Gas phase transport reactions

CT	Chemical Transport
CVT	Chemical Vapour Transport
CTR	Chemical Transport Reaction

In chemical transport reactions, solids are transported via a gas phase using a chemical reaction.

The structure of the material is broken down and rebuilt.
Reversible chemical equilibria are utilized.

Transport reaction

$$
A(s)+B(g)=A B(g) \quad \Delta H
$$

The reaction must be reversible and have $\mathrm{K}_{\mathrm{eq}} \sim 1$ at the operating temperature

Convention: $\mathbf{T}_{2}>\mathrm{T}_{1}$ (In book: transport from T_{1} to $\mathrm{T}_{\mathbf{2}}$)
$\Delta \mathrm{H}>0$ Endothermic Transport from hot to cold
$\Delta \mathrm{H}<0$ Exothermic Transport from cold to hot

Figure 3-1. The principle of chemical transport reactions. The reaction vessel can be open or closed (see text).

Some reactions

Transport in open systems with continuous flow:
Transport in volcanic systems:
$3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{g}) \leftrightarrow 2 \mathrm{FeCl}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Deposition of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at cooler sites.
Mond process: deposition of pure $\mathrm{Ni}(99.9$ - 99.99\% $50^{\circ} \mathrm{C}$

$$
\mathrm{Ni}+4 \mathrm{CO} \underset{230^{\circ} \mathrm{C}}{\underset{ }{\rightarrow}} \mathrm{Ni}(\mathrm{CO})_{4}
$$

Exothermic reaction. Ni transported from mixture and deposited at $230^{\circ} \mathrm{C}$.

Polymorphs: May stabilize metastable phases by seeding

Non-stoichiometric phases (oxides, sulfides...): Difficult to reproduce and control. Very dependent on experimental conditions.

More reactions

Transport: Transport of Pt to a cold zone in a furnace:
$\mathrm{Pt}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{PtO}_{2}(\mathrm{~g}), \Delta \mathrm{H}>0, \quad \mathrm{~T}>1200^{\circ} \mathrm{C}$

$\underbrace{A}_{T_{2}} \longrightarrow T_{1}^{\theta}$

Purification: van Arkel Process: (Ti, Hf, V, Nb, Ta, $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Th}, \ldots$) $\mathrm{Cr}(\mathrm{s})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow \operatorname{CrI}_{2}(\mathrm{~g}), \Delta \mathrm{H}<0$ (Deposition of Cr at a higher temperature)

Separation; W og WO_{2} : (Deposition of $\mathrm{WO}_{2}(\mathrm{~s})$ at $800^{\circ} \mathrm{C} ; \mathrm{W}(\mathrm{s})$ at $1000^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& \mathrm{WO}_{2}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~g}) \underset{800^{\circ} \mathrm{C}}{1000^{\circ} \mathrm{C}} \mathrm{WO}_{2} \mathrm{I}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}>0 \\
& \mathrm{~W}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{I}_{2}(\mathrm{~g}) \underset{1000^{\circ} \mathrm{C}}{800^{\circ} \mathrm{C}} \mathrm{WO}_{2} \mathrm{I}_{2}(\mathrm{~g})+4 \mathrm{HI}(\mathrm{~g}) \quad \Delta \mathrm{H}<0
\end{aligned}
$$

Enhancing kinetics of solid state reactions:

The reaction; $2 \mathrm{CaO}(\mathrm{s})+\mathrm{SnO}_{2} \rightarrow \mathrm{Ca}_{2} \mathrm{SnO}_{4}(\mathrm{~s})$ is slow
$\mathrm{SnO}_{2}(\mathrm{~s})+\mathrm{CO}(\mathrm{g}) \leftrightarrow \mathrm{SnO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
$2 \mathrm{CaO}(\mathrm{s})+\mathrm{SnO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{Ca}_{2} \mathrm{SnO}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{g})$

The halogen lamp

The halogen lamp is one of the most important uses of transport reactions. Incandescence: Black body radiation.
Edison: First incandescent lamp in 1879, carbon filament
Major improvements: Tungsten filament, using gas filled bulb instead of evacuation Still most of the light is lost as heat (IR). (1.4% in the visible range at $2400^{\circ} \mathrm{C}$) Advantages of W-filament: Low vapour pressure, melting point $3400^{\circ} \mathrm{C}$, good mechanical strength at high temperature. However, an increase in temperature from e.g. 2527 to $2927^{\circ} \mathrm{C}$ decreases the life time by a factor of 100

Figure 3-2. The spectrum of incandescent lamps.

