

In chemical transport reactions, solids are transported via a gas phase using a chemical reaction.

The structure of the material is broken down and rebuilt.

Reversible chemical equilibria are utilized.

Transport reaction

A(s) + B(g) = AB(g) ΔH

The reaction must be reversible and have $K_{eq} \sim 1$ at the operating temperature

Convention: $T_2 > T_1$ (In book: transport from T_1 to T_2)

 $\Delta H > 0$ Endothermic Transport from hot to cold

 $\Delta H < 0$ Exothermic Transport from cold to hot

Figure 3-1. The principle of chemical transport reactions. The reaction vessel can be open or closed (see text).

1

Some reactions

Transport in open systems with continuous flow: **Transport in volcanic systems**:

 $3Fe_2O_3(s) + 6HCl(g) \leftrightarrow 2FeCl_3(g) + 3H_2O(g)$ Deposition of Fe₂O₃ at cooler sites.

Mond process: deposition of pure Ni (99.9 – 99.99%

Ni + 4CO
$$\stackrel{50^{\circ}C}{\leftarrow}$$
 Ni(CO)₄

Exothermic reaction. Ni transported from mixture and deposited at 230°C.

Polymorphs: May stabilize metastable phases by seeding

Non-stoichiometric phases (oxides, sulfides...): Difficult to reproduce and control. Very dependent on experimental conditions.

3

$$WO_2(s) + I_2(g) \underset{800^{\circ}C}{\longleftrightarrow} WO_2I_2(g) \quad \Delta H > 0$$

 $W(s) + 2H_2O(g) + 3I_2(g) \underset{1000^{\circ}C}{\overset{800^{\circ}C}{\longleftrightarrow}} WO_2I_2(g) + 4HI(g) \quad \Delta H < 0$

Enhancing kinetics of solid state reactions:

The reaction; $2CaO(s) + SnO_2 \rightarrow Ca_2SnO_4(s)$ is slow $SnO_2(s) + CO(g) \leftrightarrow SnO(g) + CO_2(g)$ $2CaO(s) + SnO(g) + CO_2(g) \leftrightarrow Ca_2SnO_4(s) + CO(g)$

The halogen lamp

The halogen lamp is one of the most important uses of transport reactions. Incandescence: Black body radiation.

Edison: First incandescent lamp in 1879, carbon filament

Major improvements: Tungsten filament, using gas filled bulb instead of evacuation Still most of the light is lost as heat (IR). (1.4% in the visible range at 2400°C) Advantages of W-filament: Low vapour pressure, melting point 3400°C, good mechanical strength at high temperature. However, an increase in temperature from e.g. 2527 to 2927°C decreases the life time by a factor of 100

Figure 3-2. The spectrum of incandescent lamps.

5

Halogen lamp II

W-filament: Evaporated W is deposited at cold surfaces (inside of bulb). Blackening the bulb, and thinning the filament (thinner filament increases the temperature \rightarrow increases the vapour pressure...

Inert gas filling: Reduces the evaporation of W by inhibiting the transport process (evaporation, condensation). The large size of the bulbs limits the pressure used.

Halogens: Adding small amounts of a halogen (usually I_2) results in transport of tungsten back to the (hot) filament.

Could be this process: $W + I_2 \leftrightarrow WI_2$. But it is more complex:

$$W + O_2 + I_2 \xrightarrow{600 \circ C} WO_2I_2$$

$$WO_2I_2 \xrightarrow{-I_2} WO_2 \xrightarrow{-1/_2O_2} WO \xrightarrow{W + 1/_2O_2} W + \frac{1}/_2O_2$$
increasing temperature

Halogen lamp III

The reactions require a minimum temperature of 600C at the bulb surface. Thus the halogen lamp is small. This also means that it may be thicker, and operates at higher internal pressures.

This is, however, not a selfhealing process. W is still transported from hot spots at the filament to cooler spots (at 3000°C) But it allows operation at higher temperatures for a long time.

Figure 3-3. Deposition of tungsten crystals on the tungsten filament of a halogen lamp (130-fold magnification).

7

Metal halide (arc) lamp

Tube quartz glass or alumina, Tungsten electrodes. Alkali/lanthanide halide system DyI₃, TmI₃, HoI₃: Large number of emission lines.

