

1p for explaining each term, and 1p for relating each term to the other terms.

Example:

1. Malware is malicious software, and it typically consists of an exploit and a payload.
2. A payload is the part of a malware that contains the purpose of the malware, the actions the

malware author wants to execute on a system. The payload runs after the exploit has gained
access to run it. The payload can be reused with other exploits.

3. A software vulnerability is a flaw in a piece of software that makes it vulnerable for attack.
Software vulnerabilities can be used by an exploit to gain access, and they can be patched
(fixed) by software updates (patches).

4. Exploit is the piece of malware that uses vulnerabilities to gain access on a system. Its
purpose is to gain access so that the payload can be run.

5. A patch is a software update that can patch (fix) vulnerabilities. When a patch removes a
vulnerability, it will stop the exploits for that vulnerability.

1. 1,5 p for: Calculator.exe was started by Powershell (PID 1324). 0,5p for: We note that
Powershell is orphaned and we do not know how it was started.

2. 1p for each of the following. To get full score they must explain how the information is found
in the screenshots.

• Calculator.exe has no company name, runs with medium integrity and has ASLR
enabled. Shown in Process Explorer upper pane

• Calculator.exe is located in c:\Temporary Files. Shown in Process Explorer lower pane

• It writes to c:\Temporary Files\calc.exe (WriteFile event in ProcMon)
• It starts c:\windows\system32\calc.exe (the windows calculator) (ProcessCreate

event in ProcMon)
• It creates and sets a registry key:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\calc.exe (RegCreateKey
and RegSetValue in ProcMon)

The conclusion should be that Calculator.exe does not appear to be the real Windows
calculator and should be investigated further.

3. Several possible answers. Examples:
• Calc.exe in ProcMon and/or IDA to look for …
• Investigate further events from ProcMon. For example the registry key that is set,

what is it used for? Some may want to investigate the Windows Calcuator App that is
started, as it is quite noisy in the ProcMon screenshot.

• Calculator.exe in IDA to look for …
• Other filters in ProcMon to look for …

1p for each suggestion of further work/remaining questions to answer, maximum 3. It is
accepted if a student focuses on one or two tracks (e.g. analysis in IDA) and gives detailed
steps in this direction)

1p for each correct result, 1p for each correct binary computation and explanation.
1. 110+107 = 011011102 + 011010112=110110012 = 217 No problems.
2. 110+107 = 011011102 + 011010112=110110012 = -39 Overflow.
3. 3 – 126 = 00112 – 011111102 = 100001012 = 133 Underflow.
4. 3 – 126 = 00112 – 011111102 = 100001012 = -123 No problems.

1. Stack frame of copy buf:

__ __ __ __ // Local buffer, size 8
__ __ __ __
__ __ __ __ // Saved frame pointer (EBP)
__ __ __ __ // Saved instruction pointer (EIP)
__ __ __ __ // Argument (argv[1]/str)

1p for correct position of ebp,
1p for correct position of eip,
0.5p for correct position and length of local buffer
and 0.5p for correct position of argument

2. AAAABBBBCCCCACBA
AAAABBBB fills the buffer
CCCC overwrites the saved frame pointer
ACBA (0x41434241) overwrites the saved instruction pointer, and returns to
0x41424341 because of endianness.
It is not necessary to change from hex to letters, but it is necessary to have the correct
endianness for full score (2p)

-0.5p for wrong endianness
-1p for forgotten EBP

3. For each: 1p for explaining the mechanism. 1p for explaining how it influences the

exploit
a) ASLR is Address Space Layout Randomization and makes the addresses of

stack, instructions, … unpredictable. ASLR would not prevent the overflow, but
would make it more difficult to predict where your code is located.

b) DEP is Data Execution Prevention and makes for example the stack non-
executable. This means that you can still overflow, but your code cannot be located on
the stack or other non-executable memory. (It may not have been in the first place).

c) Stack cookie is an unpredictable value that is placed on the stack below the
local buffer and it is checked before the function returns. It would not prevent the
overflow, but it would prevent the function from returning to the address you
overwrote EIP with.

