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5. Diffusion 
 

Introduction 

 

Numerous chemical reactions and microstructural changes in solids take 
place through solid state diffusion. In crystalline solids, the diffusion takes place 
because of the presence of defects; vacancies and interstitials. Diffusion also takes 
place along 1- and 2-dimensional defects which include dislocations, grain 
boundaries and surfaces. As diffusion along linear, planar and surface defects is 
generally faster than in the lattice, they are also termed high diffusivity or easy 
diffusion paths. Another frequently used term is short-circuit diffusion. 

The relative contributions of the different types of diffusion in oxides and 
other inorganic compounds are functions of the temperature, partial pressures or 
activities of the constituents of the compounds, the microstructure, grain size, 
porosity etc. Grain boundary and dislocation diffusion generally have smaller 
activation energies than lattice diffusion and as a result they become increasingly 
important the lower the temperature in solids with a given microstructure. 

In the literature on diffusion and diffusion-controlled reactions or processes 
one encounters many different terms that describe the diffusional behaviour under 
different experimental conditions: tracer and self-diffusion of atoms and ions, 
diffusion of defects, chemical diffusion, ambipolar diffusion, a.o. In the following 
chapters these phenomena and terms will be described in more detail. Here we 
will start out with a few simple phenomenological descriptions that will help us 
comprehend diffusion.  

 

Models of diffusion 

 

Fourier’s law of heat flux  

It is a well known phenomenon that heat flows from hot to cold regions. 
Such a flow of heat in a one-dimensional temperature gradient is described by 
Fourier's law 

 

dx

dT
jq κ−=         (5.1) 

 

where jq is the heat flux density, i.e., the flow of heat per unit area of the plane 

through which the heat traverses per second, 
dx

dT
 is the temperature gradient, and 
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κ (kappa) is the thermal conductivity. It may be noted that the minus sign reflects 
that the heat flows from high to low temperatures (downhill).  

 

Fick's first law 

The expression for the flow of particles from high to low concentrations is 
analogous to that for the flow of heat and is given by Fick’s first law: 

 

 
dx

dc
Dj −=        (5.2) 

 

Here, j is the particle flux density, 
dx

dc
 the concentration gradient of the particles, 

and D the diffusion coefficient. As in the equation for the heat flux, the minus sign 
reflects that the particles flow from high to low concentration of particles 
(downhill). This relation is named after A. Fick who first formulated this relation. 
The particle flux and gradient is illustrated schematically in Figure 5-1. 

 

Figure 5-1. Schematic illustration of Fick's first law. The negative of the particle 

concentration gradient is the "driving force" of the diffusion. 

 

j represents the number (or moles) of particles crossing a unit area (cm2 or 
m2) per unit time (seconds). If the concentration of particles is expressed in 
number of particles (or moles) per cm3 and the distance x in cm, the diffusion 
coefficient D has the dimension cm2s-1. In SI units the concentration is expressed 
in number per m3 and the diffusion coefficient has the dimension m2s-1. 

In Fick's first law in Eq. (5.2) the negative particle gradient, 
dx

dc
− , may be 

considered to be an expression of the "driving force" for the particle flux. The 
larger the concentration gradient, the larger the particle flux. When Fick’s first law 
is applied to uncharged (neutral) and independently diffusing particles, it is valid 
in the sense that the coefficient is a constant (independent of concentration and 
gradient). This may apply e.g. to dilute solutions of neutral defects in solids. Such 
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defects may be vacancies, interstitials, and impurities in metals. In ionic solids 
they may comprise neutral interstitial impurities, homovalent substituents, or 
isotopic species. The applicability or inapplicability of Fick’s first law will 
become clearer later in this chapter and in the forthcoming chapters. 

 

Potential gradients as the driving force 

More generally, the driving force for the diffusion constitutes the chemical 
potential gradient of the particles that diffuse (provided that no other forces act on 
the particles). Correspondingly, the driving force for the transport of electrical 
charges is the electrical potential gradient. In the following is given a brief 
derivation of Fick's first law using a potential gradient as the driving force, in 
detail in the case of a chemical potential gradient. 

Let us consider the transport of particles of type "i" across a plane under a 
driving force F. The particle flux density through a plane is given by the product 
of the volume concentration ci of the particles at the plane and the average 
migration or drift velocity vi of the particles, e.g. 

 

ji (number of particles cm-2 s-1)) = ci (number of particles cm-3) .vi (cm s-1)     (5.3) 

 

For uncorrelated movements the drift velocity vi of a particle is proportional 
to the driving force Fi exerted on the particle: 

 

 vi = BiFi        (5.4)  

 

The proportionality factor Bi is termed the mobility ("Beweglichkeit") of the 
particles and is defined as the average drift velocity per unit driving force. It is 
often referred to as mechanical mobility to differentiate it from other types of 
mobility. It basically says something about how easy it is to move the particle. 

