TEK9540 — Quantum computation and quantum information

Problem set 3 — Solutions

Exercise 2.40
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Exercise 2.41

Calculating
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Therefore we can write



Exercise 2.42
We have that

 AB+AB BA—-BA AB—BA AB+BA [AB]+{A B}
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2 * 2 2 * 2 2

Exercise 2.43

From the previous tasks we see that
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2.51

H is unitary if H' = H " i.e. if H'H = I. Tt is easy to see that H' = H so we have,
1(1 1 1 1 1
H'H=Z = N\ _;
2\1 -1/ \1 -1 0 1

Since we have shown that H'H = I and H' = H we have H> = I
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2.53
The eigenvalues A we find by solving the characteristic equation |H — AI| = 0.
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We find the eigenvectors v by solving the equations Hv — Av = 0. The unnormalized
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Assume that A and B are commuting, Hermetian operators. Show that e“e? = e .

eigenvectors are

2.54

We know that two commuting Hermitian operators may be diagonalized in the same basis.
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67.7

Since A and B are Hermitian we have e = ", e%
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2.57

Assume that we initially have a system in a state ). After a measurement with measurement
operators {L;} the system is in the state

L)
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with probababilty
po(l) = (WL La|).

If we then do a measurement with {M,,} the system will be in the state
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with probability
pe(l,m) = (i M}, My |d1)ps (1) = (NS Ni 1))

This shows that the two measurements {M,,} and {L;} is equivalent to the measurement { N, }.

2.59

Expectation value:

Standard deviation:

2.63

By singular value decomposition M,, = UDV and M/ = VDU with D diagonal and non-negative
and U and V unitary. We then have

VE,, = \/ MM, = VVIDUIUDVT = VViD2V
=ViDV =viulubpv = U} M,,

with U, = UV. Since U and V are unitary U, is also unitary.



This shows that if we know a POVM-element, we know the corresponding measurement operator
only up to a unitary transformation. Accordingly measurement operators only distinguished by a
unitary transformation corresponds to the same POVM-element.

Note that the different POVM-elements of a measurement generally is related to the measurement
operators by different unitary transformations.
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We choose to use matrix notation, it is also possible to use outer product notation.
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