Gaseous species: e.g. $NaDyI_4$, Na_2DyI_5 Dissociation in the arc (to elements or ionized species), recombination in cooler parts.

Transport reactions

Four steps in ideal transport reaction:

- 1. Chemical reaction at the source (equilibrium between gaseous and condensed phase)
- 2. Mass transport by diffusion of gaseous species from the source to the sink.
- 3. Deposition of solid at the sink
- 4. Diffusion of gaseous transport agent back to the source

Diffusion limited reaction. Convection and Stefan flow (due to different amounts of molecules) may be important

Choice of transporting agent

May in principle be chosen from thermodynamic data. All species and reactions must be known! Reactions are usually far more complex than indicated from the overall chemical equation.

Halogens are often used to transport metals.

Metal oxides are often transported using hydrogen halides (In some cases halogens may be used)

Table 3-1. Transport reactions of chromium compounds

Transported compound	Transport agent	Gas-phase species
Cr	I ₂	CrI ₂
CrX_3 (X = Cl, Br, I)	X_2	CrX ₄
CrCl ₃	AlCl ₃	CrAl ₃ Cl ₁₂
Cr_2O_3	O_2/Cl_2	CrO_2Cl_2
Cr ₂ O ₃	H_2O/Cl_2	$CrO_2Cl_2 + HCl$
Cr_2O_3	H ₂ O/HgCl ₂	$CrO_2Cl_2 + Hg + HCl$
CoCr ₂ O ₄ (spinel)	Cl ₂	$CrO_2Cl_2 + CoCl_2$
$Cr_2(SO_4)_3$	HC1	$CrO_2Cl_2 + SO_2 + H_2O$
$Cr_2P_2O_7$	I_2/P_4	$CrI_2 + P_4O_6$
CrSi ₂	I ₂	$CrI_2 + SiI_4$

The van Arkel or van Arkel-de Boer process

Calculation of reaction rates

Calculation of growth rates may be complicated by e.g.:

•All reactions and species must be known

•Local equilibria must be established (s) \leftrightarrow (g)

Transport may not be entirely diffusion, but may be influenced by:

Gas phase equilibria, e.g. $2S_2 \leftrightarrow S_4(g)$ (temperature dependent)

Convection in the ampoule

Changes in the number of gas molecules (Stefan flow) Kinetics of dissolution and condensation

FIG. 5. Gas motion by thermal convection.

Growth rates

$i A(s,I) + k B(g) \leftrightarrow j C(g)$

$$n_{a} = \frac{i}{i} \cdot \frac{\Delta P_{C}}{\Sigma P} \cdot \frac{D_{0} \cdot \Sigma P_{0} \cdot T^{0.8} \cdot q \cdot t}{T_{0}^{1.8} \cdot s \cdot R}$$

- n_a Number of moles transported of compound A
- i,j Coefficients for the reactions
- ΔP_C Change in the partial pressure of species C
- ΣP Total pressure in thy ampoule
- q Cross section (area) of the diffusion path
- t Duration of transport reaction
- s Diffusion length
- R The gas constant

$$n_{a} = \frac{i}{j} \cdot \frac{\Delta P_{C}}{\Sigma P} \cdot \frac{T^{0.8} \cdot q \cdot t}{s} \cdot 1.8 \cdot 10^{-4} \quad (mol)$$

Yield
$$Q = \frac{n_A(malt)}{n_A(beregnet)}$$

(I) The heterogenic reactions are rate limiting

(II) Diffusion is the rate limiting step

(III) Convection contributes to the kinetics

The diffusion constant depends on temperature and gas mixture. If there are no H or He in the gas mixture, the error by setting $D_0 =$ 0.1 cm²/s is (relatively) small TABLE I

13

Diffusion Coefficients D_0 for $\Sigma P_0 = 1$ ATM and $T_0 = 273^\circ {
m K}$

Gas pa	Gas pair		
H_2	+	O2	0.70
		H_2O	0.69
		CO	0.65
		CH_4	0.63
		Br_2	0.56
		CO_2	0.54
		CS_2	0.37
		CCl ₄	0.30
N_2	+	H ₂ O	0.22
(also air or O ₂)			
		NH_3	0.20
		Hg	0.11
		CS_2	0.09
		I_2	0.07
		CCl ₄	0.06
CO_2	+	H ₂ O	0.13
		CO	0.13
		Br ₂	0.09
		CS_2	0.06
	(C2	$H_5)_2O$	0.05