The driving force is, in turn, given by the negative of the potential gradient 
normal to the cross-sectional area in the plane 

 

 
dx

dP
F i

i −=         (5.5) 

 

where P is a potential. The negative sign is, as above, due to the fact that the 
transport takes place from higher to lower values of P, see Figure 5-2. 
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Figure 5-2. Schematic illustration of flux through a plane in a potential gradient. 

  

When one combines Eqs. 5.3 - 5.5, the particle flux density becomes 

 

 
dx

dP
Bcvcj i

iiiii −==         (5.6) 

 

Chemical potential gradient acting on neutral particles 

If the particle moves in a chemical potential gradient, the potential P equals 
the chemical potential of particles of type i: Pi = µ i. Equation 5.6 then takes the 
form  

 

 
dx

d
Bcvcj i

iiiii

µ
−==        (5.7) 

 

The chemical potential µ i is related to the chemical activity ai of species i through 

 

 µ i = µ
o

i   + kT lnai       (5.8) 

 

If ideal conditions can be assumed, the activity can be expressed by the 
concentration divided by the concentration in the reference (standard) state:  

 

0
i

i

i
c

c
a =          (5.9) 

 

and the chemical potential gradient is then given by 
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dx

dc

c

kT

dx

cd
kT

dx

d i

i

ii ==
lnµ

      (5.10) 

 

When one substitutes the expression for the chemical potential gradient in Eq. 5.7, 
the particle flux density becomes 

 

 
dx

dc
kTB

dx

d
Bcj i

i

i

iii −=−=
µ

      (5.11) 

 

BikT is termed the diffusion coefficient Di of particles i: 

 

 Di = BikT        (5.12) 

 

By combination with Eq. 5.12, Eq. 5.11 takes the form of Fick's first law as given 
in Eq. 5.2: 

 

 
dx

dc
Dj i

ii −=         (5.2) 

 

It is important to realise that Fick’s 1st law, Eq. 5.2, is fully valid only for ideal 
cases of diffusion of neutral particles in chemical potential gradients. If the 
particles are charged, we need to take into account both the electrical potential 
gradient and requirements to the combination of fluxes to maintain a given total 
current and electroneutrality. These cases will be treated later on. 

In the following, ideal conditions will be assumed and concentrations will 
be used for activities of atoms, ions and various types of defects. But it should be 
recalled that this always represents an approximation. 

 

Simplified model for one-dimensional diffusion 

Following Eq.5.2 the diffusion coefficient represents the proportionality 
constant between the particle flux and the concentration gradient. In order to 
describe the process of diffusion of particles or atoms in solids we need to realise 
that the diffusion represents the sum of a large number of particles or atoms that 
each make a large number of jumps. We will therefore attempt to describe the 
diffusion coefficient in terms of the number of jumps per unit time (the jump 
frequency) and the distance that each particle or atom moves in each jump. 

For this purpose let us consider a simplified one-dimensional model where 
particles jump between parallel planes separated by a distance s as illustrated in 
Figure 5-3. The two neighbouring planes under consideration are termed plane 1 
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and 2. The number of particles per unit area in plane 1 and 2 is termed n1 and n2, 
respectively. Let us further assume that n1>n2.  

Consider now that the particles in plane 1 and 2 may jump from one plane to 
a neighbouring plane at a jump frequency Γ (gamma). The particles in plane 1 
have an equal probability of jumping to plane 2 and to the neighbouring plane in 
the opposite direction. The total number of particles jumping out of a unit area of 
plane 1 per unit time is equal to the product of number of particles per unit area 
times the jump frequency: n1Γ. As the particles may jump in opposite directions, 
the number of particles jumping from plane 1 to 2 is given by ½ n1Γ. 
Correspondingly, the number of particles jumping from unit area of plane 2 to 
plane 1 is given by ½ n2Γ. The difference in the jump rates is equal to the net flux 
density of particles: 

 

 )Γn(nj 212
1 −=        (5.13) 

 

As all particles have the same jump frequency, there is a net flow of 
particles from plane 1 to 2 because there are more atoms per unit area in plane 1 
than in plane 2. 

 

 

Figure 5-3. Schematic illustration of simplified model for one-dimensional diffusion 

 

The number of particles n1 belonging to unit area of plane 1 is given by the 
volume concentration at plane 1, c1, times the extension in the x direction, i.e., the 
plane separation s: 

 

 n1 = c1s    and    n2 = c2s      (5.14) 

 

By combining Eqs.5.13 and 5.14 the particle flux density becomes 

 

 )sΓc(cj 212
1 −=        (5.15) 
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The concentration gradient normal to the planes is termed 
dx

dc
. The relation 

between c1 and c2 can then be expressed by seeing that a difference is equal to the 
gradient times the length; 

 

dx

dc
scc =− 12         (5.16) 

 

By insertion of this into Eq. 5.15 we obtain 

 

 
dx

dc
Γsj

2
2
1−=         (5.17) 

 

This expression applies to one-dimensional diffusion of particles, and the factor ½ 
reflects that only half of all jumps occur in the direction we consider as the flux 
direction.  

