TEK9540 — Quantum computation and quantum information

Problem set 4: Density matrices — Solutions

2.69
It should be easy to verify that the Bell states |53;) are orthonormal, i.e. (3;|5;) = J,;. Since

the state space spanned by two qubits is four-dimensional, the four Bell states form a basis.

2.70

E is positive and therefore Hermitian and can be written

p_ a+d b+ic .
b—ic a—d

The total operator is then given by

a+d a+d b+ic b+ic
a+d a+d b+ic b+ic
b—ic b—ic a—d a-—d
b—ic b—ic a—d a—d

E®l=

Doing the inner product we find

W E@IY) =a
for all .

Thus for any measurement Eve can do the probability of getting a certain measurement
result m is the same for all states. This means that she cannot get any information about
which bit string Alice is trying to send.

2.71

Since p is Hermitian, it can be diagonalized in an orthogonal basis basis [i), such that
p =, \|i)(i| with A, > 0, andaTr(p) = 32, A, = 1. Then p* = 3, A7]i) (|, which gives

Te(p!) = 303 Xty = ST

If p is pure then )\, = 1 for one and only one i and zero for all others so Tr(p?) = 1. If p is
mixed then more than one eigenvalue is different from zero and then ), A\ < 1, since the
eigenvalues are positive and >, A, = 1.



2.72

e A general Hermitian matrix p can be written as

. S o CY"‘BTZ B(Tz_iry)
p=al + Br U_<6(rz+iry) o fr. >

with o, 3, r,, r, and r, real. Note that we have introduced a scaling factor § which

we might assign any value by adjusting 7

Since Tr(p) = 1 we have v = ;. We also know that Tr (p2> < 1 which gives:

Tr(p") = (a+ 5r.)" + 28 +1r,)(r, = ir,) + o — B’
=2+ B (rs+r,+r2) <1

I1+7-3

> and

If we choose 3 = ; this gives p =
re =A<

17 < 1.

o For p=1/2 we have 7= 0. This is a maximally mixed state.

e From the relations above we have:
pis pure <= Tr(pQ) =1 = HFH2 =1 <= |f=1

o A pure state can be written

0 ; 0
|1) = cos §|O> + €' sin §|1>

From Section 1.2 a Bloch-vector is defined by the angles ¢ and # and having unit length.
From Figure 1.3 in N&C we see that r, = cos @, r, = sin ¢ cos ¢ and r, = sin @ sin ¢.

Using the trigonometric identities

0 1 .
sin — cos — = —sin

2 2

20 1 <1 29>1 1 0
CoS 5= 3 5 cos 5) =3 2cos.
.0 1 <1 ,29> 1 1
sin"—==—-—(=-—sin"=- ) == — =cosf

2 2 2 2 2 2



the density matrix p = |¢)(¢| is given by
1
T2
1
2

1,
2
I

So for pure states the two definitions of the Bloch vector are equivalent.

2.74

The reduced density operator of system A is
= Trp(p) = Trp(la) (al @ [b) (b]) = |a) (al Tx(|b) (B]) = |a)(al,

which is a pure state.

2.75
The density operator of the Bell state |3) = - (|00) + [11)) is p = 3(|00) (00| + [11) (00| +
|00) (11] + |11) (11]) The density operator for the first qubit is

pr = Tr,(|8)(BI)

— 5 (10) (O Te(]0) (Of) + [1) (O] Tx([1) (O[) +[0) (1] Te(JO) (1[) + [1) (1] Te(]1) (1[))

(103401 + 1)1y = =

L\JM—*

The other seven calculations are done the same way, and the answer is 7 for all of them.
Thus for any Bell state the state of just one of the qubits is a maximally mixed state.

2.79

The proof of Theorem 2.7 also gives us a recipe for finding the Schmidt decomposition.
Writing [1) = >_., a;,]7) |k) we need to find the singular value decomposition of the matrix
a, aj, = Y, U;;d; v, with v and v unitary and d diagonal. If a is diagonalizable this amounts
to finding the eigenvalues and normalized eigenvectors. The Schmidt decomposition is given

by [¢) =32, Ailia) i) with Ay = diy, |ia) = 32, ugild), and Jig) = 32, valk).

o |¥) = 5(|00) + [11)) is in the form of a Schmidt decomposition. (A, = {7,

lia) = {|0> D lis) = 110) . 11)3)
o 1 = 1(]00) + |01) + |01) + |11)) gives

2

N



Thus a has eigenvalues and eigenvectors,

1 1 1 1
w50 ()

. . —1 . .
Since a is normal v = v~ " = u', which gives

. 1 1
zm{ﬁwﬂmﬁmwm}
1

. 1
ia) = { 75000+ 1), =10~ 1)

The second vector of the sets |i,) and |ig) is not needed as \, is zero, but is included

for completeness. Note that it is possible to see the Schmidt decomposition directly

from the expression for |1)) by noting that [¢) = ‘0>j§'1> '°>\j§“).

o = —=(]00) + |01) +[01)) gives

a has eigenvalues and eigenvectors,

1++5 B 2 LEvE 2 1
IR L v W Ry

Again a is normal so v = u'. We then get

L 2 1+5 2 1++/5
IZA>—{\/5+\/5< 5 |0>+|1>>, 5+\@<|O>— 5 |1>>}

_ 2 1+5 2 1++/5
!zB>={ 5+\/5< 5 \0>+\1>>, 5+\/5<\0>— 5 !U)}

=1

2.81

Let |AR,) and |AR,) be to purifications of a system A in the state p. Since they are pure

states the have Schmidt decompositions,
[AR,) =) Vpilia)lin), AR =) Valia)|in)-
We have then two different expression for the density matrix of system A

p= Zpi‘iA> (i4] Zqi

i) (ial

By using Theorem 2.6 in N&C we can relate the two different expressions by a unitary

matrix U

> VBlia) = S uyalia) -

i



We also know that since {|iz)} and {|ix)} are bases for the same state space there exist a
unitary matrix V' such that |iz) =37, UijﬁR) This gives us,

8|AR,) = Zuij\/ajm Zvik!k}a
_ Z Vi) S v k)

ijk

= (1® Ug)|AR;)

where U, =U"V.

2.82

1. We need to show that when we trace away system R from the state p, = >, \/PiD;1¥3) 1) (1] (J
the resulting state of system A is p

T 3 VDB 1) (051 Gl = 3 /P (kL1 i) (W51 Gl 1)

ijk

= Zpkh/}k) (Yl = p

Note that we need introduce new summation variables j and k. Generally the density

matrix of a state \/EW) is not 3=, pilis) (il

2. The measurement operator corresponding to this result is M, = I ® |i) (i|. The prob-
ability is
pli) = Tr Mi,OARMf
=Tr (I'® i) (me 1) (] (k| ) (2 @ 1) Gil )
= Trp;|vy) (| @ 10) (2| = ps
The resulting state of system A is

+ N
0, = Trg M;éARMi _ TeriWi);;pA ® |i) (i = ¢, (]

Thus by measuring the auxiliary system R, we can implicitly measure the system A.

3. From Exercise 2.81 we know that any purification can be written on the form |AR) =
> pi|:) Uli). By measuring in the basis given by {3, u;;|j)} system A is in the state
|1;) with probability p, after the measurement.