Reaction conditions

Typical:

Temperature: 300 – 1200 °C

Temperature gradient: 10 – 100 °C

Total pressure: 0.5 - 10 atm

Transport agent: 1 - 5 mg per ml ampoule volume

Time: 2 hours - 1 month

The Ampoule: - Material: Quartz (Nb, Mo)

- Length: 10 20 cm
- Diameter: 0.8 2.5 cm

Crystal quality:

Crystal size (depends on the number of nuclei): Small ΔT

Defects: Low temperature, low transport rate

Chemical purity (Incorporation of transporting agent in crystals: Large chemical differences (e.g. CdS, I⁻ on S²⁻ position)

Transport of GeO₂

 $\text{GeO}_2(s) + 2 \text{Cl}_2(g) \leftrightarrow \text{GeCl}_4(g) + \text{O}_2(g)$

2.00	$C_{14}(g) + 0$	$2(g) \rightarrow 2 $	$COCI_2(g) + 2$	$L Cl_2 (g)$
Temperatur	800 °C	820 °C	880 °C	900 °C
Specie	aktivitet	aktivitet	aktivitet	aktivitet
Cl ₂	4.35∢10 ⁻¹	4.15 <i>≤</i> 10 ⁻¹	3.59 <i>≤</i> 10 ⁻¹	3.41 ≺ 10 ⁻¹
O_2	$2.81 \lt 10^{-1}$	$2.90 \lt 10^{-1}$	$3.14 \lt 10^{-1}$	$3.21 \lt 10^{-1}$
GeCl ₄	$2.77 \lt 10^{-1}$	$2.85 \lt 10^{-1}$	$3.02 \lt 10^{-1}$	$3.05 \lt 10^{-1}$
GeOCl ₂	$6.46 \lt 10^{-3}$	9.09 ∢ 10 ⁻³	$2.33 \lt 10^{-2}$	$3.11 \lt 10^{-2}$
Cl	$3.67 \lt 10^{-4}$	$4.63 \lt 10^{-4}$	8.79 ∢ 10 ⁻⁴	$1.07 \lt 10^{-3}$
GeCl ₃	$4.27 \lt 10^{-5}$	6.44 <i>≤</i> 10 ⁻⁵	$2.00 \lt 10^{-4}$	$2.83 \lt 10^{-4}$
ClO	1.93 ∢ 10 ⁻⁵	$2.36 \lt 10^{-5}$	$4.09 \lt 10^{-5}$	$4.83 \lt 10^{-5}$
Ge ₂ OCl ₆	$5.12 \lt 10^{-6}$	$4.41 \lt 10^{-6}$	2.79 ∢ 10 ⁻⁶	$2.38 \lt 10^{-6}$
GeCl ₂	6.30 ∢ 10 ⁻⁹	1.31 ∢ 10 ⁻⁸	$1.01 \lt 10^{-7}$	$1.89 \lt 10^{-7}$
ClO ₂	6.76 ∢ 10 ⁻⁸	$8.22 \lt 10^{-8}$	1.39 ∢ 10 ⁻⁷	$1.63 \lt 10^{-7}$
Cl ₂ O	$2.46 \lt 10^{-8}$	$2.86 \lt 10^{-8}$	$4.29 \lt 10^{-8}$	$4.83 \lt 10^{-8}$
0	$3.36 \lt 10^{-10}$	$5.74 \lt 10^{-10}$	$2.54 \lt 10^{-9}$	$4.03 \lt 10^{-9}$
GeO	1.13 <i>≤</i> 10 ⁻¹²	$3.24 \lt 10^{-12}$	$6.07 \lt 10^{-11}$	$1.51 \lt 10^{-10}$
GeCl	1.23 <i>≤</i> 10 ⁻¹⁷	$4.33 \lt 10^{-17}$	$1.45 \lt 10^{-15}$	$4.32 \lt 10^{-15}$
Cl ₃	$1.05 \lt 10^{-18}$	$2.34 \lt 10^{-18}$	$2.15 \lt 10^{-17}$	$4.26 \lt 10^{-17}$
Cl ₄	$2.20 \lt 10^{-19}$	$4.23 \lt 10^{-19}$	$2.56 \lt 10^{-18}$	$4.44 \lt 10^{-18}$
Ge_2O_2	$2.50 \lt 10^{-22}$	$1.42 \lt 10^{-21}$	$1.82 \lt 10^{-19}$	$8.21 \lt 10^{-19}$