1. 1p for correct XOR, 1p for correct ROT-13. It is not sufficient to show the result, but detailed
calculations for a few letters is sufficient.
Result of XOR: gOOD lUCK
Result of ROT-13: tBBQ yHPX

2. 2p for either one of these:
a. The decryption algorithm is the same as the encryption algorithm.
b. One could also reverse the order of XOR and ROT-13

3. 2p for: The order does not matter. XOR switches between upper and lower case letters. ROT-
13 replaces the letter with the letter 13 places after in the alphabet (the letter in the other
row of the table provided). The order of these two operations is irrelevant.

It is necessary to explain the answer to get points.

4. 2p for for example: Depending on how you change step 1, step 2 may not even make sense.
The result after step 1 may not be within the ASCII range of the alphabet.

No more details are required.

1. 1p for correct expression, 1p for explanation.
The number of allowed characters is 26+26+10+10=72. Four characters can then be chosen
in 724 ways.

2. 1p for correct expression and explanation.
The number of lowercase letters is 26. Four characters can then be chosen in 264 ways.

3. There are 26 ways to choose the first character, 10 ways to choose the second character, 26
ways to choose the third character, and 10 ways to choose the fourth character. The order of
the characters is set. The number of possible passwords is then 26*10*26*10 = 262*102

4. 2p for reasonable argumentation, for example: It is not an improvement, since it reduces the
number of possible passwords, and it makes it more difficult to make memorable passwords.
An alternative argumentation is that if people use only lowercase letters, they are likely to
choose combinations that form words, and that the actual passwords will only be a subset of
the possible combinations. The new policy has probably less obvious choices. This can be
accepted as an answer, but to get full score it is necessary to state that the new policy has
obvious drawbacks since it reduces the possible passwords significantly. (But the first policy
wasn’t good either).

5. 1p for each reasonable consideration, max 3. Considerations may be:
a. Encourage users to make sufficiently long passwords or passphrases
b. A policy that requires frequent change of passwords may make users choose more

predictable passwords
c. Require characters from different character groups, but length may be more

important than characters from several groups
d. Not allow known common passwords or passphrases, or previously used passwords.

1. 1p for: the file /etc/shadow, which contains the passwords hashes in Linux.
2. 2p for: /etc/shadow is only readable by root, and sudo is used to perform the command with

root privileges.
3. 1p for: the salt is randomly chosen and will be different. 1p for stating that this would also

make the password hash different, even though the passwords are equal.
4. 2p for: Windows does not salt the password hashes, therefore the password hashes would

be equal if the passwords are equal.

1. 2p for: removing the read access for group and others.
2. 2p for: adding write access for both group and others. Only 1p is granted for: Adding write

only for others, since this will not give write access to those in the student group.
3. 2p for: No obvious way in Linux, but he could create a group with everybody except Donald,

change the file’s group to this group, and set the desired access privileges for this group,
while removing all access for others.

The answer must be explained to get full score.

1. 2p for: ACE1 does not apply (not group B), ACE 2 does not apply (not write), ACE3 does not
apply (not write). Access is not granted.

2. 2p for: ACE1 allows write, ACE2 does not apply (not group A), ACE3 does not apply (not
read/write). Access is not granted, since read is not allowed. Therefore no access is granted.

3. 1p for: ACE1 does not apply (not group A), ACE 2 denies execute. Access is not granted.
4. 1p for: ACE1 does not apply (not execute), ACE2 does not apply (not group B), ACE3 allows

execute. Access is granted.
5. Thread A is not granted execute. 2p for suggesting adding an entry like ACE3, but for

Alice/Group A, before ACE2 (before or after ACE1). (1p for the entry, 1p for the correct
position.)

1. 2p for A sandbox is a security mechanism for isolating programs and processes, to make it
more difficult for malware to spread on a system.

2. 1p (max 2) for each of
a. Document readers
b. Web browsers
c. Most Windows Store Apps

or other suitable types of applications.

3. 1p for each of:
a. Security in depth
b. Least privilege

Other reasonable and well explained answers are accepted.