If the diffusion can take place in the three orthogonal directions, only one 
third of the particles jump in one direction, and in the three-dimensional case the 
net flux in one direction is 1/3 of the flux of that when all atoms jump in one 
direction only: 

 

 
dx

dc
Γsj

2
6
1−=         (5.18) 

 

By comparing with Fick's first law, Eq. 5.2, it is seen that the diffusion coefficient 
D in the three-dimensional case is given by  

 

 ΓsD
2

6
1=         (5.19) 

 

If we consider a large number of jumps, n, which occurs during the time t, then 

 

 
t

n
Γ =          (5.20) 

 

and inserting this in Eq.5.19, one obtains 

 

 ns2 = 6Dt        (5.21) 
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The expression for the diffusion coefficient in Eqs. 5.19 and 5.21 provides a 
qualitative description of how far diffusion proceeds. By way of example, the 
diffusion coefficient for interstitial diffusion of oxygen atoms in niobium metal at 
800 °C is approximately D = 7.10-8 cm2s-1. The jump distance can be assumed to 
be 1.65 Å (1.65.10-8 cm), and then from Eq. 5.19 the jump frequency Γ is about 
1.54.109 s-1. Thus, each oxygen atom makes a tremendously large number of 
jumps per second. But it should then also be recalled that the atoms vibrate with a 
(Debye) frequency of 1012 - 1013 s-1, and thus only a small fraction - about 1 in 
1000 or 10,000 - of the vibrations leads to a jump. We shall consider this in more 
detail when the different atomistic mechanisms are treated below. 

Although the number of jumps is very large, the mean displacement of each 
atom is relatively small – most of the time it moves back and forth. In the 
diffusion process it is not possible to observe the individual jumps of the atoms, 
and it is necessary to find a relation between the individual atom jumps for large 
number of atoms and the diffusion phenomena which may be observed on a 
macroscopic scale. The problem is to find how far a large number of atoms will 
move from their original sites after having made a large number of jumps. Such 
relations may be derived statistically by means of the so-called random walk 
approach. 

 

Random diffusion 

Let us consider that the jumps of the atoms are random, i.e. that the jumps of 
the atoms are independent of all the previous jumps and can occur in all 
directions. In that case the displacement of a diffusing atom from the starting point 
after n number of jumps, Rn, is given by the algebraic sum of the individual jump 
vectors: 

 

 ∑
=

=++=
n

j

jnn ssssR
1

21 ...       (5.22) 

 

If the individual jumps take place with equal probability in all directions and 
the individual jump distances are equal, this algebraic sum equals zero. This does 
not mean that the diffusing atom remains at its starting point after n jumps, but 
only that jumps in "positive " and "negative" directions are equally probable. In 
fact the total displacement may have any value between zero and ±ns. 

In order to obtain a value for the magnitude (length) of the sum vector, one 
squares Eq. 5.22: 

 

 ∑ ∑∑
−

= +==

+==
1
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j

jnn sssRR      (5.23) 
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If, as above, the individual jump vectors are equal, i.e., |s1| = |s2| ... |sj| = s, 
as, for instance, in crystals with cubic symmetry, and if they are random and 
uncorrelated, then the second term on the right hand side of the equality sign in 
Eq. 5.23 will approach zero for large numbers of jumps, as on an average sj and sk 
have an equal chance of being positive and negative. The first term on the righ 
hand side, on the other hand, is always non-zero and positive, and thus represents 
the average displacement length for a large number of jumps:  

 

 2

1

2
2

nssR
n

j

jn ==∑
=

       (5.24) 

 

The mean displacement is given by the square root of Rn
2 and is termed the root 

mean square displacement: 

 

 snRR nn  2 ==        (5.25) 

 

From this it is seen that the mean displacement is proportional to the square root 
of the number of jumps times the individual jump distance. Figure 5-4 illustrates 
the relationship between individual jumps and total displacement. 

 

Figure 5-4. Random diffusion by n jumps each of distance s gives a long travelled distance 

sn, but a relatively short displacement Rn from the starting point. 

  

By combining Eqs. 5.21 and 5.24 we may express the random diffusion in 
terms of the diffusion coefficient we dealt with in diffusion down a concentration 
gradient in the 3-dimensional cubic case: 

 

 tDnsR rn 622 ==          (5.26a) 
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 tDR rn 6=         (5.26b) 

 

where t is the time during which the mean-square-displacement takes place. One 
may note that we have now started terming the diffusion coefficient Dr (r for 
random walk). Rn is the radius of the sphere that a diffusing atom on average will 
distance itself by from the starting point after time t.  

