
TEK9540 – Quantum computation and quantum information
Problem set 4: Density matrices – Solutions

2.69

It should be easy to verify that the Bell states |βi〉 are orthonormal, i.e. 〈βi|βj〉 = δij. Since
the state space spanned by two qubits is four-dimensional, the four Bell states form a basis.

2.70

E is positive and therefore Hermitian and can be written

E =
(
a+ d b+ ic
b− ic a− d

)
.

The total operator is then given by

E ⊗ I =


a+ d a+ d b+ ic b+ ic
a+ d a+ d b+ ic b+ ic
b− ic b− ic a− d a− d

b− ic b− ic a− d a− d

 .

Doing the inner product we find
〈ψ|E ⊗ I|ψ〉 = a

for all ψ.

Thus for any measurement Eve can do the probability of getting a certain measurement
result m is the same for all states. This means that she cannot get any information about
which bit string Alice is trying to send.

2.71

Since ρ is Hermitian, it can be diagonalized in an orthogonal basis basis |i〉, such that
ρ =

∑
i λi|i〉〈i| with λi ≥ 0, andăTr(ρ) =

∑
i λi = 1. Then ρ

2 =
∑

i λ
2
i |i〉〈i|, which gives

Tr(ρ2) =
∑

n

∑
i

λ
2
i 〈n|i〉〈i|n〉 =

∑
i

λ
2
i .

If ρ is pure then λi = 1 for one and only one i and zero for all others so Tr(ρ2) = 1. If ρ is
mixed then more than one eigenvalue is different from zero and then ∑i λ

2
i < 1, since the

eigenvalues are positive and ∑i λi = 1.
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2.72

• A general Hermitian matrix ρ can be written as

ρ = αI + β~r · ~σ =
(

α + βrz β(rx − iry)
β(rx + iry) α− βrz

)

with α, β, rx, ry and rz real. Note that we have introduced a scaling factor β which
we might assign any value by adjusting ~r

Since Tr(ρ) = 1 we have α = 1
2 . We also know that Tr

(
ρ

2
)

≤ 1 which gives:

Tr
(
ρ

2
)

= (α + βrz)2 + 2β2(rx + iry)(rx − iry) + (α− βrz)2

= 2(α2 + β
2(r2

x + r
2
y + r

2
z)) ≤ 1

If we choose β = 1
2 this gives ρ = I+~r·~σ

2 and

r
2
x + r

2
y + r

2
z = ‖~r‖2 ≤ 1

‖~r‖ ≤ 1.

• For ρ = I/2 we have ~r = 0. This is a maximally mixed state.

• From the relations above we have:

ρ is pure ⇐⇒ Tr(ρ2) = 1 ⇐⇒ ‖~r‖2 = 1 ⇐⇒ ‖~r‖ = 1.

• A pure state can be written

|ψ〉 = cos θ2 |0〉 + e
iϕ sin θ2 |1〉.

From Section 1.2 a Bloch-vector is defined by the angles ϕ and θ and having unit length.
From Figure 1.3 in N&C we see that rz = cos θ, rx = sin θ cosϕ and ry = sin θ sinϕ.

Using the trigonometric identities

sin θ2 cos θ2 = 1
2 sin θ

cos2 θ

2 = 1
2 −

(1
2 − cos2 θ

2

)
= 1

2 + 1
2 cos θ

sin2 θ

2 = 1
2 −

(1
2 − sin2 θ

2

)
= 1

2 − 1
2 cos θ
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the density matrix ρ = |ψ〉〈ψ| is given by

ρ =
(

cos2 θ

2
1
2e

−iϕ sin θ
1
2e

iϕ sin θ sin2 θ

2

)

= 1
2

[
I +

(
cos θ e

−iϕ sin θ
e

iϕ sin θ − cos θ

)]

= 1
2(I + ~r · ~σ)

So for pure states the two definitions of the Bloch vector are equivalent.

2.74

The reduced density operator of system A is

ρ
A = TrB(ρ) = TrB(|a〉 〈a| ⊗ |b〉 〈b|) = |a〉 〈a| Tr(|b〉 〈b|) = |a〉〈a|,

which is a pure state.

2.75

The density operator of the Bell state |β〉 = 1√
2 (|00〉 + |11〉) is ρ = 1

2 (|00〉 〈00| + |11〉 〈00| +
|00〉 〈11| + |11〉 〈11|) The density operator for the first qubit is

ρ1 = Tr2(|β〉〈β|)

= 1
2 (|0〉 〈0| Tr(|0〉 〈0|) + |1〉 〈0| Tr(|1〉 〈0|) + |0〉 〈1| Tr(|0〉 〈1|) + |1〉 〈1| Tr(|1〉 〈1|))

= 1
2 (|0〉〈0| + |1〉〈1|) = I

2 .

The other seven calculations are done the same way, and the answer is I

2 for all of them.
Thus for any Bell state the state of just one of the qubits is a maximally mixed state.