4. For each principle: 1p for explaining the principle, 1p for relating it to sandboxing.
a. Security in depth

i. Control mechanisms that approach risks in different ways are better than
only one. A vulnerability in one part is then not enough to take control over
the entire system.

ii. If the sandboxed process gets compromised, the attacker will need an
additional vulnerability to break out of the sandbox

b. Least privilege
i. No principal should have more privileges than needed at any time. Each

principal should have access to the required objects and resources and be
allowed a suitable set of actions.

ii. The process running in a sandbox will have very limited access to the system,
as sandboxed processes are stripped for most privileges

1. 1p for: A bootloader, runs before the operating system is loaded after boot.
2. 2p for one of a) or b), 1.5p for c):

a. Enter the GRUB menu during boot and select to boot into single-user/recovery
mode. In the Ubuntu recovery menu, select the root entry. You can then change the
password for later root access.

b. Enter the GRUB menu during boot and select to edit the Ubuntu entry. Change the
initial process from init to /bin/bash, then boot

c. Boot via removable media
3. 2p for a), 1.5p for one of b) or c):

a. Password protect GRUB
b. Password protect the single-user/recovery mode (which will prevent 2a, but not b).
c. Disable booting from removable media/BIOS password/encrypt harddrive

1. 1p for each of:
a. To hide what it does/make reversing it harder
b. To hide that it is malicious/avoid detection

2. 2p for: Malware may use cryptographic algorithms to hide or obfuscate, not necessarily to be
cryptographically secure. Therefore, lightweight homemade cryptography can be more
suitable than larger, more easily detected and recognizable cryptographic
libraries/algorithms.

3. Possible strategies are: (1p for each)
a. Reverse the decryption function and reimplement it.
b. Set a breakpoint after the decryption function to see the cleartext when running the

malware.
c. Call the decryption function within the malware directly, without running the entire

malware.

1p for each of these:

1. The function starts in 1.
2. At the end of 1 there is an if-test that either goes directly to the return in 5 or through the

rest of the function.
3. 3, 4 and 6 are part of a loop (while/for). At the end of 6 it goes to the beginning of 3.
4. At the end of 3, the end criteria for the loop is checked. If the end criteria is met, it goes to 5,

otherwise it goes through the loop again.
5. The function returns in 5.

1. 2p for: We are told that this function is from a malicious dll. The function does a function call
with the function name as parameter and there after jumps to the return value of the
function call. This appears to be a hook, intercepting calls to a function with the same name
in a legitimate dll. The function it calls is likely to return the address of the corresponding
function in the legitimate dll.

2. 2p for: The malicious dll wants to be loaded by a process instead of a legitimate dll. This
function will be called when the process that has loaded the malicious dll attempts to call the
legitimate function with the same name in the legitimate dll that the process was supposed
to have loaded.

3. 2p for: This function has no return. It jumps to the legitimate function with the same name,
and that function will return directly to where this function was called from.

4. 1p for: The function arguments are pWlxContext, pdwOptions, pMessage, and dwBufferSize.
1p for: These are not needed/used by this functions but are the parameters of the legitimate
function with the same name. Because of the jmp eax instead of a call these parameters will
be the parameters of the legitimate function as well when the process jumps there, as no
new stack frame is created.

5p for all steps correct and explained.

Minus 1p if the only mistake is that gadget 00401004 is “executed”, since it is actually popped from
the stack without being executed. 00401004 is “add eax, 2; ret”, which would give the end result eax
=7 instead.

Overview of the steps:

The first gadget is: 00401009

pop eax

pop edx

ret

The result of this:

eax = FFFFFFFF (=-1)

edx = 00401004

When it returns, it returns to 0040100E, not 00401004 which was popped into edx.

Next gadget: 0040100E

inc eax

ret

The result of this:

eax = 0

edx = 00401004

Next gadget: 0040102A

xor edx, edx

ret

The result of this:

eax = 0

edx = 0

Next gadget: 0040102E

add edx, 4

pop ebx

ret

The result of this:

eax = 0

ebx = 11223344

edx = 4

Next gadget: 0040100E

inc eax

ret

The result of this:

eax = 1

ebx = 11223344

edx = 4

Last gadget: 00401024

add eax, edx

inc ebx

ret

The result:

eax = 5

ebx = 11223345

edx = 4

1. 2p for: Android is based on Linux. Each app is a unique Linux user, and the apps are
separated (sandboxed) like users in Linux.

2. 2p for: Access control based on policies that refer to user identities. Can be configured and
set by the users, and is what is shown as the rwx flags in a file listing.

3. 2p for: Access control based on policies that refer to security labels, and is enforced by the
kernel. Part of SELinux. To allow access, the access must be allowed by both DAC and MAC.