Let us now consider the displacement in a single dimension (e.g. the x-
direction) as a result of this three-dimensional displacement in the cubic case. 
From simple geometry we have Rn

2  = 3x2 where x2 is the mean square 
displacement in each orthogonal direction. Thus, the mean diffusion length in one 
direction in a three-dimensional cubic crystal is: 

 

 tDx r2=         (5.27) 

 

This length is thus shorter than the displacement radius, since displacements in the 
y and z directions are “wasted” for displacement in the x direction. 

As described above and using oxygen diffusion in niobium as an example, 
the oxygen atoms on an average exchange positions approximately 1.54.109 times 
per second at 800 °C. From the same considerations one may also estimate that an 
oxygen atom has randomly covered total jump distances of 25.4 cm and 914.7 m 
after 1 second and 1 hour, respectively. But what is the mean displacement? From 
Eq 5.27 one may estimate that the one-dimensional root-mean-square 
displacement after 1 hour only amounts to 0.022 cm. Thus, the mean displacement 
is very small and on an average the oxygen atoms spend most of their time 
jumping "back and forth". 

What we did above was to consider random jumps, and then we related 
jumps, times and distances to a term we recognised from earlier, namely the 
diffusion coefficient, and we named it the random diffusion coefficient Dr. The 
diffusion coefficient was in turn something we recognised – while considering 
diffusion down a one-dimensional concentration gradient – from Fick’s first law. 
One should note, however, that random diffusion and the random diffusion 
coefficient can be considered and expressed and quantified also in the absence of 
a concentration gradient and also for charged particles. 

As will be described below, diffusion is often measured by using tracer 
atoms and one then obtains values of the diffusion coefficient of the tracer atoms. 
Depending on the diffusion mechanism the tracer diffusion is in most cases not 
completely random, but is to some extent correlated with previous jumps. This 
will be further discussed later on. 
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Fick's second law 

 

As described above, Fick's 1st law assumes a fixed concentration gradient 
across the plane through which the flux of particles take place. But in numerous 
practical cases the concentration and concentration gradient changes with time. 
Such cases are covered by Fick's 2nd law. This is shown schematically in Figure 
5-5 which illustrates the change in the concentration gradient through the solid. As 
shown in the figure let us consider a region within a solid, enclosed between 
planes separated by the distance dx. The net particle flux density from the region 
of higher concentration into dx is j1 and the net particle flux density out of dx 
towards lower concentration is j2. When j1 is greater than j2 the particle 
concentration in dx increases with time. This requires that the concentration 
gradient in plane 1 is larger than in plane 2, since Fick's 1st law applies in both 
planes (and at any position) at any time. The process is illustrated in Figure 5-5.  

 

Figure 5-5. Schematic illustration of Fick’s 2
nd

 law; the concentration gradient changes 

with time. 

 

The change in concentration per unit time at any position is proportional to 
the gradient in flux at that position  

 

 
x

-
t ∂

∂

∂

∂ jc
=         (5.28) 

 

Although the concentration and concentration gradient change with time, Fick's 1st 
law is valid at any one time and position and thus 
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      (5.29) 

 

If D can be considered to be independent of concentration then  
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The intuition of the qualitative arguments as well as the double derivative of the 
concentration in Eq. 5.30 tell us that particles will flow from convex to concave 
regions in terms of distribution of particles. 

Equations 5.29 and 5.30 are representations of Fick's 2nd law. It may be 
solved explicitly under certain boundary conditions that may be closely 
approximated experimentally (Crank 1956). A couple of examples of this are 
given in the following. 

 

Measurements of diffusion coefficients by tracer 
techniques 

The use of isotopes or tracers is a common means of studying diffusion. 
Tracer methods permit measurements of self-diffusion, that is, the diffusion of the 
crystal components in a crystal. Furthermore, they allow measurements of 
diffusion in homogenous materials, that is, without imposing chemical gradients 
(when one disregards the difference in atomic weight between atoms in the crystal 
and of the tracer). 

A common technique is to deposit a very thin film of radioactive isotopes on 
a plane surface of a sample, and, after subsequent diffusion anneal, determine the 
activity of diffusion species as a function of distance from the plane surface. If the 
thickness of the sample is very much larger than the penetration depth of the 
tracers, the solid can be considered semi-infinite. Furthermore, if the diffusion is 
homogenous (e.g. taking place by lattice diffusion), the concentration of the 
diffusing tracers normal to the plane is through solution of Fick's second law with 
appropriate boundary conditions given by  

 

 )
4

exp(
(2

)(
2

tD

x

tD

c
xc

tt

o −
)

=
1/2π

      (5.31) 

 

c is the activity (or concentration) of the tracer at a distance x from the surface, co 
is the activity originally present on the surface, and t is time of the diffusion 
anneal. Dt is the tracer diffusion coefficient. Following Eq.5.31 it is determined by 

plotting lnc vs x2, in which case the resultant straight line has the slope -
tDt4

1
. 

