

Materials

Definitions of nanotechnology

The term "nanotechnology" was invented by Professor Norio Taniguchi at the University of Tokyo in 1971.

The original definition, translated into English

"Nano-technology' is the production technology to get the extra high accuracy and ultra fine dimensions, i.e. the preciseness and fineness on the order of 1 nm (nanometer), 10⁻⁹ meter in length."

Definitions of nanotechnology NASA's definition

"Nanotechnology is the creation of functional materials, devices and systems through control of matter on the nanometer length scale (1-100 nanometers), and exploitation of novel phenomena and properties (physical, chemical, biological, mechanical, electrical...) at that length scale."

Nanotechnology; early days

- Ca. 400 A.D.: Glass coloured by Ag and Au nanoparticles (Lycurgus cup, British Museum)
- Paintings: Au particles
- 19'th century: Photography; Ag-nanoparticles.
- 1857: Michael Faraday: How metal particles affects the colour of church windows
- 1908: Gustav Mie: Explanation of dependence of colour of glasses on metal size and kind
- 1950-1960: Small metal particles
- 1960s: Ferrofluids

Lycurgus cup, British Museum

Nanotechnology; even earlier days Nano-structures in nature

- Shell: nanobricks and nanoglue
- Nanomotors
- Nanostructure

Complex nanostructed crystals have been prepared showing striking similarities with those observed in biominerals. (a) is nacre in red-abalone. (b) is synthetic ZnO crystals. (c) is a diatom. (d) to (h) are different types of synthetic silica crystals. The morphology depends on the growth conditions and can be controlled.

Particle size dependent luminescence of CdSe

Applications of nanotechnology

Medicine; diagnostics, therapy Genomics; sequencing?

Ferrofluids

Nano-gear

Electronics-Spintronics

Nanostructuring Top down or bottom up approach

Physical methods:•Electron beam lithography•Physical thin film deposition

•Scanning tunneling microscopy

Chemical methods: •Self-organization/self assembly •Nanoparticles

•Chemical thin film deposition

e-beam and deep UV lithography

Scanning Tunneling Microscopy Single atom manipulation

Fullerenes – 1985 (1996)

Robert F. Curl Jr.

Sir Harold W. Kroto

Richard E. Smalley

Properties of carbon nanotubes

- Single walled/multiwalled (SWNT/MWNT)
- Made by: Laser evaporation, carbon arc, Chemical Vapour Deposition
- Metallic/semiconducting depending on "chirality"
- High thermal conductivity (2 x diamond)
- Magnetoresistivity (low temperature)
- Mechanical properties; SWNT
 - Young's modulus 10 times that of steel,
 - 20 times stronger than steel

SEM image of large arrays of well-aligned carbon nanotubes

AMES RESEARCH CENTER CENTER FOR NANOTECHNOLOGY

NASA

Used in NASA presentations

Gadolinium atoms in fullerenes in carbon nanotubes

n	Size (nm) GaAs	N _{atoms} (total)	N _{atoms} (Surface)	Percentage of surface atoms
2	1.13	94	48	51
3	1.70	279	108	39
4	2.26	620	192	31
5	2.83	1165	300	26
6	3.39	1962	432	22
10	5.65	8630	1200	14
15	8.48	2.8•10 ⁴	2700	10
25	14.1	1.3•10 ⁵	7500	6
50	28.3	1.0•106	3.0•10 ⁴	3
100	56.6	8.1•10 ⁶	1.2•10 ⁵	2
1000	570	8•10 ⁹	1.2•107	0.15
106	0.6mm	8•1018	1.2•10 ¹³	0.0000015

Cubic crystal, diamond lattice type, n unit cells on one side

• 1 meter

• 10 centimeters

source: CERN http://microcosm.web.cern.ch/microcosm

Understanding Size

• 1 centimeter

• 100 micrometers

source: CERN http://microcosm.web.cern.ch/microcosm

Understanding Size

• 10 micrometers

• 1 micrometer

source: CERN http://microcosm.web.cern.ch/microcosm

Understanding Size

• 100 nanometers

• 10 nanometers

source: CERN http://microcosm.web.cern.ch/microcosm

Understanding Size

• 1 nanometer