
TEK9540 – Quantum computation and quantum information
Problem set 1: Linear algebra – Solutions

Exercise 2.2

It should be easy to see that A is given by

A =
(

0 1
1 0

)

Let us try to find what A looks like in the {|+〉 , |−〉}-basis. We have

|0〉 = |0〉 + |1〉
2 + |0〉 − |1〉

2 = |+〉 + |−〉√
2

|1〉 = |0〉 + |1〉
2 − |0〉 − |1〉

2 = |+〉 − |−〉√
2

So A takes 1√
2

(1
1

)
±

into 1√
2

( 1
−1

)
±

and vice versa. It should be easy to see that

A =
(

1 0
0 −1

)
±

does the job.

Exercise 2.5

(1)
(

|v〉 ,
∑

j

λj|wj〉
)

=
∑

i

v
∗
i

∑
j

λjwij =
∑

j

λj

∑
i

v
∗
i wij =

∑
j

(|v〉 , |wj〉)

(2) (|v〉 , |w〉) =
∑

i

v
∗
i wi =

∑
i

w
∗∗
i v

∗
i = (|w〉 , |v〉)∗

(3) (|v〉 , |v〉) =
∑

i

v
∗
i vi =

∑
i

|vi|
2 ≥ 0

We get equality if and only if all vi = 0 which means that |v〉 = 0
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Exercise 2.7

Two vectors are orthogonal if their inner product is zero.

〈v|w〉 =
(
1 −1

)(1
1

)
= 1 − 1 = 0

Normalized forms:

|wN〉 = |w〉√
〈w|w〉

= 1√
2

(
1
1

)

|vN〉 = |v〉√
〈v|v〉

= 1√
2

(
1

−1

)

Exercise 2.9

σx =
(

0 1
1 0

)
= |1〉〈0| + |0〉〈1|

σy =
(

0 −i

i 0

)
= i|1〉〈0| − i|0〉〈1|

σz =
(

1 0
0 −1

)
= |0〉〈0| − |1〉〈1|

Exercise 2.11

The eigenvalues are denoted λ1 and λ2, and their corresponding normalized eigenvectors are
|v1〉 and |v2〉.

σx : λ1 = 1, λ2 = −1, |v1〉 = 1√
2

(
1
1

)
, |v2〉 = 1√

2

(
1

−1

)

σy : λ1 = 1, λ2 = −1, |v1〉 = 1√
2

(
1
i

)
, |v2〉 = 1√

2

(
1

−i

)

σz : λ1 = 1, λ2 = −1, |v1〉 =
(

1
0

)
, |v2〉 =

(
0
1

)

The diagonal representation is given by σ =
∑

i λi|vi〉 〈vi|

σx = 1
2
[(

|0〉 + |1〉
)(

〈0| + 〈1|
)

−
(
|0〉 − |1〉

)(
〈0| − 〈1|

)]
σy = 1

2
[(

|0〉 + i|1〉
)(

〈0| + i〈1|
)

−
(
|0〉 − i|1〉

)(
〈0| − i〈1|

)]
σz = |0〉〈0| − |1〉〈1|.

Note that all the sigma matrices can be written written as(
1 0
0 −1

)
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when we use the corresponding eigenvectors as basis

Exercise 2.17

Any normal matrix A has a spectral decomposition

A =
∑

i

λi|i〉〈i|

where λi are the eigenvalues and |i〉 the corresponding eigenvectors. We then have

A
† =

∑
i

λ
∗
i |i〉〈i|

If then A is hermitian, A = A
†, we have λi = λ

∗
i . Then all λs has to be real. The implication

the other way is just as easy, when all eigenvalues of a normal matrix A are real we see from
the spectral composition that A = A

† so A is hermitian

Exercise 2.18

Let |u〉 be a eigenvector of U with eigenvalue λu. Then

U |u〉 = λu|u〉 and 〈u| U
† = 〈u| λ

∗
u

This gives
〈u| U

†
U |u〉 = 〈u| |λu|2|u〉 = |λu|2

But since U
† = U

−1

〈u| U
†
U |u〉 = 1

So |λu|2 = 1 and λu = e
iθ.

Exercise 2.22

We know that any Hermitian matrix A has spectral decomposition

A =
∑

i

λi|i〉 〈i|

where λi are the real eigenvalues and |i〉 are the corresponding eigenvectors. Then

0 = 〈i| A|j〉 − 〈i| A|j〉 = 〈i| A|j〉 − 〈i| A
†|j〉 = 〈i| λj|j〉 − 〈i| λi|j〉

= 〈i|j〉 (λj − λi)

Therefore, if λi 6= λj then 〈i|j〉 = 0.

Exercise 2.23

A projector P is Hermitian, so it has spectral decomposition

P =
∑

i

λi|i〉 〈i|

3



where λi are the real eigenvalues and {|i〉}
i

is an orthonormal basis. Since P = P
2 we have

〈i| P |i〉 = 〈i|
(∑

j

λj|j〉 〈j|
)

|i〉 = λi

and

〈i| P |i〉 = 〈i| P
2|i〉 = 〈i|

(∑
j

λj|j〉 〈j|
)(∑

k

λk|k〉 〈k|
)

= λ
2
i

so that λi = λ
2
i , meaning that λi = 0 or 1∀i.

Exercise 2.24 and 2.25

Note that if a matrix T is Hermitian we have:

〈v| T |v〉 = 〈v| T
†|v〉 = (〈v| T |v〉)† = (〈v| T |v〉)∗

for any |v〉. This means that 〈v| T |v〉 must be real for any Hermitian T . We then define

B = 1
2
(
A + A

†
)

and C = − i
2
(
A − A

†
)

.

It is easy to check that A = B + iC, and that B and C are Hermitian. If A is positive,
〈v|A|v〉 ≥ 0 for any |v〉, we have

〈v|A|v〉 = 〈v|B|v〉 + i〈v|C|v〉 = β + iγ

Since B og C are Hermitian, β and γ must be real. To keep 〈v| A|v〉 positive we must have
γ = 0. Since |v〉 is arbitary, this means that C must be zero, which gives A = A

†, i.e. A is
Hermitian.

4