Plots of c vs x and of lnc vs x2 according to Eq.5.31 are illustrated in Figure 5-6a 
and b, respectively. At the point where the activity is half of the activity at the 

surface, then x = tDt77.2 . This distance corresponds approximately to the root-

mean-square penetration distance (Eq. 5.27). 



5 Diffusion 

 5.13 

 

Figure 5-6. Graphical presentation of relationship between activity, c, and penetration 

distance, x, (Eq.5.31) for homogeneous diffusion of tracer initially deposited as a thin film on the 

surface the solid. a) c vs. x; b) lnc vs. x2. 

 

An alternative way of performing the experiment is to have a constant 
surface composition of the diffusing species. By solving Fick's second law under 
proper boundary conditions the penetration of the diffusing species is then 
described by the relationship 

 

 
2/1

0

0

)(2
1

tD

x
erf

cc

cc

ts

−=
−

−
      (5.32) 

 

where c is the concentration of the diffusing species at penetration distance x at 
time t, cs is the constant surface concentration, and co is the original concentration 
in the solid. Ds is the diffusion coefficient of the diffusing species. Figure 5-7 
shows a graphical penetration of the diffusion profile according to Eq.5.32 in a 

case where c0 = 0. It may be noted that at the point where 
0

0

cc

cc

s −

−
= ½, that is, at 

the point where the concentration of the diffusing species is midway between the 

surface composition and the original composition, then x/ tDt = 0.954. Thus at 

this point x ~ tDt . 

It may be noted that Eqs. 5.31 and 5.32 involve the dimensionless parameter 

x/(2 tDt ), and accordingly the penetration and the amount of the diffusing 

species dissolving in the solid are proportional to the square root of time. 
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Figure 5-7. Graphical presentation of diffusion profile when the surface concentration of 

the diffusing species remains constant with time. It is assumed that co=0 (Eq.5.32). 

 

The penetration by the diffusing species may be measured by means of the so-
called sectioning method, that is cutting, grinding or etching off thin sections of 
layers of the sample parallel to the plane surface and subsequently determining the 
concentration of the diffusing species in each section. By cutting the specimen 
normal to or at an angle to the plane surface, the penetration of radioactive tracers 
may also be measured by means of so-called autoradiography. 

Electron microprobe analysis and secondary ion mass spectroscopy (SIMS) 
combined with sputtering techniques also provide excellent tools for studying 
penetration and diffusion of foreign ions. As oxygen does not have a radioactive 
isotope suitable for tracer studies, SIMS is particularly useful for studying oxygen 
diffusion employing the stable 18O isotope. 

In the isotope exchange method the vapour of the diffusing component 
surrounding the sample is enriched with either a radioactive or an inactive isotope, 
and the diffusion is measured by following the exchange of the isotope with the 
sample. The diffusion coefficient may be evaluated if diffusion is the slower 
process and processes at the surface are rapid. Alternatively, the sample itself may 
be isotopically enriched, and the increase in concentration of the isotope in the 
vapour phase may be measured. 

Diffusion rates may, in principle, also be determined from any property or 
reaction which depends on atomic mobility. By way of illustration, ionic 
conductivity of the anion is directly proportional to the anion diffusion coefficient 
(see Ch. 6 Electrical conductivity). From high temperature solid state reactions, 
sintering, oxidation of metals etc. diffusion coefficients may be evaluated 
provided the detailed mechanism of the processes are known. Examples of this 
will be given in Ch. 7. 

 

Diffusion mechanisms 

 

Lattice diffusion takes place through the movement of point defects. The 
presence of different types of defects gives rise to different mechanisms of 
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diffusion. These are illustrated schematically for elemental solids in the following 
descriptions. But they also apply to metal oxides and other inorganic compounds 
when the diffusion is considered to take place in the sublattices of the cations or 
anions. 

 

Vacancy mechanism 

The diffusion is said to take place by the vacancy mechanism if an atom on 
a normal site jumps into an adjacent unoccupied lattice site (vacancy). This is 
illustrated schematically in Figure 5-8. It should be noted that the atoms move in 
the direction opposite the vacancies. 

 
Figure 5-8. Schematic illustration of vacancy diffusion in solids. 

 

Interstitial mechanism 

If an atom on an interstitial site moves to one of the neighbouring interstitial 
sites, the diffusion occurs by an interstitial mechanism. This is schematically 
shown in Figure 5-9. Such a movement or jump of the interstitial atom involves a 
considerable distortion of the lattice, and this mechanism is probable when the 
interstitial atom is smaller than the atoms on the normal lattice positions. 
Diffusion of interstitially dissolved light atoms, e.g. H, C, N, and O in metals 
provides the best known examples of this mechanism. 

