

1 a) 1p for each correct definition, written in own words and shows understanding of the concept.

• Confidentiality is about preventing unauthorized disclosure of information (unauthorized
reading)

• Integrity is about preventing unauthorized modification of information (unauthorized
writing)

• Availability is the property of being accessible and usable upon demand by an authorized
entity

1 b) 1p for each correct example with reasonable explanation. It is important to show understanding

of the difference between the security principles. An answer like “Arbitrary code exection attacks all

of them” does not explain how the attack would work and does not receive full score.

Possible examples:

• Confidentiality: A keylogger is installed on a victim computer and logs all key strokes. The

attacker can then gain access to this information, including passwords.

• Integrity: A backdoor can be used to gain access to a victim computer and change the

contents of important files, without the legitimate user of the computer knowing. This will

break the integrity of the system.

• Availability: A ransomware can be installed on a victim computer to encrypt important files.

This attack makes the important files unavailable to the legitimate user.

2 a) 1p for each of: (max 6)

• It was started by cmd.exe, as it is below cmd in the process hierarchy.

• Recently started, since it is highlighted in green.

• It runs as administrator (with high integrity), as cmd.exe.

• It reads from the registry, seen from the RegQueryValue events in Process Monitor. Two

registry values that are read are related to Edge.

• It writes two files yexplore.dll in the c:\Program Files\Internet Explorer folder and

boringstuff.txt in C:\Users\User\tmp.

• The dll yexplore.dll is written to the Internet Explorer folder, and the name yexplore.dll is

similar to iexplore.dll, possibly an attempt not to draw attention.

• The name winnlogom.exe is suspiciously similar to the legitimate winlogon.exe, and it is

located under C:\Users\User\Pictures\Saved Pictures, which is an unusual location for a

legitimate application.

2b) 2p for something like: The application appears to be related to web browsers. The registry

values that are read are related to Edge. The gathered information may be written to the file

boringstuff.txt. The file yexplore.dll may be a malicious dll that it wants to inject into Internet

Explorer.

2c) 1p for each suggestion like: (max 2p)

• Check the contents of the written files yexplore.dll and boringstuff.txt

• Analyze yexplore.dll and winnlogom.exe in IDA

• Check the filters in Process Monitor to see if it reads interesting files, writes to or reads more

from the registry etc.

• Use Regshot before and after running the application to look for changes.

3

a) 125 + 12 = 0111 11012 + 11002 = 1000 10012 = -119, overflow. The first bit is the sign bit.

b) 125 + 12 = 0111 11012 + 11002 = 1000 10012 = 137, no problem.

c) 15-19 = 11112 – 1 00112 = 1111 11002 = -4, no problem

d) 15-19 = 11112 – 1 00112 = 1111 11002 = 252, underflow. No sign bit.

4

a) 1p for: Stack buffer overflow

b) 1p for: Stack cookie is an unpredictable value that is placed on the stack below the local
buffer and it is checked before the function returns. It would not prevent an overflow, but it
would prevent the function from returning to the address that overwrote EIP.

c) Stack frame of copy buf without stack cookie:

__ __ __ __ // Local buffer, size 12

__ __ __ __

__ __ __ __

__ __ __ __ // Saved frame pointer (EBP)

__ __ __ __ // Saved instruction pointer (EIP)

__ __ __ __ // Argument (argv[1]/str)

Stack frame of copy buf with stack cookie: AAAABBBBabcd1234efgh5678ijkl

__ __ __ __ // Local buffer, size 12

__ __ __ __

__ __ __ __

__ __ __ __ // Stack cookie

__ __ __ __ // Saved frame pointer (EBP)

__ __ __ __ // Saved instruction pointer (EIP)

__ __ __ __ // Argument (argv[1]/str)

1p for correct position of EBP,

1p for correct position of EIP,

0.5p for correct position and length of local buffer

and 0.5p for correct position of argument

1p for correct difference with and without stack cookie.

d)

i)Without stack cookie:

AAAABBBBabcd fills the buffer,

1234 overwrites the saved frame pointer

efgh overwrites the saved EIP, which makes the function return to hgfe (0x68676665)

because of endianness. It is not necessary to write the address in hexadesimal, but it is

necessary to have the correct endianness for full score.