Tabell Error! No text of specified style in document..1. Aktiviteten til speciene beregnet ved 3.75 atm totattrykk ved forskjellige temperaturer. Startbetingelser er 1 mol GeO₂, 0.1 mol Cl₂, resten av speciene har initialverdi lik 0.

1.06 < 10⁻²⁷

8.67 < 10⁻²⁷

1.21 < 10⁻³⁰

1.07 < 10⁻³¹

Ge₃O₃

Temperature gradients in a two zone furnace

Crystal size about 0.2 mm (Broll *et al.*, 1969.)

6. RuO₂, transported with O₂. The thickest crystal is 6 mm long (Schäfer *et al.*, 1963).

7. Al₂S₃, transported with I₂. Crystal size up to about 10 mm. (Schäfer, 1962, Schäfer and Jagusch, 1966.)

of the crystal block about 1 mm (Schäfer

and Bode, 1967.)

size ≥ 10 mm. (Schäfer *et al.*, 1968.)

8. SiO_2 (tridymite), transported with HF. Clear crystals up to 3 mm. (Gruehn, 1967.)

9. CdO, transported with I₂. Crystals up to about 0.8 mm. (Schäfer and Fuhr, 1964.)

12. Nb₃Sb, transported with I_2 . Crystal size up to 3 mm. (Schäfer and Fuhr, 1965.)

10. ReO₃, transported with I₂. Crystal size up to 1 mm. (Schäfer and Bode, 1967.)

13. NbO₂, transported with I₂. Crystal size 1 mm. (Schäfer and Hüesker, 1962.)

11. $Ti_2Nb_{10}O_{23}$ (monoclinic), transported with NbCl₅. Length of the crystal needles is about 5 mm. (Gruehn *et al.*, 1967.)