 

Figure 5-9. Schematic illustration of interstitial diffusion in solids. 
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Oxides with close-packed oxygen lattices and only partially filled 
tetrahedral and octahedral sites may also facilitate diffusion of metal ions in the 
unoccupied, interstitial positions. Finally, even large anions may diffuse 
interstitially if the anion sublattice contains structurally empty sites in lines or 
planes which may serve as pathways for interstitial defects. Examples are rare 
earth sesquioxides (e.g. Y2O3) and pyrochlore-type oxides (e.g. La2Zr2O7) with 
fluorite-derived structures and brownmillerite-type oxides (e.g. Ca2Fe2O5) with 
perovskite-derived structure. 

 

Interstitialcy mechanism 

If the distortion becomes too large to make the interstitial mechanism 
probable, interstitial atoms may move by another type of mechanism. In the 
interstitialcy mechanism an interstitial atom pushes one of its nearest neighbours 
on a normal lattice site into another interstitial position and itself occupies the 
lattice site of the displaced atom. This mechanism is illustrated schematically in 
Figure 5-10. 

In the interstitialcy mechanism one may distinguish between two types of 
movements. If the atom on the normal lattice site is pushed in the same direction 
as that of the interstitial atom, the jump is termed collinear (Figure 5-10). If the 
atom is pushed to one of the other neighbouring sites so that the jump direction is 
different from that of the interstitial atom, the jump is termed non-collinear. 

 
Figure 5-10. Schematic illustration of interstitialcy diffusion in solids. Collinear jump. 

 

 

Other mechanisms.     

In elemental solids also other mechanisms have been proposed. The 
“crowdion” is a variant of the interstitialcy mechanism. In this case it is assumed 
that an extra atom is crowded into a line of atoms, and that it thereby displaces 
several atoms along the line from their equilibrium positions. The energy to move 
such a defect may be small, but it can only move along the line or along 
equivalent directions.  

For metals it has also been proposed that diffusion may take place through a 
so-called ring mechanism, but this mechanism is less probable in most oxides or 
other inorganic compounds. A particular feature of this mechanism is that it can 
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involve exchange of sites and thus would contribute to tracer diffusion, but that it 
would not lead to net transport of atoms in any direction. If the atoms were 
charged (ions) this would then not give rise to net charge transport.  

 

Diffusion of protons in metal oxides. 

Protons that dissolve in metal oxides associate with the oxide ions and form 
hydroxide ions. As the proton has no electron shell, it interacts strongly with the 
electron cloud of the oxide ion, and in its equilibrium position in the hydroxide 
ion it is embedded in the valence electron cloud. The O-H bond that is formed has 
a bond length less than 100 pm; this may be compared with the ionic radius of 140 
pm of the oxide ion. 

In principle the protons may move by two different mechanisms: i) the free 
transport mechanism, which is also alternatively termed the Grotthuss mechanism 
or ii) the vehicle mechanism.  

The free transport is the principal mode of transport of protons in oxides, 
and in this mechanism protons jump from one oxide ion to a neighbouring one. 
After each jump the proton in the hydroxide rotates such that the proton reorients 
in the electron cloud and becomes aligned for the next jump. This is illustrated 
schematically in Figure 5-11. The rotation and reorientation is believed to involve 
a small activation energy and the jump itself is considered to be the rate-
determining step. 

 

Figure 5-11. Schematic illustration of free transport of protons in metal oxides (Grotthuss 

mechanism). 

 

In the vehicle mechanism the proton is transported as a passenger on an 
oxide ion. Thus this mechanism may be considered to constitute transport of 
hydroxide ions. The hydroxide ion may in principle move by an oxygen vacancy 
mechanism or as an interstitial hydroxide ion. It may be noted that the hydroxide 
ion has a smaller radius and charge than the oxide ion and may as such be 
expected to have a smaller activation energy for diffusion than the oxide ion. Also 
other species such as water molecules and hydronium ions, H3O+, may serve as 
vehicles for protonic diffusion, notably in relatively open structures.  
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Factors that affect the diffusion coefficient in 
crystalline solids 

 

In Eq. 5.19 we saw that the random diffusion coefficient can be expressed in 
terms of the jump distance and the number of jumps per unit time: 
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We will now further characterise Dr in different crystal structures 
(lattices or sub-lattices) and subsequently derive expressions for the 
temperature and oxygen pressure dependence of diffusion in metal oxides.  

 

Vacancy diffusion 

Let us consider vacancy diffusion in an elemental solid or in a cation or an 
anion sub-lattice. The jump frequency (number of jumps per unit time) Γ depends 
on several factors. First, it depends on the frequency of sufficiently energetic jump 
attempts ω towards an adjacent site. Furthermore, it is also proportional to the 
number of adjacent sites Z to which the atom may jump, i.e., the number of 
nearest neighbour positions of the atom. Finally, the atom may only jump if a 
vacancy is located on an adjacent site, and this probability is given by the fraction 
(concentration) of vacancies in the crystal, Nd. Thus, Γ is in this case given by 

 

 dωZNΓ =         (5.33) 

 

In crystalline solids the jump distance is a function of the crystal structure 
and may be expressed as a function of the lattice parameter. 

