
TEK9540 – Quantum computation and quantum information
Problem set 3 – Solutions

Exercise 2.40

[X, Y ] =
(

0 1
1 0

)(
0 −i

i 0

)
−
(

0 −i

i 0

)(
0 1
1 0

)
=
(

2i 0
0 −2i

)
= 2iZ

[Y, Z] =
(

0 −i

i 0

)(
1 0
0 −1

)
−
(

1 0
0 −1

)(
0 −i

i 0

)
=
(

0 2i

2i 0

)
= 2iX

[Z, X] =
(

1 0
0 −1

)(
0 1
1 0

)
−
(

0 1
1 0

)(
1 0
0 −1

)
=
(

0 2
−2 0

)
= 2iY

We can write
[σj, σk] = 2i

3∑
l=1

εjklσl

Exercise 2.41

Calculating

{X, Y } =
(

0 1
1 0

)(
0 −i

i 0

)
+
(

0 −i

i 0

)(
0 1
1 0

)
=
(

0 0
0 0

)

{X, Z} =
(

0 1
1 0

)(
1 0
0 −1

)
+
(

1 0
0 −1

)(
0 1
1 0

)
=
(

0 0
0 0

)

{Y, Z} =
(

0 −i

i 0

)(
1 0
0 −1

)
+
(

1 0
0 −1

)(
0 −i

i 0

)
=
(

0 0
0 0

)

and

X
2 =

(
0 1
1 0

)(
0 1
1 0

)
=
(

1 0
0 1

)

Y
2 =

(
0 −i

i 0

)(
0 −i

i 0

)
=
(

1 0
0 1

)

Z
2 =

(
1 0
0 −1

)(
1 0
0 −1

)
=
(

1 0
0 1

)

Therefore we can write
{σj, σk} = 2δjkI

1



Exercise 2.42

We have that

AB = AB + AB

2 + BA − BA

2 = AB − BA

2 + AB + BA

2 = [A, B] + {A, B}
2

Exercise 2.43

From the previous tasks we see that

σjσk = [σj, σk] + {σj, σk}
2 = 2δjkI + 2i

∑3
l=1 εjklσl

2 = δjkI + i
3∑

l=1

εjklσl

2.51

H is unitary if H
† = H

−1 i.e. if H
†
H = I. It is easy to see that H

† = H so we have,

H
†
H = 1

2

(
1 1
1 −1

)(
1 1
1 −1

)
=
(

1 0
0 1

)
= I

2.52

Since we have shown that H
†
H = I and H

† = H we have H
2 = I

2.53

The eigenvalues λ we find by solving the characteristic equation |H − λI| = 0.

(−λ + 1√
2

)(−λ − 1√
2

) − 1√
2

1√
2

= λ
2 − 1 = 0 =⇒ λ1 = 1, λ2 = −1

We find the eigenvectors v by solving the equations Hv − λv = 0. The unnormalized
eigenvectors are

v1 =
(

1√
2 − 1

)
v2 =

(
1

−
√

2 − 1

)

2.54

Assume that A and B are commuting, Hermetian operators. Show that eAeB = eA+B.

We know that two commuting Hermitian operators may be diagonalized in the same basis.

A =
∑
i

ai|i〉〈i| B =
∑
i

bi|i〉〈i|.
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Since A and B are Hermitian we have eA =
∑
i e
ai |i〉〈i| and eB =

∑
i e
bi |i〉〈i|. Then we get

eAeB =
∑
i

eai |i〉〈i|
∑
j

ebj |j〉〈j| =
∑
i,j

eaiebj |i〉 〈i|j〉︸︷︷︸
δij

〈j|

=
∑
i

eai+bi |i〉〈i| = eA+B .

2.57
Assume that we initially have a system in a state |ψ〉. After a measurement with measurement
operators {Ll} the system is in the state

|φl〉 = Ll|ψ〉√
〈ψ|L†

lLl|ψ〉

with probababilty
pφ(l) = 〈ψ|L†

lLl|ψ〉.

If we then do a measurement with {Mm} the system will be in the state

|ξml〉 = Mm|φl〉
〈φl|M†

mMm|φl〉
= MmLl|ψ〉√

〈ψ|L†
lLl|ψ〉

√
〈ψ|L†

l√
〈ψ|L†

l
Ll|ψ〉

M†
mMm

Ll|ψ〉√
〈ψ|L†

l
Ll|ψ〉

= MmLl|ψ〉√
〈ψ|L†

lM
†
mMmLl|ψ〉

= Nlm|ψ〉√
〈ψ|N†

lmNlm|ψ〉

with probability

pξ(l,m) = 〈φl|M†
mMm|φl〉pφ(l) = 〈ψ|N†

lmNlm|ψ〉.

This shows that the two measurements {Mm} and {Ll} is equivalent to the measurement {Nlm}.

2.59
Expectation value:

〈X〉 = 〈0|X|0〉 =
(

1 0
)(0 1

1 0

)(
1
0

)
= 0

Standard deviation:

σ = 〈X2〉 − 〈X〉2 =
(

1 0
)(0 1

1 0

)(
0 1
1 0

)(
1
0

)
− 0 = 1

2.63
By singular value decomposition Mm = UDV and M†

m = V †DU† with D diagonal and non-negative
and U and V unitary. We then have

√
Em =

√
M†
mMm =

√
V †DU†UDV † =

√
V †D2V

= V †DV = V †U†UDV = U†
mMm

with Um = UV . Since U and V are unitary Um is also unitary.
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This shows that if we know a POVM-element, we know the corresponding measurement operator
only up to a unitary transformation. Accordingly measurement operators only distinguished by a
unitary transformation corresponds to the same POVM-element.

Note that the different POVM-elements of a measurement generally is related to the measurement
operators by different unitary transformations.

2.66
We choose to use matrix notation, it is also possible to use outer product notation.

〈00| + 〈11|√
2

X ⊗ Z
|00〉 + |11〉√

2
= 1

2

(
1 0 0 1

)
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0




1
0
0
1

 = 0
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