Solvothermal synthesis

Synthesis from liquids above the boiling point at 1 bar. (The synthesis pressure must be higher than 1 bar)

Hydrothermal/solvothermal

Hydrothermal synthesis: H_2O , temperatures above $100^{\circ}C$.

Other solvents:

- NH₃, HF, HBr, Cl₂, HCl, CO₂, SO₂, H₂S, CS₂, C₂H₅OH, CH₃NH₂, CH₃OH, HCOOH. ++
- NH₃ is a common solvent (ammonothermal)) and carbon dioxide is becoming important.
- 1. Hydrothermal crystallization of large crystals and gem stones
- 2. Hydrothermal synthesis of e.g. powder samples of oxides (e.g. zeolites)
- 3. Hydrothermal leaching (e.g. for treatment of ores.

1

TABLE 1Hydrothermal synthesis: dates.

Started ca. 1845	Year	Name	Arrangement	Comments
Statieu ca. 1045	1845	Schafhäutl	Papin's digestor	quartz microcrystals
Most important for	1848	Bunsen	thick-walled glass tubes	carbonates: forerunner of visual autoclaving
preparation of large	1851	de Sénarmont	glass ampoules in autoclave	mineral carbonates, sulfates sulfides, fluorides: founder
quartz crystals.				of hydrothermal synthesis in geological sciences
Piezoelectric	1873	von Chrustschoff	noble metal lining	protection against corrosive solvents
properties of quartz	1914	Morey	Morey-type autoclave	"closed" system: standard
discovered in 1880	1923	Smith, Adams	internally heated autoclave	very high pressures and temperatures: ≥10 kbar, ≥1400°C
World production in 1985: ca. 1500 tons.	1943	Nacken	foundation for industrial quartz growth	introduction of hydro- thermal synthesis into solid state physics
	1949	Tuttle	"cold seal" or test tube	external pressure regula-
Autoclaves up to			arrangement	tion and measurement. More extensive working
100 liter				range than Morey. Standard.
	1973	Capponi	modified belt apparatus	extremely high pressures and temperatures: ≥100 kbar, ≥1500°C

Quartz crystals

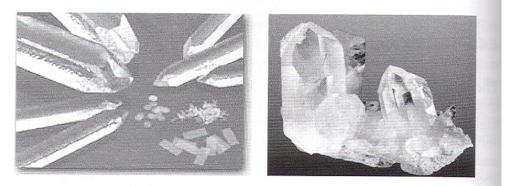
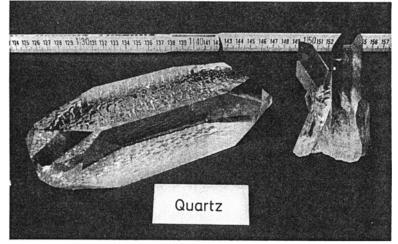



Figure 4-35. Synthetic quartz crystal (left) and rock crystal (right).

Synthetic quartz crystal (left), ca. 1 kg, with natural quartz (right). (R. Diehl, Freiburg.)

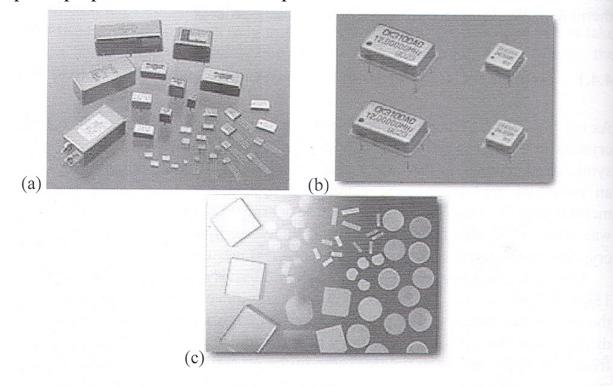

<image><section-header>

Figure 2.11. Growth of quartz crystals in the world's largest autoclave. (Photo courtesy of Dr. Taki.)