Halogen lamp II

W-filament: Evaporated W is deposited at cold surfaces (inside of bulb). Blackening the bulb, and thinning the filament (thinner filament increases the temperature \rightarrow increases the vapour pressure...

Inert gas filling: Reduces the evaporation of W by inhibiting the transport process (evaporation, condensation). The large size of the bulbs limits the pressure used.

Halogens: Adding small amounts of a halogen (usually I_{2}) results in transport of tungsten back to the (hot) filament.
Could be this process: $\mathbf{W}+\mathbf{I}_{\mathbf{2}} \leftrightarrow \mathbf{W I}_{\mathbf{2}}$. But it is more complex:

$$
\mathrm{W}+\mathrm{O}_{2}+\mathrm{I}_{2} \stackrel{600^{\circ} \mathrm{C}}{\rightleftharpoons} \mathrm{WO}_{2} \mathrm{I}_{2}
$$

Halogen lamp III

The reactions require a minimum temperature of 600 C at the bulb surface. Thus the halogen lamp is small. This also means that it may be thicker, and operates at higher internal pressures.

This is, however, not a selfhealing process. W is still transported from hot spots at the filament to cooler spots (at $3000^{\circ} \mathrm{C}$)
But it allows operation at higher temperatures for a long time.

Figure 3-3. Deposition of tungsten crystals on the tungsten filament of a halogen lamp

Metal halide (arc) lamp

Tube quartz glass or alumina, Tungsten electrodes. Alkali/lanthanide halide system $\mathrm{DyI}_{3}, \mathrm{TmI}_{3}, \mathrm{HoI}_{3}$: Large number of emission lines.

Gaseous species: e.g. $\mathrm{NaDyI}_{4}, \mathrm{Na}_{2} \mathrm{DyI}_{5}$ Dissociation in the arc (to elements or ionized species), recombination in cooler parts.

Figure 3-4. Arc tube of a metal halide lamp with temperature distribution under operating conditions.

Transport reactions

Four steps in ideal transport reaction:

1. Chemical reaction at the source (equilibrium between gaseous and condensed phase)
2. Mass transport by diffusion of gaseous species from the source to the sink.
3. Deposition of solid at the sink
4. Diffusion of gaseous transport agent back to the source

Diffusion limited reaction. Convection and Stefan flow (due to different amounts of molecules) may be important

$$
\mathrm{A}(\mathrm{~s})+\mathrm{B}(\mathrm{~g})=\mathrm{AB}(\mathrm{~g}) \quad \Delta \mathrm{H}
$$

Choice of transporting agent

May in principle be chosen from thermodynamic data. All species and reactions must be known! Reactions are usually far more complex than indicated from the overall chemical equation.
Halogens are often used to transport metals.
Metal oxides are often transported using hydrogen halides (In some cases halogens may be used)
Table 3-1. Transport reactions of chromium compounds

Transported compound	Transport agent	Gas-phase species
Cr	I_{2}	CrI_{2}
$\mathrm{CrX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$	X_{2}	CrX_{4}
CrCl_{3}	AlCl_{3}	$\mathrm{CrAl}_{3} \mathrm{Cl}_{12}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$\mathrm{O}_{2} / \mathrm{Cl}_{2}$	$\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{Cl}_{2}$	$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{HgCl}_{2}$	$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{Hg}+\mathrm{HCl}$
$\mathrm{CoCr}_{2} \mathrm{O}_{4}$ (spinel)	Cl_{2}	$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{CoCl}_{2}$
$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	HCl	$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	$\mathrm{I}_{2} / \mathrm{P}_{4}$	$\mathrm{CrI}_{2}+\mathrm{P}_{4} \mathrm{O}_{6}$
CrSi_{2}	I_{2}	$\mathrm{CrI}_{2}+\mathrm{SiI}_{4}$