14. Nb₂O₆, in the *P* modification, transported with NbCl₅. Crystal size 1-2 mm. (Schäfer *et al.*, 1966.)

19

TABLE I CHEMICALLY TRANSPORTED TERNARY AND QUATERNARY COMPOUNDS

Compound	Transporting agent	Reference			
RbNb4Cl11, C8Nb4Cl11 VCl2Br VBr2I	NbCls Br2 I2	Broll et al. (1969) McCarley et al. (1964) McCarley et al. (1964)		FABLE I (conti	nucd)
TaOCl ₂	TaCls	Schäfer et al. (1961)			
MoOCl ₂	$MoCl_{5}$	Schäfer and Tillack (1964)		Transporting	
WOBr ₂	WOBr ₄	Tillack and Kaiser (1969)	Compound	agent	Reference
NbOI2	I_2	Schäfer and Gerken (1962)	F		
$Me_{3}B_{7}O_{13}X (X = Cl, Br, I;Me = Fe, Co, Ni)$	$HX + H_{2}O$	Schmid (1965)	ZrSiS	I.	Nitsche (1967)
NbS_2Cl_2 (NbY_2X_2 , $Y = S$, Se;	NbCl	Schäfer and Beckmann (1966)	$M_0 C_0 S_1 (M_0 - F_0 M_0)$	12 T	Niteshe (1907)
X = Cl, Br, I)			$MeGes_4 (Me = Fe, Mn)$	12	Nitsche (1967)
SbSBr	Br ₂	Klazer and Horák (1968)	$MeIn_2S_4 (Me = Zn, Cd, Hg)$	12	Nitsche (1960) ; Nitsche <i>et al.</i> (1961)
BiSBr	Br ₂	Kozáková et al. (1966)	$MeIn_2S_4$ (Me = Mn, Co)	12	Nitsche (1967)
SbSI	I ₂	Kern (1962), Grigas (1968a)	$MeGa_2S_4$ (Me = Zn, Cd, Hg)	I_2	Nitsche et al. (1961)
SbSeBr	Br ₂	Klazer and Horák (1968)	$MeCr_2S_4$ (Me = Mn, Zn, Cd)	AlCl ₃ (HCl)	Lutz and von Lovâsz (1968)
50561	12	Nejezchleb and Horák (1968),	CdCr ₂ S ₄	Cl_2	Berger and Pinch (1967)
BiToBr	D.	Grigas (1968b) Herft and Dedet (1060)	CoCr ₂ S ₄	HCl (NH ₄ Cl)	Nitsche (1967)
$CuCr_2Y_3X$ (X = Cl, Br; Y = S, Se)	Halogen	Miyatani et al. (1968)	Cu_3MeY_4 (Me = Nb, Ta; Y = S, Se)	I ₂	Nitsche and Wild (1967)
$MeGeO_4$ (Me = Mn, Fe, Co)	HCl (NH ₄ Cl)	Roven and Forwerg (1962, 1963)	Cu-NbS, Cu-TaS	I.	Nitscho (1967)
$MeTiO_3$ (Me = Mg, Ni)	Cl ₂	Emmenegger (1968)	Cl ee	12	Kitsche (1907)
$MeNbO_4$ [Me = $Fe(III)$,	$Cl_2 + NbCl_5$	Emmenegger (1968); Emmenegger		12	Kaldis <i>et al.</i> (1967)
Cr(III)]		and Petermann (1968)		12	Nitsche (1967)
FeTaO ₄	$Cl_2 + TaCl_5$	Emmenegger (1968)	$MeIn_2Se_4$ (Me = Zn, Cd)	12	Nitsche (1960); Nitsche <i>et al.</i> (1961)
CrTaO ₄	Cl_2	Emmenegger (1968)	$MeGa_2Se_4$ (Me = Zn, Cd)	I ₂	Nitsche <i>et al.</i> (1961)
$MeMoO_4$ (Me = Mg, Mn, Co,	Cl_2	Emmenegger (1968)	$CdCr_2Se_4$	Br_2	Scholz (1966)
Ni)		그런 같이 그는 것이 같아. 집안	Cd ₄ SiSe ₆	I ₂	Kaldis et al. (1967)
$MeWO_4$ (Me = Mg, Mn, Fe,	Cl_2	Emmenegger (1968)	$MeCu_2SiS_4$ (Me = Zn, Cd, Fe)	I ₂	Nitsche <i>et al.</i> (1967)
C_0, N_1, Z_n	CI	E (1000)	$MeCu_2GeS_4$ (Me = Zn, Cd,	12	Nitsche <i>et al.</i> (1967)
$M_0C_{\pi,0}$ (M ₀ = M ₀ C ₀ Ni)		Emmenegger (1968)	Fe. Mn. Ni)	-	()
$MeCr_{2}O_{4}$ (Me = Mn, Co, Ni) $MeEeO_{2}$ (Me = Mn, Co, Ni)		Emmenegger (1968)	$MeCu_{s}SnS_{s}$ (Me = Zn Cd Fe)	I.	Nitscho et al. (1967)
$MeFe_{O_4}$ (Me = Mg, Mn, Co, Mi)	HCI	Kleinert (1963–1964)	ZnCusGeSe.	I.	Nitscho et al. (1967)
Ni)	nor	Riemert (1903, 1904)	ZnSiD	12 I	Valey and Unabarra (1069)
$MeNb_2O_6$ (Me = Ca, Co, Ni)	Cl.	Emmenegger and Petermann (1968)			Valov and Usakova (1908)
$MeNb_2O_6$ (Me = Mg, Zn)	HCI	Emmenegger and Petermann (1968)	CuSIF ₂	CI_2 , SICI ₄	valov and Plecko (1967), (1968)
$MeNb_2O_6$ (Me = Fe, Mn)	$Cl_2 + NbCl_5$	Emmenegger and Petermann (1968)			
$MeTa_2O_6$ (Me = Mg, Mn, Co)	Cl ₂	Emmenegger (1968)			
NiTa ₂ O ₆	$\mathrm{Cl}_2 + \mathrm{Ta}\mathrm{Cl}_5$	Emmenegger (1968)			
ZrOS	I ₂	Nitsche (1967)			20

