Biomaterials 1 # Velcro Biomimetic Principle The inventor of Velcro, George Mestral, was working in the machine shop of a Swiss engineering company more than 60 years ago. He examined the burrs that stuck to his dog's fur under a microscope, and saw that they consisted of hundreds of tiny hooks that latched into the soft dog's fur. He discussed the principle with weaving experts in the French cloth industry, and eventually a weaver produced cotton tapes that when pressed together fastened in the same manner as the teasel and fur. This idea was patented by a Swiss company, Velcro S.A in 1952. These patents covered "the invention and fabrication of special napped piles of manmade material, at least some of these loops having the means of hooking near their ends". Velcro, SEM Velcro, SEM ### **Shark Skin** Shark skin is very rough, in fact so rough that dried shark skin can be used as sanding paper. • The rough surface has been shown to reduce friction when the shark glides through water, which is why sharks are surprisingly quick and efficient swimmers. After looking at shark skin, NASA pioneered the use of longitudinal riblets, ridges perpendicular to surface, to reduce drag on flat surfaces of ships and aircraft. Riblets were used successfully to reduce drag on the 'Stars and Stripes' America's Cup yacht and were thought to offer such an advantage that riblets were banned from competition for subsequent events. Shark skin itself is far more complex than simple longitudinal riblets 5 #### **Biomaterials** ### Solid biomaterials produces by living organisms: Bones, teeth, spines, shells... # Substances prepared by biomimetic approaches or materials prepared for living/tissue interaction #### Biomineralization: The mechanism by which living organisms form inorganic solids. Differences between man-made analogues and "natural" synthesis: Exceptional control over shape, size and orientation. Not formed corresponding to thermodynamic/kinetic control as abiogenic materials. Extreme control over local environments (e.g. chemical composition) - Mechanical properties - •Chemical storage - Navigation Table 4-2. Important biominerals, their chemical composition, and their function. | Chemical composition | Mineral | Function and examples | |---|---|---| | Calcium carbonate
CaCO ₃ | calcite
aragonite
vaterite
amorphous | exoskeletons (e.g., egg
shells, corals, mollusks,
sponge spicules) | | Calcium phosphates $Ca_{10}(OH)_{2}(PO_{4})_{6}$ $Ca_{10-x}(HPO_{4})_{x}(PO_{4})_{6-x}(OH)_{2-x}$ $Ca_{10}F_{2}(PO_{4})_{6}$ $Ca_{2}(HPO_{4})_{2} \cdot 2 H_{2}O$ $Ca_{2}(HPO_{4})_{2}$ $Ca_{8}(HPO_{4})_{2}(PO_{4})_{4} \cdot H_{2}O$ $Ca_{3}(PO_{4})_{2}$ | hydroxylapatite
defect apatites
fluoroapatite | endoskeletons (bones and
teeth)
calcium storage | | Calcium oxalate Ca ₂ C ₂ O ₄ · (1 or 2) H ₂ O | whewellite
wheddelite | calcium storage and
passive deposits in plants,
calculi of excretory tracts | | 90 | | | |--|------------------|---------------------------| | Metal sulfates | | | | CaSO ₄ · 2 H ₂ O | gypsum | gravity sensors | | SrSO ₄ | celestite | exoskeletons | | BaSO ₄ | baryte | gravity sensors | | | | | | Amorphous silica | | | | $SiO_n(OH)_{4-2n}$ | amorphous (opal) | defense in plants, diator | | | | valves, sponge spicules, | | d | | and radiolarian tests | | Iron oxides | | | | Fe ₃ O ₄ | magnetite | chiton teeth, magnetic | | α, γ -FeOOH | | sensors | | $5 \text{ Fe}_2\text{O}_3 \cdot 9 \text{ H}_2\text{O}$ | | | Dominant: Calcium (due to low solubility) Silica: stability toward water. # Bloodworm teeth: Cu₂(OH)₃Cl, atacamite 9 # Sea Urhic spine ### **Diatoms** Microscopic unicellular algae. Exoskeleton of amorphous SiO₂ Deposits on ocean floor: used commercially (shoe polish, cosmetics...) Figure 4-20. Diatom impressions – the fascinating world of diatoms in the micron range. #### **Exoskeleton formation** Si undersaturated in sea water. Must be actively transported into the cell (monomeric). Figure 4-21. Model of a diatom shell. Polycondenstion is suppressed by a Cofactor (Cof) (unknown) Silica transport vesicles (STV) transport the silica to the cell wall and mineralization takes place in silica deposition vesicles (SDV) Patterning is used to define the shape (mold-prepattern hypothesis) **Figure 4-22.