The van Arkel or van Arkel-de Boer process

Preparation of pure metals, Ti, Hf, V, Nb, Ta, Cr, Fe, $\mathrm{Cu}, \mathrm{Th}, \ldots$
$\mathrm{Cr}(\mathrm{s})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CrI}_{2}(\mathrm{~g})$, $\Delta \mathrm{H}<0$
(Deposition at a hot filament)

Calculation of reaction rates

Calculation of growth rates may be complicated by e.g.:
-All reactions and species must be known
-Local equilibria must be established (s) $\leftrightarrow(\mathrm{g})$
Transport may not be entirely diffusion, but may be influenced by:
Gas phase equilibria, e.g. $2 \mathrm{~S}_{2} \leftrightarrow \mathrm{~S}_{4}(\mathrm{~g})$ (temperature dependent)
Convection in the ampoule
Changes in the number of gas molecules (Stefan flow)
Kinetics of dissolution and condensation

Reducing convection

Fig. 9. The transport of solid substances with gas motion by diffusion. Simplified theoretical diagram.

Growth rates

$$
\begin{gathered}
\mathrm{i} \mathrm{~A}(\mathrm{~s}, \mathrm{I})+\mathrm{k} \mathrm{~B}(\mathrm{~g}) \leftrightarrow \mathrm{jC}(\mathrm{~g}) \\
\mathrm{n}_{\mathrm{a}}=\frac{\mathrm{i}}{\mathrm{j}} \cdot \frac{\Delta \mathrm{P}_{\mathrm{C}}}{\Sigma \mathrm{P}} \cdot \frac{\mathrm{D}_{0} \cdot \Sigma \mathrm{P}_{0} \cdot \mathrm{~T}^{0.8} \cdot \mathrm{q} \cdot \mathrm{t}}{\mathrm{~T}_{0}^{1.8} \cdot \mathrm{~s} \cdot \mathrm{R}}
\end{gathered}
$$

$\mathrm{n}_{\mathrm{a}} \quad$ Number of moles transported of compound A
i, Coefficients for the reactions
$\Delta \mathrm{P}_{\mathrm{C}} \quad$ Change in the partial pressure of species C
$\Sigma \mathrm{P} \quad$ Total pressure in thye ampoule
q Cross section (area) of the diffusion path
t Duration of transport reaction
s Diffusion length
R The gas constant

$$
\mathrm{n}_{\mathrm{a}}=\frac{\mathrm{i}}{\mathrm{j}} \cdot \frac{\Delta \mathrm{P}_{\mathrm{C}}}{\Sigma \mathrm{P}} \cdot \frac{\mathrm{~T}^{0.8} \cdot \mathrm{q} \cdot \mathrm{t}}{\mathrm{~s}} \cdot 1.8 \cdot 10^{-4} \quad(\mathrm{~mol})
$$

Yield $Q=\frac{n_{A} \text { (målt) }}{\mathrm{n}_{\mathrm{A}} \text { (beregnet) }}$
(I) The heterogenic reactions are rate limiting
(II) Diffusion is the rate limiting step
(III)Convection contributes to the kinetics

The diffusion constant depends on temperature and gas mixture. If there are no H or He in the gas mixture, the error by setting $\mathrm{D}_{0}=$ $0.1 \mathrm{~cm}^{2} / \mathrm{s}$ is (relatively) small TABLE I
Diffusion Coefficients D_{0} for $\Sigma P_{0}=1$ Atm and $T_{0}=273^{\circ} \mathrm{K}$