In a body centered cubic (bcc) crystal of an elemental solid, for instance, 
each atom has 8 nearest-neighbour positions or atoms, and thus in this case Z = 8. 
From simple geometrical considerations of the crystal structure it may further be 

shown that the jump distance is given by 
2
3

0as = , where ao is the lattice 

parameter. When inserting these values of Z and s in Eqs. 5.33 and 5.19 one 
obtains 

 

 dr NaD ω2
0=         (5.34) 

 

In general, Dr for a cubic structure is written 
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 dr NaD ωα 2
0=         (5.35) 

 

where α is a geometrical factor involving the factor 1/6 (from Eq. 5.21), the factor 
Z from Eq. 5.33 and the relation between the jump distance and the lattice 
parameter. For vacancy diffusion in a bcc lattice α is thus equal to unity. From the 
same considerations it may also be shown that α = 1 for vacancy diffusion in fcc 
lattices. 

 

Interstitialcy diffusion 

Consider an atom on a normal lattice site of a cation or anion sub-lattice. If 
this atom is to move by the interstitialcy mechanism, an atom on a nearest 
neighbour interstitial site has to push the atom on the normal site to a 
neighbouring interstitial site. Thus for this diffusion mechanism an atom may only 
diffuse when it has an interstitial atom on a neighbouring site, and as for vacancy 
diffusion the diffusion coefficient of the atoms is proportional to the fraction 
(concentration) of defects, in this case interstitial atoms or ions in the sub-lattice. 

 

Interstitial diffusion   

When one considers interstitial diffusion of an interstitially dissolved 
foreign species in dilute solid solution, essentially all the nearest neighbour 
interstitial sites of the same type are unoccupied and available for occupancy by 
the diffusing interstitial atoms. Thus the interstitial atom may jump to any of the 
nearest neighbour interstitial sites and in this case Nd is equal to unity. The 
diffusion coefficient of the interstitially dissolved foreign species is then given by  

 

 ωZsDr

2
6
1=         (5.36) 

 

As mentioned above the best known examples of this mechanism is diffusion of 
O, N, C, and H atoms interstitially dissolved in metals. By way of example 
oxygen and nitrogen atoms in bcc metals, e.g. in the group 5 metals V, Nb, and 
Ta, occupy octahedral sites, and in this case each interstitial atom has 4 nearest 
neighbour octahedral sites to which they may jump, thus Z= 4. Furthermore, the 

jump distance s is equal to 
ao
2  . Inserting these values in Eq. 5.36 the diffusion 

coefficient for interstitial diffusion between octahedral sites in a bcc lattice 
becomes  

 

 ω2
06

1 aDr =         (5.37) 

 

Thus in this case α =1/6. 
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Temperature and oxygen pressure dependence 
of diffusion in metal oxides 

 

We will now address how diffusion coefficients vary with temperature and 
activity of the components of the compound, mainly the oxygen partial pressure 
over oxides. In order to evaluate these dependencies one must consider the 
temperature and activity dependencies of Nd (e.g. cf. Eq.5.35) and the temperature 
dependence of ω. We start by analysing Nd for some cases. 

 

Dependencies related to the concentration of defects  

Vacancies in an elemental solid 

For the sake of simplicity let us first consider the case of diffusion by a 
vacancy mechanism in a pure elemental solid. The diffusing atoms may only 
make a jump when a neighbouring site is vacant. Thus the jump frequency n/t is 
proportional to the vacancy concentration and as described in Chapter 3 the 
fraction of vacancies may be written 
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where ∆Gd, ∆Sd, and ∆Hd denote the Gibbs energy, entropy, and enthalpy of 
formation of the defects – here vacancies. In elemental solids ∆Hd is positive and 
the vacancy concentration increases with increasing temperature. 

 

Vacancies in an oxygen deficient oxide. 

In a nonstoichiometric oxide the concentration of the predominating point 
defects will be a function of temperature but also of the oxygen pressure. By way 
of illustration, let us consider an oxygen deficient oxide, MaOb-δ,  in which 
doubly charged oxygen vacancies are the predominating point defects. If intrinsic 
ionisation and effects of impurities can be neglected, the concentration of the 
oxygen vacancies is as described in previous chapters (Eq. 3.57) given by 
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where /
vOK  represents the equilibrium constant for the formation of doubly 

charged oxygen vacancies, and 0
vOH∆  the enthalpy of formation. 
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In such an oxide the oxygen vacancy concentration may also be determined 
by the presence of dopants or a sufficiently large level of impurities with negative 
effective charge. If the dopant is doubly negatively charged (as, for instance, 
Ca2+, an acceptor dopant,  in ZrO2), then 

 

 ][A][ //
MOv =••          (5.40) 

 

In this case ][ ••
Ov  will be independent of oxygen pressure and most often 

temperature (see Chapter 4). 