** Model of the silicon metabolism of diatoms. ### Bone: ordered mesoscopic crystalline aggregates Structural material and ion reservoir. Both functions depend on the exact size, shape, chemical composition, and crystal structure of the mineral component, and on their arrangement in the organic matrix. ### General composition: $$Ca_{8.3}(PO_4)_{4.3}(CO_3)_x(HPO_4)_y(OH)_{0.3}$$ y decrease and x increase with age $(x+y \sim constant)$ Nanocomposite material, different layers of organization from the nanoscopic to the macroscopic structure: - Lowest: Crystals and the organic framework (collagen fibrils) and therir relationship - Tens of microns: longer range organisation of collagen and associated crystals - Highest: macroscopic structure of bones. Dense outer layers surrounding a less dense, porous tissue. ## **Crystalline materials** Transition metals: Mainly iron (some manganese) play a role in biomineralization. Dominated by redox properties (energy source), an affinity for O, S and OH, and easy of hydrolyzation. Magnetic properties of mixed valent iron phases are used e.g. for navigation. Magnetite, Fe₃O₄ or greigite, Fe₃S₄. Size and shape is controlled by organic membranes. Aligned, single magnetic domain particles (40-80nm, ferromagnetic). Smaller crystals would be superparamagnetic, larger would be multidomain. **Figure 4-23.** Transmission electron micrograph of a magnetospirillum bacterium (left). The chain of magnetite crystals (magnetosomes) can be seen in the picture to the right. Each magnetosome crystal is about 40-60 nm in length. # **Mineralization processes** Much is still unknown about the molecular interaction in the formation mechanisms of biominerals. Again, precipitation is easy, but controlling size, shape, orientation and assembly of the crystals is not... In biomineralization, the concentration and the nature of the interfaces (mineral-organic matrix and mineral-environment) are of extreme importance. Mineralization takes place in open systems far from equilibrium! Localized compartments (vesicles) surrounded by lipid membranes are very common. Active accumulation of ions against concentration gradient require ion specific pumps or channels. - •Supramolecular preorganization - Controlled nucleation - •Controlled crystal growth - •Cellular processing 15 # Supramolecular preorganization e.g. supramolecular reaction compartment. The mineralization zone is isolated from the cellular environment. - On or in the membrane wall of bacterial cells (epicellularly) - Outside the cell. (e.g. collagen matrix of bone) Many shells or teeth are constructed within lamellar, columnar or reticular frameworks. - Intracellularly by self-assembly. Construction of compartments are mainly based on balancing hydrophilichydrophobic interactions. ### Controlled nucleation by interfacial molecular recognition Controlled nucleation into the framework organized in the first stage. One of the key points in biomineralization. The organized pre-structures consist of functionalized surfaces. Blueprints for site directed inorganic nucleation. Electrostatic, structural, and stereochemimcal regognition. Charge and polarity distribution, curvature... Figure 4-24. Possible modes of molecular complementarity at inorganic-organic interfaces. 17 Concave surfaces are more active due to high concentration of active groups. Planar surfaces allow "biological epitaxy": **Figure 4-25.** The concept of epitaxy as applied to biomineralization. Geometric matching must exist at the interface between a structured organic surface and nuclei of the inorganic crystal. Cation—cation distances in one specific crystal face are commensurate with the spacing of periodic binding sites on an organic surface (i.e., $x \approx y$). Sometimes larger periodic structures may control inorganic nucleation. e.g. collagenes: Bone crystals nucleate in the interstices of crystalline assembly of collagen fibrils.. # **Controlled crystal growth** Nucleation and growth in a supramolecular confined host may result in size limitations, but would not control the morphology Morphology may be controlled by strict control of localized chemical environment. Sometimes different polymorphs are grown in the same system, e,g. Fe_2O_3 nH_2O , γ -FeOOH and Fe_3O_4 or calcite and aragonite in some shells. Spatial localization of ion pumps in the compartment may shape the growing crystal by turning on and off ion flows. **Figure 4-26.