Gas pair		$D_{0}\left(\mathrm{~cm}^{2} \mathrm{sec}^{-1}\right)$
H_{2}	$+\mathrm{O}_{2}$	0.70
	$\mathrm{H}_{2} \mathrm{O}$	0.69
	CO	0.65
	CH_{4}	0.63
	Br_{2}	0.56
	CO_{2}	0.54
	CS_{2}	0.37
	CCl_{4}	0.30
N_{2} (also air or O_{2})	$+\mathrm{H}_{2} \mathrm{O}$	0.22
	NH_{3}	0.20
	Hg	0.11
	CS_{2}	0.09
	I_{2}	0.07
	CCl_{4}	0.06
CO_{2}	$+\mathrm{H}_{2} \mathrm{O}$	0.13
	CO	0.13
	Br_{2}	0.09
	CS_{2}	0.06
	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	0.05

Reaction conditions

Typical:

Temperature: $300-1200{ }^{\circ} \mathrm{C}$
Temperature gradient: $10-100^{\circ} \mathrm{C}$
Total pressure: $0.5-10 \mathrm{~atm}$
Transport agent: $1-5 \mathrm{mg}$ per ml ampoule volume
Time: 2 hours - 1 month
The Ampoule: - Material: Quartz (Nb, Mo)

- Length: 10 - 20 cm
- Diameter: 0.8 - 2.5 cm

Crystal quality:

Crystal size (depends on the number of nuclei): Small $\Delta \mathrm{T}$
Defects: Low temperature, low transport rate
Chemical purity (Incorporation of transporting agent in crystals:
Large chemical differences (e.g. CdS, I^{-}on S^{2-} position)

Transport of $\mathbf{G e O}_{\mathbf{2}}$

$$
\begin{gathered}
\mathrm{GeO}_{2}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{GeCl}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
2 \mathrm{GeCl}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{GeOCl}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})
\end{gathered}
$$

Temperatur Specie	$800^{\circ} \mathrm{C}$ aktivitet	$820^{\circ} \mathrm{C}$ aktivitet	$880^{\circ} \mathrm{C}$ aktivitet	$900^{\circ} \mathrm{C}$ aktivitet
Cl_{2}	$4.35<10^{-1}$	$4.15<10^{-1}$	$3.59<10^{-1}$	$3.41<10^{-1}$
O_{2}	$2.81<10^{-1}$	$2.90<10^{-1}$	$3.14<10^{-1}$	$3.21<10^{-1}$
GeCl_{4}	$2.77<10^{-1}$	$2.85<10^{-1}$	$3.02<10^{-1}$	$3.05<10^{-1}$
GeOCl_{2}	$6.46<10^{-3}$	$9.09<10^{-3}$	$2.33<10^{-2}$	$3.11<10^{-2}$
Cl	$3.67<10^{-4}$	$4.63<10^{-4}$	$8.79<10^{-4}$	$1.07<10^{-3}$
GeCl	$4.27<10^{-5}$	$6.44<10^{-5}$	$2.00<10^{-4}$	$2.83<10^{-4}$
ClO	$1.93<10^{-5}$	$2.36<10^{-5}$	$4.09<10^{-5}$	$4.83<10^{-5}$
$\mathrm{Ge}_{2} \mathrm{OCl}_{6}$	$5.12<10^{-6}$	$4.41<10^{-6}$	$2.79<10^{-6}$	$2.38<10^{-6}$
GeCl_{2}	$6.30<10^{-9}$	$1.31<10^{-8}$	$1.01<10^{-7}$	$1.89<10^{-7}$
ClO_{2}	$6.76<10^{-8}$	$8.22<10^{-8}$	$1.39<10^{-7}$	$1.63<10^{-7}$
$\mathrm{Cl}_{2} \mathrm{O}$	$2.46<10^{-8}$	$2.86<10^{-8}$	$4.29<10^{-8}$	$4.83<10^{-8}$
O	$3.36<10^{-10}$	$5.74<10^{-10}$	$2.54<10^{-9}$	$4.03<10^{-9}$
$\mathrm{GeO}_{\mathrm{GeCl}^{-1}}$	$1.13<10^{-12}$	$3.24<10^{-12}$	$6.07<10^{-11}$	$1.51<10^{-10}$
Cl_{3}	$1.23<10^{-17}$	$4.33<10^{-17}$	$1.45<10^{-15}$	$4.32<10^{-15}$
Cl_{4}	$1.05<10^{-18}$	$2.34<10^{-18}$	$2.15<10^{-17}$	$4.26<10^{-17}$
$\mathrm{Ge}_{2} \mathrm{O}_{2}$	$2.20<10^{-19}$	$4.23<10^{-19}$	$2.56<10^{-18}$	$4.44<10^{-18}$
$\mathrm{Ge}_{3} \mathrm{O}_{3}$	$2.50<10^{-22}$	$1.42<10^{-21}$	$1.82<10^{-19}$	$8.21<10^{-19}$