TABLE II

Examples of Solid Solution Formation by Chemical Transport^a

Solid solution system	Transporting agent	Reference
Nb ₃ Cl ₈ -Nb ₂ Cl ₈	NbCl₅	Schäfer and Dohmann (1959b)
ZnS-CdS	I_2	Davis and Lind (1968)
ZnS-MnS	I_2	Nitsche <i>et al.</i> (1961)
TiS ₂ -VS ₂	I_2	Nitsche (1967)
TiS2-NbS2	I_2	Nitsche (1967)
TiS2-TaS2	I_2	Nitsche (1967)
GaAs-InAs	Cl_2	Sirrine (1964); Minden (1965)
2GaAs-ZnSiAs ₂	Cl ₂ , I ₂	Averhieva et al. (1967)
2GaAs-ZnGeAs ₂	Cl ₂ , I ₂	Averhieva et al. (1967)
SnO_2-SnS_2	I ₂	Nitsche (1967)
TiS2-TiSe2	I ₂	Nitsche (1967)
ZrS ₂ -ZrSe ₂	I_2	Nitsche (1967)
CdCr ₂ S ₄ -CdCr ₂ Se ₄	$I_2 + AlCl_3$	Pickardt (1970)
TiS ₂ -TiTe ₂	I_2	Nitsche (1967)
GeSe-GeTe	I_2	Muir and Cashman (1968)
ZnSe-GaAs	I2	Ku and Bodi (1968)
Cu2GeSe3-3GaAs	I ₂ , Cl ₂	Averhieva et al. (1967)
GaP-GaAs	I_2	Pizzarello (1962); Ku (1963); Hull (1964)
	Cl_2	Holonyak et al. (1961)
	H_2O	Gottlieb (1965); Purohit (1968)
InP-InAs	I_2	Egorov et al. (1967)

^a Frequently, the given solid solutions were synthesized so that the mechanical mixture of the binary compounds served as the reactant for transport. Sometimes, however, the previously prepared solid solution was used as reactant, too.

TABLE III

REACTIONS WHERE THE REACTION PRODUCT IS TRANSPORTABLE^a

Reaction	Transporting agent	Reference
$\operatorname{Zn}_{l} + 0.5 \operatorname{S}_{2,g} = \operatorname{ZnS}$	I2	Schäfer (1962)
$\operatorname{Zn}_{l} + 0.5\operatorname{Se}_{2,g} = \operatorname{ZnSe}$	I_2	Schäfer (1962)
$Cd_l + 0.5S_{2,g} = CdS$	I_2	Schäfer (1962)
$Cd_l + 0.5Se_{2,g} = CdSe$	I_2	Schäfer (1962)
$2\mathrm{Al}_l + 1.5\mathrm{S}_{2,g} = \mathrm{Al}_2\mathrm{S}_3$	I₂	Compare with Schäfer (1962) and Schäfer and Jagusch (1966)
$2\mathrm{Al}_{l} + 1.5\mathrm{Se}_{2,g} = \mathrm{Al}_{2}\mathrm{Se}_{3}$	I_2	Compare with Schäfer (1962) and Schäfer and Jagusch (1966)
$Ru_s + O_2 = RuO_2$	O 2	Schäfer et al. (1963)
$Ir_s + O_2 = IrO_2$	O2	Schäfer and Heitland (1960)

^a In these cases the formation of a surface layer is prevented.

TABLE IV

SEPARATION BY MEANS OF DIFFERENT TRANSPORT DIRECTIONS

Product deposited		Temperature			
at T_1	at T_2	gradient T_1/T_2 (°C)	agent	Reference	
CrTe	Cr	850/1025	I ₂	Schäfer (1962)	
Cu	Cu ₂ O	600/900	HCl	Schäfer and Etzel (1957)	
CuO	Cu ₂ O	700/800	HCI	Schäfer and Jagusch (1966); Schäfer (1968)	
NbAs ₂	NbAs	850/1050	I ₂	Schäfer and Fuhr (1965)	
WO ₂	W	800/1000	$I_2 + H_2O$	Dettingmeijer et al., (1969)	