5

Quartz crystals, applications

Important in electronics, watches etc. (oscillators) Optical properties, laser windows, prisms, etc.

Figure 4-36. Applications of quartz crystals. (a) as filters; (b) as oscillators; and (c) as crystal wafers or blanks.

Solvothermal, general aspects

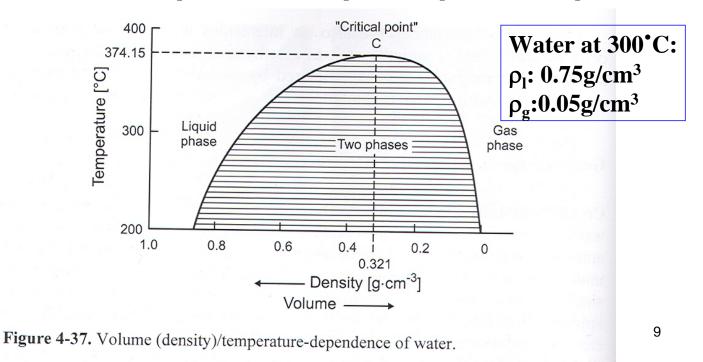
Usually more material can be dissolved at higher temperatures

Properties of water with increasing temperature:

- Ion product increases
- Viscosity decreases
- Polarity (dielectric constant) decreases, but increases with pressure.

Synthesis usually in closed vessels, so temperature-pressure-volume considerations are crucial.

Two methods: •Isothermal: Mainly for powder synthesis •Temperature gradient: Generally formation of larger crystals


Sub- vs. super-critical

Closed autoclave: Autogenous pressure.

Critical point:

Critical temperature: **374.15°C**, Critical pressure: **220 bar (22.064 MPa)** Critical density: 0.321g/cm³

Above the critical temperature and critical pressure: supercritical, fluid phase

P-T diagram. Importance of degree of filling of the autoclave

Autogenous pressure in a closed vessel.

At 32% filling, the water will expand to fill the autoclave at the critical temperature At higher filling degrees, the water will expand to fill the autoclave at temperatures below the critical temperature. This will result in a steep increase in the pressure inside the autoclave, due to differences in compressibility of gas and liquid.

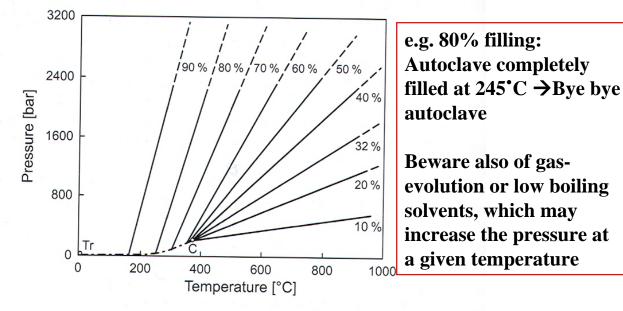
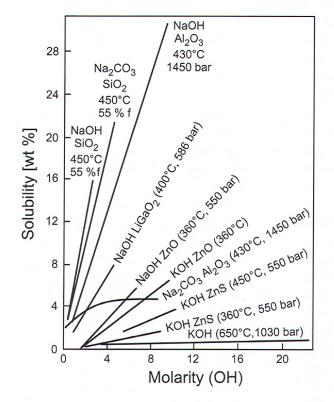
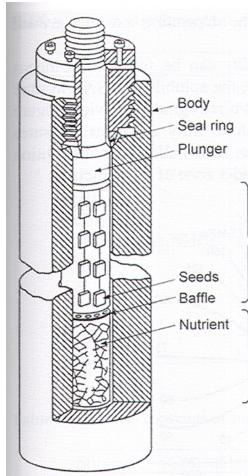



Figure 4-38. Pressure/temperature dependence of water for different degrees of filling of the reaction vessel

Mineralizers

The solubility of the materials is not always sufficient at the synthesis conditions. Mineralizers are used to increase crystallization rates.