Temperature gradients in a two zone furnace

3. $\mathrm{CsNb}_{4} \mathrm{Br}_{11}$, transported with NbBr_{5}. Crystal size about 0.2 mm (Broll et al., 1969.)
6. RuO_{2}, transported with O_{2}. The thickest crystal is 6 mm long (Schäfer et al., 1963).

4. ReO_{2}, transported with I_{2}. Diameter of the crystal block about 1 mm (Schäfer and Bode, 1967.)
7. $\mathrm{Al}_{2} \mathrm{~S}_{3}$, transported with I_{2}. Crystal size up to about 10 mm . (Schäfer, 1962, Schäfer and Jagusch, 1966.)

5. TaS_{2}, transported with S . Crystal size $\geqq 10 \mathrm{~mm}$. (Schäfer et al., 1968.)
8. SiO_{2} (tridymite), transported with HF. Clear crystals up to 3 mm . (Gruehn, 1967.)

9. CdO , transported with I_{2}. Crystals up to about 0.8 mm . (Schäfer and Fuhr, 1964.)
12. $\mathrm{Nb}_{3} \mathrm{Sb}$, transported with I_{2}. Crystal size up to 3 mm . (Schäfer and Fuhr, 1965.)

10. ReO_{3}, transported with I_{2}. Crystal size up to 1 mm . (Schäfer and Bode, 1967.)
13. NbO_{2}, transported with I_{2}. Crystal size 1 mm . (Schäfer and Hüesker, 1962.)

11. $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{23}$ (monoclinic), transported with NbCl_{5}. Length of the crystal needles is about 5 mm . (Gruehn et al., 1967.)
14. $\mathrm{Nb}_{2} \mathrm{O}_{5}$, in the P modification, transported with NbCl_{5}. Crystal size $1-2 \mathrm{~mm}$. (Schäfer et al., 1966.)

TABLE I
Chemically Transported Ternary and Quaternary Compounds

TABLE III
TABLE II
Reactions Where the Reaction Product Is Transportablea
Examples of Solid Solution Formation by Chemical Transporta

Solid solution system	Transporting agent	Reference
$\mathrm{Nb}_{3} \mathrm{Cl}_{8}-\mathrm{Nb}_{2} \mathrm{Cl}_{8}$	NbCl_{5}	Schäfer and Dohmann (1959b)
ZnS-CdS	I_{2}	Davis and Lind (1968)
$\mathrm{ZnS}-\mathrm{MnS}$	I_{2}	Nitsche et al. (1961)
$\mathrm{TiS}_{2}-\mathrm{VS}_{2}$	I_{2}	Nitsche (1967)
$\mathrm{TiS}_{2}-\mathrm{NbS}_{2}$	I_{2}	Nitsche (1967)
$\mathrm{TiS}_{2}-\mathrm{TaS}_{2}$	I_{2}	Nitsche (1967)
GaAs-InAs	Cl_{2}	Sirrine (1964); Minden (1965)
$2 \mathrm{GaAs}-\mathrm{ZnSiAs}_{2}$	$\mathrm{Cl}_{2}, \mathrm{I}_{2}$	Averhieva ct al. (1967)
$2 \mathrm{GaAs}-\mathrm{ZnGeAs}{ }_{2}$	$\mathrm{Cl}_{2}, \mathrm{I}_{2}$	Averhieva ct al. (1967)
$\mathrm{SnO}_{2}-\mathrm{SnS}_{2}$	I_{2}	Nitsche (1967)
$\mathrm{TiS}_{2}-\mathrm{TiSe}_{2}$	I_{2}	Nitsche (1967)
$\mathrm{ZrS}_{2}-\mathrm{ZrSe}{ }_{2}$	I_{2}	Nitsche (1967)
$\mathrm{CdCr}_{2} \mathrm{~S}_{4}-\mathrm{CdCr}_{2} \mathrm{Se}_{4}$	$\mathrm{I}_{2}+\mathrm{AlCl}_{3}$	Pickardt (1970)
$\mathrm{TiS}_{2}-\mathrm{TiTe}_{2}$	I_{2}	Nitsche (1967)
$\mathrm{GeSe}-\mathrm{GeTe}$	I_{2}	Muir and Cashman (1968)
$\mathrm{ZnSe}-\mathrm{GaAs}$	I_{2}	Ku and Bodi (1968)
$\mathrm{Cu}_{2} \mathrm{GeSe}_{3}-3 \mathrm{GaAs}$	$\mathrm{I}_{2}, \mathrm{Cl}_{2}$	Averhieva ct al. (1967)
$\mathrm{GaP}-\mathrm{GaAs}$	I_{2}	Pizzarello (1962); Ku (1963); Ilull (1964)
	Cl_{2}	Holonyak et al. (1961)
	$\mathrm{H}_{2} \mathrm{O}$	Gottlieb (1965); Purohit (1968)
InP-InAs	I_{2}	Egorov et al. (1967)