2.79

The proof of Theorem 2.7 also gives us a recipe for finding the Schmidt decomposition.
Writing |ψ〉 =

∑
jk ajk|j〉 |k〉 we need to find the singular value decomposition of the matrix

a, ajk =
∑

i ujidiivik, with u and v unitary and d diagonal. If a is diagonalizable this amounts
to finding the eigenvalues and normalized eigenvectors. The Schmidt decomposition is given
by |ψ〉 =

∑
i λi|iA〉 |iB〉 with λi = dii, |iA〉 =

∑
j uji|j〉, and |iB〉 =

∑
k vik|k〉.

• |ψ〉 = 1√
2 (|00〉 + |11〉) is in the form of a Schmidt decomposition. (λi = { 1√

2 ,
1√
2 },

|iA〉 = {|0〉 , |1〉}, |iB〉 = {|0〉 , |1〉})

• ψ = 1
2 (|00〉 + |01〉 + |01〉 + |11〉) gives

a = 1
2

(
1 1
1 1

)
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Thus a has eigenvalues and eigenvectors,

λi = {1, 0} ui =
{

1√
2

(
1
1

)
,

1√
2

(
1

−1

)}
.

Since a is normal v = u
−1 = u

†, which gives

|iA〉 =
{ 1√

2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)

}
|iB〉 =

{ 1√
2

(|0〉 + |1〉), 1√
2

(|0〉 − |1〉)
}

The second vector of the sets |iA〉 and |iB〉 is not needed as λ2 is zero, but is included
for completeness. Note that it is possible to see the Schmidt decomposition directly
from the expression for |ψ〉 by noting that |ψ〉 = |0〉+|1〉√

2
|0〉+|1〉√

2 .

• ψ = 1√
3 (|00〉 + |01〉 + |01〉) gives

a = 1√
3

(
1 1
1 0

)

a has eigenvalues and eigenvectors,

λi = {1 ±
√

5
2
√

3
} ui =

{√
2

5 +
√

5

(
1+

√
5

2

1

)
,

√
2

5 +
√

5

(
1

− 1+
√

5
2

)}

Again a is normal so v = u
†. We then get

|iA〉 =
{√

2
5 +

√
5

(
1 +

√
5

2 |0〉 + |1〉
)
,

√
2

5 +
√

5

(
|0〉 − 1 +

√
5

2 |1〉
)}

|iB〉 =
{√

2
5 +

√
5

(
1 +

√
5

2 |0〉 + |1〉
)
,

√
2

5 +
√

5

(
|0〉 − 1 +

√
5

2 |1〉
)}

2.81

Let |AR1〉 and |AR2〉 be to purifications of a system A in the state ρ. Since they are pure
states the have Schmidt decompositions,

|AR1〉 =
∑

i

√
pi|iA〉 |iR〉 , |AR2〉 =

∑
i

√
qi

∣∣̃iA〉 ∣∣̃iR〉 .
We have then two different expression for the density matrix of system A

ρ =
∑

i

pi|iA〉 〈iA|
∑

i

qi

∣∣̃iA〉 〈̃iA∣∣
By using Theorem 2.6 in N&C we can relate the two different expressions by a unitary
matrix U ∑

i

√
pi|iA〉 =

∑
ij

uij

√
qj

∣∣j̃A

〉
.
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We also know that since {|iR〉} and {
∣∣̃iR〉} are bases for the same state space there exist a

unitary matrix V such that |iR〉 =
∑

ij vij

∣∣̃iR〉 This gives us,

ă|AR1〉 =
∑

ij

uij

√
q

j

∣∣j̃A

〉∑
ik

vik|kR〉

=
∑

j

√
qj

∣∣j̃A

〉 ∑
ijk

uijvik|kR〉

= (I ⊗ UR)|AR2〉

where UR = U
T
V .

2.82

1. We need to show that when we trace away systemR from the state ρAR =
∑

ij

√
pipj|ψi〉 |i〉 〈ψj| 〈j|

the resulting state of system A is ρ

TrR

∑
ij

√
pipj|ψi〉 |i〉 〈ψj| 〈j| =

∑
ijk

√
pipj〈k| |ψi〉 |i〉 〈ψj| 〈j| |k〉

=
∑

k

pk|ψk〉 〈ψk| = ρ

Note that we need introduce new summation variables j and k. Generally the density
matrix of a state ∑i

√
pi|ψi〉 is not

∑
i pi|ψi〉 〈ψi|

2. The measurement operator corresponding to this result is Mi = I ⊗ |i〉 〈i|. The prob-
ability is

p(i) = TrMiρARM
†
i

= Tr
(
I ⊗ |i〉 〈i|

)(∑
jk

√
pjpk|ψj〉 |j〉 〈ψk| 〈k|

)(
I ⊗ |i〉 〈i|

)
= Tr pi|ψi〉 〈ψi| ⊗ |i〉 〈i| = pi

The resulting state of system A is

ρi = TrR MiρARM
†
i

pi

= TrR pi|ψi〉 〈ψi| ⊗ |i〉 〈i|
pi

= |ψi〉 〈ψi|

Thus by measuring the auxiliary system R, we can implicitly measure the system A.

3. From Exercise 2.81 we know that any purification can be written on the form |AR〉 =∑
i pi|ψi〉U |i〉. By measuring in the basis given by {

∑
j uij|j〉} system A is in the state

|ψi〉 with probability pi after the measurement.
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