 -0.5p for wrong endianness in the address it returns to

 -1p for forgotten EBP

ii) With stack cookie:

AAAABBBBabcd fills the buffer,

1234 overwrites the stack cookie

efgh overwrites the saved frame pointer

5678 overwrites the saved EIP

When the function is about to return, it detects the changed stack cookie, which

prevents the function from returning to the address that overwrote the saved EIP.

-1p for wrong value for the stack cookie

 -1p for stating that the overwrite is prevented or that it returns to the overwritten

address.

1.

2p for: A hash function is a one-way function that is easy to compute for a given input, but it is

difficult to determine what the input was given the output.

2.

2p for: Instead of storing passwords in cleartext, the hashed passwords are stored. This is good since

it is difficult to determine what the input (password) was if someone gets hold of the password

hashes.

2p for: In Linux passwords are salted before hashing. This means that a salt (string) is prepended to

the password before hashing it. The salt is stored together with the hash. In Windows passwords are

not salted, and the hash is equal for everyone with the same password.

3.

1p for: When a user logs in, the password given by the user is hashed, and then this hash is compared

with the password hash stored for that user. In Linux the salt is prepended before the password is

hashed. (If many correct details are given about the logon process, the role of SAM, LSA,

/etc/shadow is given, an additional 1p can be given if full score is not reached on the question.)

1p for: Password cracking is done by guessing many passwords, hashing them and comparing the

resulting hash with the hash of the password you want to crack.

2p for: In Windows all users with the same password have the same password hash. Therefore it can

be useful to make large tables of hashes corresponding to passwords, and look up the hashes in the

large tables. In Linux, because of the salt, each password must be cracked individually.

6

The answer must be explained to get full score. 2p for each.

a)

ACE 1 does not apply since it only applies to Bob. ACE 2 applies, since it concerns Group A, and

Execute access is granted, while write access is still missing. ACE 3 applies, since it concerns Group B,

and Write access is denied. Since not all access that was asked for is granted, no access is granted.

b)

ACE 1 applies since it concerns Bob, and Write access is granted. ACE2 does not apply, since it

concerns Group A. ACE3 applies, and Write and Execute access are denied. No access is given.

c)

ACE 1 does not apply since it only applies to Bob. ACE 2 applies, since it concerns Group A, and

Execute access is granted. This was all that is asked for, and access is granted.

d)

ACE 1 concerns Bob, but is not relevant for Read access. ACE 2 does not apply since it concerns group

A. ACE 3 is also not relevant for Read access. The end of the list is reached without the Read access

granted, and no access is given.

e)

The result of c would change:

ACE 1 does not apply since it only applies to Bob. ACE 3 applies, since it concerns Group B, and

Execute access is denied. ACE 2, which granted Execute access is not reached. No access is granted.

Other requests with different outcomes are also accepted

7.

a) 2p for: Ole, Doffen and Donald can all read tent.make. Doffen because of the first r, for

owner, Ole because of the second r, for group, and Donald because of the third r, for others.

b) 1p for: Only Donald can execute tent.make, because of the x for others. 1p for: Doffen

cannot execute the file now, but can give himself execute permission, since he is the owner.

c) 2p for: He must add the write permission to both group and others to give both write access.

It is not sufficient to give write permission only to others. (These permissions will work:

drwxrw- -w-.)

d) 2p for: He must add read permission for others and remove read permission for owner and

group. (These permissions will work: d-wx- - - r- -.)

8

a) 2p for: A running system using full disk encryption has the encryption keys loaded into RAM.

If the system is powered off, the data in RAM is lost, but not instantly. DRAM loses their

content gradually over a period of time. The time depends on the temperature. The Cold

Boot attack exploits this by freezing the RAM when powering off the system. Then the RAM

can be moved to another system and read.

b) The main steps of meltdown:

1. Flush/evict an array out of memory, to prepare for the side channel attack

2. Attempts to read a secret without having access. The secret is used as an index into

the array, such that which element that is read depends on the secret

i. The instructions are executed tentatively (out-of-order) before it is

discovered that necessary read access is missing

ii. An exception occurs, which must be handled or suppressed

3. Read every element of the array. The element that takes the shortest time to read, is

the element that was loaded into memory based on the secret. This leaks what the

secret was.