Usually F- or OH- (alkali metal hydroxides, salts of weak acids, chlorides...) Quartz is synthesized in a temperature gradient (400-380°C) at 1kbar. The solubility is too low for efficient crystallization at these conditions. NaOH, Na₂CO₃, KOH, NaF may be added as mineralizers. A solubility of 2-5 w% gives growth of ca. 1mm/day SiO₂: 0.5 M NaOH ZnO: 6 M NaOH Figure 4-39. Solubility as a function of the hydroxide

11

Synthesis in a temperature gradient.

concentration for some

hydrothermal systems.

Nutrient (polycrystalline powder of starting material) is placed in the bottom. A perforated disk (baffle) separates the dissolution and growth zones (better thermal gradient), and reduces particle flow (secondary nucleation). Seed crystals with given orientation is placed in the growth zone.

T₁ The temperature in the growth zone is lower than in the dissolution zone. Convection transport the hot liquid up to the growth zone.

Typical requirements:

- T₂Some weight percent solubility
 - 0.001 0.1 w% difference in solubility over $10^{\circ}C$

Figure 4-40. Scheme of an autoclave for hydrothermal single crystal growth.

Retrograde solubility

Sometimes solubility decreases with increasing temperature (retrograde solubility). This is seen e.g. for SiO_2 in pure water (and in salt solutions at higher temperatures).

May be caused by properties of the compound, or properties of the solvent.

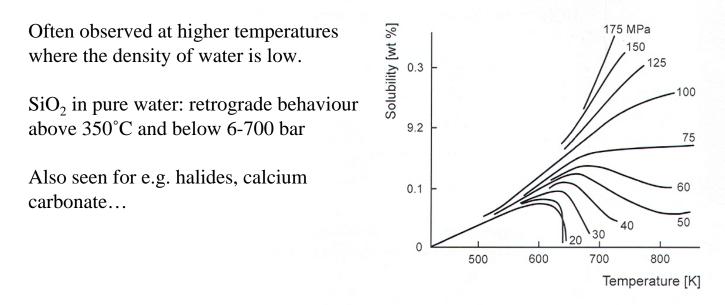


Figure 4-41. Solubility of SiO₂ in water.

Other solvents for solvothermal synthesis

Table 4-3. Examples for hydrothermal processes in non-aqueous environments.

Solvent	Examples of synthesized compounds
NH ₃	nitrides, imides, amides, CsOH, Cs ₂ Se ₂
HF	$MO_{3-x}F_x$ (M = Mo, W)
HCl, HBr	AuTe ₂ Cl, AuSeCl, AuSeBr, Mo ₃ S ₇ Cl ₄
Br_2	SbSBr, SbSeBr, BiSBr, BiSeBr, MoOBr ₃
S_2Cl_2	MoS_2Cl_3 , $Mo_3S_7Cl_4$
S_2Br_2	$Mo_3S_7Br_4$
SeBr ₂	SbSeBr, BiSeBr
$H_2S + (C_2H_5)_3NHCl$	β -Ag ₂ S
C ₂ H ₅ OH	SbI ₃ , BiI ₃
CS_2	Monoclinic Se
CCl ₄	SeCl ₄ , TeCl ₄
C_6H_6	Selenium
CH_3NH_2	CH ₃ NHLi

Critical data

Solvent	Critical temperature [°C]	Critical pressure [bar]
H ₂ O	374.1	221.2
NH ₃	132.3	111.0
Cl_2	144	77.1
HC1	51.4	83.2
CO_2	31.3	73
SO_2	157.8	78.7
H_2S	100.4	90.1
CS_2	279	79
C ₂ H ₅ OH	243	63.8
CH ₃ NH ₂	156.9	40.7
CH ₃ OH	240	81
HCOOH	308	

Table 4-4. Critical constants of some solvents.

15

Advantages of hydrotermal synthesis

Usually moderate temperatures 100-300°C (subcritical) at autogenous pressure.