** Control mechanisms involved in biomineralization processes (MX = biomineral; for an explanation of (a-f) see text). 20 # Cellular processing Construction of higher order architectures. Example: Organized architecture found in nacre in shells. Plate-like aragonite crystals are organized with layers of sheet-like organic compounds. The organic layers are secreted out periodically during mineralization, resulting in a well organized lamellar structure. Details unknown... **Figure 4-27.** Scanning electron microscope image of the fracture of red abalone shell (*Halitois rufescens*) showing multiple tiling of ≈200–500 nm-thick aragonite (CaCO₃) crystals. Organic layers between the tiles (<10 nm-thick) are not discerned at this resolution. # **Synthetic biominerals** Implants or prostheses: attempts to replicate biological architecture. Currently not possible: Materials must be found to substitute biological materials. Interaction between tissue and biomaterials: - *Bioinert materials*. Minimal interaction with neighbouring tissue. Implants made of metal and porous alumina: cementing or screwing (*morphological fixation*) - *Biocompatible materials*: Interact (positively) with neighboring tissue. Enhances the mechanical stability of the implant. (hydroxyapatite implants are mechanically attached by ingrowth) (*biological fixation*) - *Bioactive materials*: Increase recovering and growth. Resorbable bioactive materials will be slowly replaced by bone. Bioactive, dense, nonporous surface reactive ceramics, glasses and glass ceramics. Attached by chemical bonding. (*bioactive fixation*) ### **Materials** Figure 4-28. Examples for clinical uses of some biomaterials. # Bioactive ceramics and glasses Typical chemical compositions: Na₂O, K₂O, MgO, CaO, Al₂O₃, SiO₂, P₂O₅, CaF₂ Low silica and presence of calcium and phosphate: rapid ion exchange, rapid nucleation and crystallization of hydroxycarbonate apatite. (bone mineral) Stages 1-5 fairly well understood... 6-11 not really **Figure 4-29.** Proposed sequence of interfacial reactions involved in forming a bond between tissue and bioactive glass. Figure 4-31. Scheme of the artificial hip joint coated with a porous coating. Bone Figure 4-30. Artificial hip joint (two-part device). A. The ball portion with the shank. B. The socket portion with two pins for fixation and holes for screws. For a better biocompatibility with the tissue, the prosthesis is coated with either hydroxylapatite (B; left) or titanium powder (B; right). 25 # **Biomimetic materials chemistry** ## Bioinspired materials processing Complex structured composites; difficult to mimic. (so far very limited success.) No system has yet shown the level of control and complexity that is found in biogenic materials. Would be a significant step towards synthesis of "smart" materials. Example: Microemulsion, phospholipid vesicles, proteins and reverse micelles. Formed by surfactant-water mixtures. Used for producing nanoparticles. e.g. magnetite crystals (Fe₃O₄) Variable dimensions (1-500nm), surface functional groups may be modified. Figure 4-32. Membrane-mediated precipitation of metal oxides in phospholipid vesicles. The chemical reaction is as previously discussed (Eq. 4-10). ### **Synthetic surfaces** Synthetic surfaces used for initializing nucleation. Use of surfactant monolayers or surfaces: functionality and packing may be tuned. Example: formation of thin films and size controlled microcrystals of semiconducting sulfides. Diffusion of H₂S through a surfactant monolayer on an aqueous solution of a metal salt. Film formation in a layer-by-layer way. (CdS ~ 30 nm, ZnS ~ 350 nm) Figure 4-33. Schematics of the growth of nanoparticulate metal sulfide films under monolayers. The time of hydrogen sulfide treatment increases from top to bottom. 27 # BaSO₄ Normally rectangular tablets are obtained by precipitation of baryte, BaSO₄. When precipitated in the presence of a monolayer of n-eicosyl sulfate $(C_{20}H_{21}OSO_3^-)$ a morphological change is seen Monolayers of n-eicosyl sulfate BaSO₄ nucleate with the (100) face parallel to the monolayer. The arrangement of sulfate groups simulates the arrangement in baryte, leading to oriented nucleation **Figure 4-34.** Scheme of barium sulfate precipitation in the presence of a monolayer of *n*-eicosyl sulfate.