1p is given for explaining the side channel attack based on timing (Flush&Reload or

Evict&Reload).

1p for the rest.

c) 2p for: Meltdown can be mitigated by making sure that the contents of the internal storage

buffers in the processor are overwritten/deleted before another process can read from it.

New processors can be made with instructions for this, but in old processors, this must be

done with sequences of existing instructions that overwrite the internal storage.

d) 1p for: Software vulnerabilities can be mitigated by rewriting code and releasing a new

version.

1p for: Hardware vulnerabilities may require new hardware to be shipped. Sometimes, like in

the case with meltdown, the existing functionality in the hardware could be used in new

ways to prevent the attack without replacing the physical component.

9

a) 1p for each type of information like: (max 5)

• Strings,

• Imported functions,

• Exported functions,

• The (assembly) code of the executable,

• Functions in the executable

b) 2p for each of:

• Starting from exported functions or the entry point (depending on whether it is a dll

or an exe.)

• Look for interesting strings, like file names, error messages, paths, and find cross

references to the code that is using them.

Other reasonable strategies are accepted, but these are the two we have focused on.

10

a) 1p for: Threat modeling is a process for identifying and reasoning about potential threats to

an application.

1p for: Threat modeling is done as part of a development process in order to find and

mitigate potential threats and vulnerabilities before the application is finished, to end up

with a more secure application.

 b) The four high level steps are:

• Decomposing the application: What are you building?

• Identifying and ranking threats: What can go wrong?

• Finding countermeasures and mitigations: What are you going to do about it?

• Validating and acting upon previous steps: Did you do an acceptable job at the first

three steps?

1p for each step that is described reasonably. The name of each step must not be identical to this list

to get full score, but the descriptions must fit the step.

There are several possibilities. Here are two:

Example 1:

0x0411313C //pop edx; ret; Result: edx =0x7777777B

0x7777777B //value for edx

0x04113348 //pop eax; inc edx; ret; Result: edx =0x7777777C, eax= 0x88888888

0x88888888 //value for eax

0x04113774 //add eax, edx; Result: edx =0x7777777C, eax= 0x00000004

0x0411313C //pop edx; ret; Result: edx =0x41424344, eax= 0x00000004

0x41424344 //value for edx

0x04113774 //add eax, edx; Result: edx =0x41424344, eax= 0x41424348

Example 2:

0411313C # pop edx; ret; Result: edx = 0x41424342

41424342 # value for edx

04113348 # pop eax; inc edx; ret Result: edx = 0x41424343, eax = 0xFFFFFFFC

FFFFFFFC # value for eax

04113A10 # neg eax; inc eax; pop ecx; ret R: edx = 0x41424343,eax=0x00000005, ecx = 0xDEADBEEF

DEADBEEF # dummy value for ecx

041137F0 # dec eax; inc edx; ret Result:edx=0x41424344, eax = 0x00000004, ecx=0xDEADBEEF

04113774 # add eax, edx; ret Result:edx=0x41424344, eax = 0x41424348, ecx=0xDEADBEEF

6p for all steps correct and explained.

4p if the concept is understood and well explained, but computations are wrong.

-1p if only one wrong computation.

12

a) 0,5p for: Permissions are used to control what resources/functionality each app has access

to.

0,5p for: Normal permissions are not shown to the user and are considered safe, like access

to INTERNET, BLUETOOTH, NFC, SET_ALARM.

1p for: Dangerous permissions can be used to get access to personal information and must

be granted by the user. Dangerous permissions can be CALENDAR, CONTACTS, SMS,

LOCATION, PHONE.

1p for: Signature permissions are declared by apps, and these can only be granted to apps

with the same key as the one declaring the permission. These can be INSTALL_PACKAGES,

MOUNT_FORMAT_FILE_SYSTEMS

b) 2p for: Trusted Execution Environment is an isolated environment for executing security

critical code. Memory and resources are not shared with the Rich Execution Environment

(i.e., Android). It can be a separate processor or dedicated processor mode.

In Android it us used for: (1p for each of these, max 2)

• Lock screen passcode verification,

• Android KeyStore,

• Fingerprint matching

