TEK9540 – Quantum computation and quantum information Problem set 1: Linear algebra – Solutions

Exercise 2.2

It should be easy to see that A is given by

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Let us try to find what A looks like in the $\{\left|+\right\rangle,\left|-\right\rangle\}\text{-basis.}$ We have

$$|0\rangle = \frac{|0\rangle + |1\rangle}{2} + \frac{|0\rangle - |1\rangle}{2} = \frac{|+\rangle + |-\rangle}{\sqrt{2}}$$
$$|1\rangle = \frac{|0\rangle + |1\rangle}{2} - \frac{|0\rangle - |1\rangle}{2} = \frac{|+\rangle - |-\rangle}{\sqrt{2}}$$

So A takes $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{\pm}$ into $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{\pm}$ and vice versa. It should be easy to see that

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}_{\pm}$$

does the job.

Exercise 2.5

(1)
$$\left(|v\rangle, \sum_{j} \lambda_{j} |w_{j}\rangle \right) = \sum_{i} v_{i}^{*} \sum_{j} \lambda_{j} w_{ij} = \sum_{j} \lambda_{j} \sum_{i} v_{i}^{*} w_{ij} = \sum_{j} (|v\rangle, |w_{j}\rangle)$$

(2) $\left(|v\rangle, |w\rangle \right) = \sum_{i} v_{i}^{*} w_{i} = \sum_{i} w_{i}^{**} v_{i}^{*} = \left(|w\rangle, |v\rangle \right)^{*}$

(3)
$$(|v\rangle, |v\rangle) = \sum_{i} v_{i}^{*} v_{i} = \sum_{i} |v_{i}|^{2} \ge 0$$

We get equality if and only if all $v_i=0$ which means that $|v\rangle=0$

Exercise 2.7

Two vectors are orthogonal if their inner product is zero.

$$\langle v|w\rangle = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 - 1 = 0$$

Normalized forms:

$$\begin{split} |w_{\rm N}\rangle &= \frac{|w\rangle}{\sqrt{\langle w|w\rangle}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \\ |v_{\rm N}\rangle &= \frac{|v\rangle}{\sqrt{\langle v|v\rangle}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \end{split}$$

Exercise 2.9

$$\begin{split} \sigma_x &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = |1\rangle \langle 0| + |0\rangle \langle 1| \\ \sigma_y &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = i|1\rangle \langle 0| - i|0\rangle \langle 1| \\ \sigma_z &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = |0\rangle \langle 0| - |1\rangle \langle 1| \end{split}$$

Exercise 2.11

The eigenvalues are denoted λ_1 and λ_2 , and their corresponding normalized eigenvectors are $|v_1\rangle$ and $|v_2\rangle$.

$$\begin{split} \sigma_x : & \lambda_1 = 1, \qquad \lambda_2 = -1, \qquad |v_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \qquad |v_2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \\ \sigma_y : & \lambda_1 = 1, \qquad \lambda_2 = -1, \qquad |v_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}, \qquad |v_2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \\ \sigma_z : & \lambda_1 = 1, \qquad \lambda_2 = -1, \qquad |v_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |v_2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \end{split}$$

The diagonal representation is given by $\sigma = \sum_i \lambda_i |v_i\rangle \left< v_i \right|$

$$\sigma_x = \frac{1}{2} \left[\left(|0\rangle + |1\rangle \right) \left(\langle 0| + \langle 1| \right) - \left(|0\rangle - |1\rangle \right) \left(\langle 0| - \langle 1| \right) \right]$$

$$\sigma_y = \frac{1}{2} \left[\left(|0\rangle + i|1\rangle \right) \left(\langle 0| + i\langle 1| \right) - \left(|0\rangle - i|1\rangle \right) \left(\langle 0| - i\langle 1| \right) \right]$$

$$\sigma_z = |0\rangle \langle 0| - |1\rangle \langle 1|.$$

Note that all the sigma matrices can be written written as

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

when we use the corresponding eigenvectors as basis

Exercise 2.17

Any normal matrix A has a spectral decomposition

$$A = \sum_i \lambda_i |i\rangle \langle i|$$

where λ_i are the eigenvalues and $|i\rangle$ the corresponding eigenvectors. We then have

$$A^{\dagger} = \sum_{i} \lambda_{i}^{*} |i\rangle \langle i|$$

If then A is hermitian, $A = A^{\dagger}$, we have $\lambda_i = \lambda_i^*$. Then all λ s has to be real. The implication the other way is just as easy, when all eigenvalues of a normal matrix A are real we see from the spectral composition that $A = A^{\dagger}$ so A is hermitian

