IIIJ Saved EIP
0019ff24 JJKK
0019ff28 KLLL
The contents of the local variable buf is changed, and the values at the
positions for saved EBP and saved EIP are changed. The process will
finally return to EIP=4a494949 (=JIII). The reason for not returning
to IIIJ is endianness.

4. Short explanations are sufficient. Half score for explaining each con-
cept, half for arguing whether relevant here.

– 1p for: ASLR is address space layout randomization, which causes
executables and libraries to be loaded at unpredictable addresses.
It would not prevent the overflow, but make it harder to predict
where to jump to. Could be solved through an infoleak or if one
library does not have ASLR enabled.

– 1p for: DEP is data execution prevention, which prevents code
in certain parts of memory to be executed. If an attacker wanted
to put executable code (shellcode) on the stack and jump right
to it, that would not work if DEP made the stack nonexecutable.
Could be bypassed by ROP.

– 1p for: Stack cookie is a random value placed on the stack after
the local variables before the function starts, and it is checked
before returning. If an overflow has occurred such that the value
has changed, it is detected. The overflow would not have been
prevented, but it is detected before an attacker is able to return
to the overwritten EIP.

7

5. 2p for something like: Yes, the programmer should in copyBuf check
that the length of the received string is not longer than buf. Suggesting
use of strncpy (correctly) is also accepted. Only suggesting a length
check without saying anything about where is not sufficient for full
score.

8

1. 1p for correct ROT-n cipher, 1p for correct conversion to binary and
hexadecimal numbers.

2. 1p for writing a sequence of correct length that appears random, 1p
for correct conversion.

3. 1p for correct XOR, 1p for correct conversion.

4. 2p for: Any number XOR-ed with zero is unchanged. It would result
in only a ROT-n cipher, as the XOR step would not change the data.

1p for explaining what a rainbow table is. From the slides:
A rainbow table is a precomputed table of passwords and their hashes, us-
ing clever methods for reducing the storage space required. Using rainbow
tables, the attacker can just lookup the stored password hash in the table
and get back the password.
To achieve full score (1p) no more details are needed, but the answer should
not be an exact copy of the slides.

2p for: Windows passwords are not salted before hashing, and the same
hashing algorithm is always used. Linux passwords are salted before hashing
and one would therefore need one rainbow table per possible salt, which is
not very feasible.

9

1. 1p for /etc/shadow, 1p for storing the hashed passwords and related
information

2. 2p for: The underlined part is salt, it is concatenated with the pass-
word before it is hashed.

2p for an example like: Let salt= abc and password=Passw0rd! Then
the stored hash value in /etc/shadow would be the result of sha-
512(abcPassw0rd!), if sha-512 is the used hashing algorithm. The
example is also accepted if the salt is appended to the password since
both possibilities have been mentioned in the course.

10

1. 1p for Ole has read and write access to the file.

2. 1p for Dole has read and execute access to the file.

3. 1p for Donald has execute access to the file (as part of others)

4. 1p for If it were a directory, the first entry would be a d, not a -.

5. 1p for Ole cannot execute the file directly, but as the file owner he can
give himself execute access and thereafter execute the file.

11

1. 1p for Thread A is granted read access from ACE 1. The rest of the
list is not checked, as all requested access is granted.

2. 2p for Thread A is denied access. From 1 we know that ACE 1
grants read access, but since ACE 2 denies execute access, no access
is granted. The rest of the list is not checked.

3. 2p for Thread B is denied access. ACE 1 grants read access, ACE 2
does not apply because of wrong group, ACE 3 does not apply because
write access is not requested. The end of the list is reached before all
requested access is granted, and no access is granted.

4. 1p for: We add the following ACE at the top of the list:

– Access denied

– Group C

– Read, write, execute

12

1. 2p for The integrity level of the started process is the minimum of
the integrity level of the user and of the executable file. Alternative
formulation: Processes a user starts receive the user’s integrity level
(medium if started normally or high if started as administrator) or low
if the executable file’s level is low.

2. 2p for: Internet Explorer starts one process with medium integrity
level and one process per tab with low integrity level. This works as a
sandboxing mechanism. The tabs may open malicious web pages, but
if an attacker gets control over the process, it will only be as a low
integrity process, making it harder to do damage or move further.

The first two answers below are copies from the slides. The answers should
not be direct copies.

1. 1p for: The BIOS/UEFI is responsible for initializing the system when
it boots, but also provides runtime services that are still accessible
while the operating system is running.