${ }^{a}$ Frequently, the given solid solutions were synthesized so that the mechanical mixture of the binary compounds served as the reactant for transport. Sometimes, however, the previously prepared solid solution was used as reactant, too.

Reaction	Transporting agent	Reference
$\mathrm{Zn}_{l}+0.5 \mathrm{~S}_{2, \mathrm{~g}}=\mathrm{ZnS}$	I_{2}	Schäfer (1962)
$\mathrm{Zn}_{l}+0.5 \mathrm{Se}_{2, \mathrm{~g}}=\mathrm{ZnSe}$	I_{2}	Schäfer (1962)
$\mathrm{Cd}_{l}+0.5 \mathrm{~S}_{2, \mathrm{~g}}=\mathrm{CdS}$	I_{2}	Schäfer (1962)
$\mathrm{Cd}_{l}+0.5 \mathrm{Se}_{2, \mathrm{~g}}=\mathrm{CdSe}^{2}$	I_{2}	Schäfer (1962)
$2 \mathrm{Al}_{l}+1.5 \mathrm{~S}_{2, \mathrm{~g}}=\mathrm{Al}_{2} \mathrm{~S}_{3}$	I_{2}	Compare with Schäfer (1962) and
		Schäfer and Jagusch (1966)
$2 \mathrm{Al}_{l}+1.5 \mathrm{Se}_{2, \mathrm{~g}}=\mathrm{Al}_{2} \mathrm{Se}_{3}$	I_{2}	Compare with Schäfer (1962) and
		Schäfer and Jagusch (1966)
$\mathrm{Ru}_{4}+\mathrm{O}_{2}=\mathrm{RuO}_{2}$	O_{2}	Schäfer et al. (1963)
$\mathrm{Ir}_{4}+\mathrm{O}_{2}=\mathrm{IrO}_{2}$	O_{2}	Schäfer and Heitland (1960)

${ }^{\text {a }}$ In these cases the formation of a surface layer is prevented.

TABLE IV
Separation by Means of Different Transport Directions

Product deposited		$\begin{aligned} & \text { Temperature } \\ & \text { gradient } \\ & T_{1} / T_{2}\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Transporting agent	Reference
at T_{1}	at T_{2}			
CrTe	Cr	850/1025	I_{2}	Schäfer (1962)
Cu	$\mathrm{Cu}_{2} \mathrm{O}$	600/900	HCl	Schäfer and Etzel (1957)
CuO	$\mathrm{Cu}_{2} \mathrm{O}$	700/800	HCl	Schäfer and Jagusch (1966); Schäfer (1968)
NbAs_{2}	NbAs	850/1050	I_{2}	Schaifer and Fuhr (1965)
WO_{2}	W	800/1000	$\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$	Dettingmeijer et al., (1969)