Some advantages of hydrothermal synthesis:

•It may be possible to synthesize materials below a transformation temperature.

• γ-CuI (transition temperature 390°C

•Quartz, α - β transition temperature ca. 580°C

•Transition metal compounds may be synthesized with unusual oxidation states •CrO₂: hydrothermal at 350°C, 440 bar:

> •Cr₂O₃ + CrO₃ \rightarrow 3CrO₂ •CrO₃ \rightarrow CrO₂ + $\frac{1}{2}$ O₂

•Preparation of metastable phases

•GeO₂ with quartz type structure using quartz seeds

•Formation of zeolites and other microporous materials

Hydrotermal synthesis

Starting materials (solution, slurry, gel, sol) placed in a sealed autoclave Heated to the desired reaction temperature.

Reaction and formation of product (usually by dissolution/precipitation)

Formation of barium titanate (150-250°C)

$$Ba(OH)_2(aq) + TiO_2 \rightarrow BaTiO_3(s) + H_2O$$

Synthesis of zeolites

Zeolites is an example of a group of naturally hydrothermally grown minerals. They were early prepared in the laboratory, and materials with natural counterparts as well as new structure types were prepared.

General composition: $M_{x/n}(Al_xSi_yO_{2(x+y)}) zH_2O$

Stability of the porous structure is obtained by the stabilizing effect of hydrated species (or templates).

May be performed also as solvothermal synthesis (using e.g. ethylene glycol)

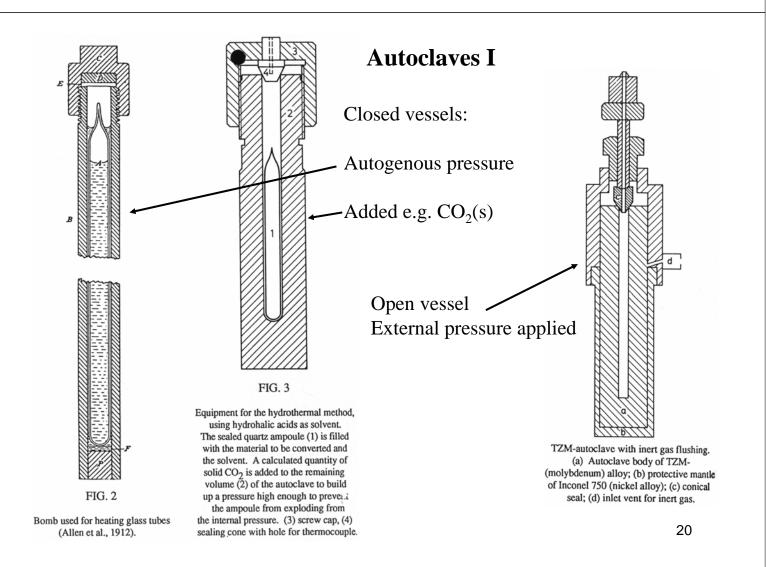
Comparing zeolite synthesis with biological processes

	Zeolites	Unicellular algae
Reaction time	days	shell formation within hours
Concentration of the inorganic precursor	>1 M	<0.001 M
pH	6 - 14	6 - 8
Temperature	125 – 200 °C	4 − 25 °C
Pressure	1 – 100 bar	1 bar
Structural description	compact	shell
	translatorial repetitive	hierarchical
	microporous with uni-	micro- and macroporous
	form pores (typical: 0.3 –	(pore diameters 5 nm to
	2 nm)	μm)

Table 4-5. Technical and biological synthesis of SiO₂-materials.

Hydrothermal leaching

The Bayer process (patent 1888): Industrially important large-scale process for extracting high-grade aluminium hydroxide from bauxite ore.


Bauxite: Mixture of Al(OH)₃ and AlOOH + + (silica, Fe₂O₃...)