2p 3p for:

– The BIOS is the first code that runs on the processor

* can maliciously modify the OS image that it will load

– The BIOS has privileged access to all hardware

* can talk to and reprogram all devices

– The BIOS provides code for runtime services (SMM) that will
keep running below the operating system

* a good place for malicious rootkits

3. 2p for: A process attempts to read something without having access.
Since instructions are executed tentatively (out-of-order), the read in-
struction can be executed before it is discovered that necessary read
access is missing, resulting in the interesting data being loaded to an
internal cache/storage unit in the processor.

13

1. Many possible answers. 1p for an answer showing reasonable under-
standing of assets and 1p for an answer showing reasonable answer of
threats. Possible ideas: Assets: The location data of the users, and
possibly other personal information stored in the app. Threats: Per-
sonal data fall in the wrong hands. Databases are tampered with or
the app is silently malfunctioning resulting in the app giving wrong
indications of possible close contacts.

2. 0.5p for each security principle from the list below that is stated with
a reasonable description of how it relates to the web application. Max-
imum 5p.

– Minimize attack surface

– Secure default settings

– Least privilege

– Defense in depth

– Fail securely

– Don’t trust services

– Separation of duties

– Keep security simple

– Fix security issues correctly

– Avoid security by obscurity

3. Max 3p. The answer should include that hash functions are hard
(impossible) to reverse directly, but that it would be possible to create
a table of all personal ID numbers with the corresponding hash values
and use the table to look up the ID number corresponding to a given
hash. It would therefore not be very anonymized.

14

1. 1p for each of: Confidentiality is about preventing unauthorized dis-
closure of information (unauthorized reading), Integrity is about pre-
venting unauthorized modification of information (unauthorized writ-
ing), Availability is the property of being accessible and usable upon
demand by an authorized entity.

2. 1p for: The attacker can include a local file of the webserver using
the webpage and thereby gain access to it. 1p for Confidentiality,
unauthorized reading.

3. SQL injection may attack all three principles. 1p for each principle
with a reasonable explanation. Example: Avalability: If an attack
deletes information from the database, the data is no longer available
to authorized users.

The following is copied from a relevant slide, and answers should not be
direct copies:

� Confidentiality: Since SQL databases generally hold sensitive data,
loss of confidentiality is a frequent problem with SQL injection vul-
nerabilities.

� Authentication: If poor SQL commands are used to check user names
and passwords, it may be possible to connect to a system as another
user with no previous knowledge of the password.

� Integrity: Just as it may be possible to read sensitive information, it
is also possible to make changes or even delete this information with
a SQL injection attack.

15

1. 1p for what ROP is, 1p for what it is typically used for.

From the solution to a previous exam: A ROP chain consists of a se-
quence of gadgets. Each gadget is a (often short) sequence of bytes that
are interpreted as instructions, ending with a return. The addresses
of the gadgets are placed in sequence in memory, such that the return
at the end of one gadget makes the instruction pointer return into the
next gadget. In total the gadgets perform a sequence of instructions,
for example to make a piece of memory executable, and to execute a
payload located there. The addresses in a ROP chain do not need to
be stored in executable memory to work, but the addresses must point
to executable memory.

Typically ROP chains are used to bypass DEP to make a piece of
memory (where the attacker puts his code) executable.

2. 2p for explaining the steps, 2p for the values of the registers at the
end:

0019FAA2 xor eax,eax;retn //Set eax to zero
0019FAAA xor ecx,ecx;retn //Set ecx to zero
0019FAAE add eax, 23;retn //Add 23 to eax. eax = 0+23 = 23.

16

0019FAB4 inc ecx; retn //Add 1 to ecx. ecx = 0+1 = 1.
0019FAB4 inc ecx; retn //Add 1 to ecx. ecx = 1+1 = 2.
0019FAB7 add eax,ecx;retn // eax = eax+ecx = 23+2 = 25

ecx=2, eax = 25

1. 1p for: Libraries are loaded at the same addresses in these processes.

2. 2p for: A memory leak in one application can give the attacker knowl-
edge of addresses that can be used in an attack on another app.

3. 2p for: Apps that disobey Google Play’s guidelines. Could be called
malware.

4. 2p for: The word potentially is used since some apps, like apps rooting
a device, are classified as potentially harmful apps, but these apps may
still be wanted by some users. A user wanting to root a device would
not consider an app doing so a harmful app, but rather a helpful app.
Also, some malware are targeted at users in some parts of the world
and will only do malicious actions in the phones in these parts of the
world, while they will do no harm to users in other parts of the world.

17