Exercise 2.18

Let $|u\rangle$ be a eigenvector of U with eigenvalue λ_u . Then

$$|U|u\rangle = \lambda_u |u\rangle$$
 and $\langle u|U^{\dagger} = \langle u|\lambda_u^{\dagger}$

This gives

$$\langle u | U^{\dagger}U | u \rangle = \langle u | |\lambda_u|^2 | u \rangle = |\lambda_u|^2$$

But since $U^{\dagger} = U^{-1}$

$$\langle u | U^{\dagger} U | u \rangle = 1$$

So $|\lambda_u|^2 = 1$ and $\lambda_u = e^{i\theta}$.

Exercise 2.22

We know that any Hermitian matrix A has spectral decomposition

$$A=\sum_{i}\lambda_{i}|i\rangle\left\langle i\right|$$

where λ_i are the real eigenvalues and $|i\rangle$ are the corresponding eigenvectors. Then

$$0 = \langle i | A | j \rangle - \langle i | A | j \rangle = \langle i | A | j \rangle - \langle i | A^{\dagger} | j \rangle = \langle i | \lambda_j | j \rangle - \langle i | \lambda_i | j \rangle$$
$$= \langle i | j \rangle (\lambda_j - \lambda_i)$$

Therefore, if $\lambda_i \neq \lambda_j$ then $\langle i | j \rangle = 0$.

Exercise 2.23

A projector P is Hermitian, so it has spectral decomposition

$$P = \sum_{i} \lambda_{i} |i\rangle \langle i|$$

where λ_i are the real eigenvalues and $\{|i\rangle\}_i$ is an orthonormal basis. Since $P = P^2$ we have

$$\left\langle i | P | i \right\rangle = \left\langle i | \left(\sum_{j} \lambda_{j} | j \right\rangle \left\langle j | \right) | i
ight
angle = \lambda_{i}$$

and

$$\langle i|P|i\rangle = \langle i|P^{2}|i\rangle = \langle i|\left(\sum_{j}\lambda_{j}|j\rangle\langle j|\right)\left(\sum_{k}\lambda_{k}|k\rangle\langle k|\right) = \lambda_{i}^{2}$$

so that $\lambda_i = \lambda_i^2$, meaning that $\lambda_i = 0$ or $1 \forall i$.

Exercise 2.24 and 2.25

Note that if a matrix T is Hermitian we have:

$$\langle v | T | v \rangle = \langle v | T^{\dagger} | v \rangle = (\langle v | T | v \rangle)^{\dagger} = (\langle v | T | v \rangle)^{\ast}$$

for any $|v\rangle$. This means that $\langle v|T|v\rangle$ must be real for any Hermitian T. We then define

$$B = \frac{1}{2} \left(A + A^{\dagger} \right)$$
 and $C = -\frac{\mathrm{i}}{2} \left(A - A^{\dagger} \right)$

It is easy to check that A = B + iC, and that B and C are Hermitian. If A is positive, $\langle v|A|v \rangle \ge 0$ for any $|v \rangle$, we have

$$\langle v|A|v\rangle = \langle v|B|v\rangle + i\langle v|C|v\rangle = \beta + i\gamma$$

Since B og C are Hermitian, β and γ must be real. To keep $\langle v | A | v \rangle$ positive we must have $\gamma = 0$. Since $|v\rangle$ is arbitrary, this means that C must be zero, which gives $A = A^{\dagger}$, i.e. A is Hermitian.