Hydrothermal extraction (with concentrated sodium hydroxide solution) via reaction to a soluble aluminate complex:

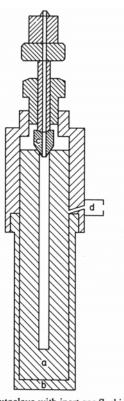
 $Al(OH)_{3} + NaOH \rightarrow NaAl(OH)_{4}(aq)$ AlOOH + NaOH + H₂O \rightarrow NaAl(OH)₄(aq)


Al(OH)₃ is precipitated by cooling, diluting and seeding

Heated to corundum (for aluminium metal production)

Morey autoclave

Everything is heated Up to ca. 400°C, 400 bar Simple to use Autogenous pressure

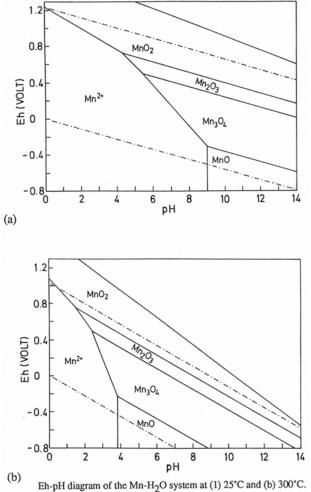


Autoclaves II

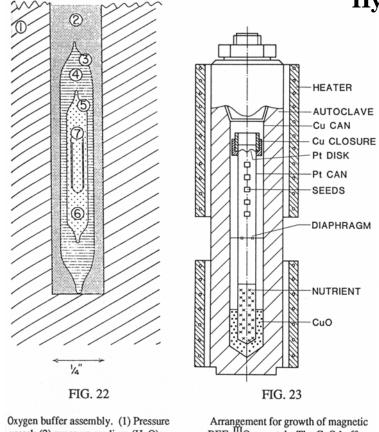
Two principles

Tuttle "cold seal" autoclave

The upper part is outside the furnace (may be water cooled) Pressure is applied from an external source. Up to 1100°C, 5000bar


TZM-autoclave with inert gas flushing. (a) Autoclave body of TZM-(molybdenum) alloy; (b) protective mantle of Inconel 750 (nickel alloy); (c) conical seal; (d) inlet vent for inert gas.

22


Eh-pH diagrams

By controlling the potential and the pH during hydrothermal synthesis, the oxidation state of the products may be controlled.

The Eh-pH diagrams change with temperature (and pressure)

Hydrothermal buffer systems

vessel; (2) pressure medium (H₂O);
(3) sealed gold tube; (4) oxygen buffer;
(5) sealed platinum tube; (6) charge. The open silver crucible (7) protects
the charge before contact with the Pt wall. Arrangement for growth of magnetic REFe^{III}O₃ crystals. The CuO buffer, separated from the reaction space by a hydrogen-permeable Pt partition, prevents the formation of Fe²⁺

By using a buffer system and e.g. hydrogen permeable membranes, the potential during hydrothermal synthesis may be controlled.

xygen (H ₂ O)	Acid - Base
InO-Mn ₃ O ₄	Ag-AgCl
$\ln O_1 - Mn_2O_2$	Ag-AgBr
\ln_3O_4 - \dot{Mn}_2O_3 \ln_2O_3 - MnO_2	Ag-AgI
e-Fe _{1-x} O	Nitrogen (NH ₃)
e-Fe ₃ O ₄	Cr-CrN
e_3O_4 -F e_2O_3	
vo-CoO	Sulfur (H_2S)
li-NiO	Ag-Ag ₂ S ² Fe _{1-x} S-FeS ₂
Cu-Cu ₂ O	Fe _{1-x} S-FeS ₂
luorine (HF)	
$CaSiO_3 + 2HF = CaF_2 + Si$ $CaAl_2Si_2O_3 + 2HF = CaF_2$	$O_{2} + H_{2}O_{2}$
$20 \text{ A1 Si O} \pm 2 \text{HE} = C_2 \text{E}$	\pm A1 SiO \pm SiO \pm H O