In a similar manner one may obtain the temperature and oxygen pressure 
dependencies of the concentration of any defect (majority or minority) when the 
defect structure is known. Of course the concentrations of acceptors or donors will 
enter when they dominate the defect situation and the water vapour partial 
pressure may enter when protons are dominating defects. 

 

Temperature dependence of the frequency of sufficiently 

energetic jump attempts ωωωω 

When atoms jump or move between definite sites in the crystal, they have to 
surmount energy barriers. A large part of this energy barrier involves the strain 
energy required to displace neighbouring atoms to create a sufficiently large 
opening between the atoms to permit the atom jump. The potential energy of the 
atom diffusing from one site to another may be qualitatively illustrated as shown 
in Figure 5-12. The potential barrier height is ∆Hm and represents the activation 
energy which the atom has to surmount during the jump. Each atom vibrates in its 
position, and only during a fraction of time given by the Boltzmann distribution 
factor exp(-∆Hm/RT), it possesses sufficient energy to overcome the energy 
barrier. The frequency of sufficiently energetic jump attempts is thus proportional 
to exp(-∆Hm/RT). 

 

Figure 5-12. Potential energy of atom diffusing in a solid. ∆Hm is the activation enthalpy. 

 

A more complete analysis based on the theory of activated complexes and 
on statistical mechanics has been given by Zener (1951,1952). He considered the 
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system or an atom in its initial equilibrium condition and in the activated state at 
the top of the potential barrier which separates the initial position from its 
neighbouring equilibrium position. The rate of transition from one equilibrium site 
to another is given by 
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where ∆Gm, ∆Sm, and ∆Hm represent the Gibbs energy, entropy and enthalpy 
change, respectively, connected with the movement of the atom from the 
equilibrium position to the top of the potential barrier and ν (“nu”) represents the 
vibration frequency. ν is often assumed to equal the Debye frequency, i.e. about 
1013 Hz, as an order of magnitude approximation. ∆Sm is often assumed to be a 
small, positive term (below, say, 10 J/molK). 

As a more detailed analysis of ν,  Zener suggested that ν may be 
approximated as ν  = α/a⋅ ∆H Mm / , where α is a structure- and mechanism-
dependent factor, a is a lattice parameter, and M is the reduced mass of the 
oscillator. Intuitively, a particle vibrating in an energy valley will vibrate faster (υ 
increases) when the walls become steeper (∆Hm increases). One may also view 
the particle as vibrating on a spring; the frequency becomes higher when the 
spring is shorter (α/a decreases), when the spring is stiffer (∆Hm increases) or the 
particle becomes lighter (M decreases). Thus, the temperature-independent (pre-
exponential) term in the diffusion coefficient increases when ∆Hm increases, so 
that the two tend to counteract each other. Experimental observations of this is 
sometimes referred to as the Meyer-Neldel effect (Meyer and Neldel (1937)). 

 

Resulting analysis of the diffusion coefficient Dr 

Vacancy diffusion in an elemental solid.  

From Eq. 5.35 it is seen that the temperature dependence of Dr for vacancy 
diffusion in an elemental solid is determined by that of Nd and ω. For an elemental 
solid with cubic structure, Dr is thus obtained by combining Eqs. 5.35, 5.38 and 
5.41: 
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Experimentally determined values of diffusion coefficients are usually obtained as 
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where Q is termed the activation energy and Do the pre-exponential factor. By 
comparing Eqs. 5.42 and 5.43 it is seen that the activation energy, Q, in this case 
comprises  

 

 Q = ∆Hd + ∆Hm       (5.44) 

 

Correspondingly, Do is given by  
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If experiments are carried out under such conditions that the concentration 
of defects, Nd, is constant and independent of temperature, e.g. at sufficiently low 
temperatures that the defect concentration is frozen in, then Dr  is given by  
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and correspondingly the activation energy is under these conditions given simply 
by  

 

 Q = ∆Hm         (5.47) 

 

Oxygen vacancy diffusion in oxygen-deficient oxides.  

 In an oxygen-deficient oxide in which oxygen vacancies predominate and 
for which effects of impurities can be neglected, the oxygen vacancy 
concentration is given by Eq. 5.39. Correspondingly, the oxygen diffusion 
coefficient for random oxygen vacancy diffusion in the oxide in equilibrium with 
the ambient oxygen gas at a partial pressure becomes 
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Dr thus increases with decreasing oxygen pressure. The activation energy for the 
diffusion is in this case given by  
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m
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If the concentration of oxygen vacancies is determined by lower valent 
impurities or dopants, e.g. when Eq.5.40 applies, then Dr is given by  
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Thus in this case the activation energy is equal to that of the mobility of the 
oxygen vacancies:  Q = ∆Hm. A similar situation would arise if the vacancy 
concentration was frozen in rather than determined by acceptor doping. 

Such a transition from intrinsic to extrinsic diffusion may take place when 
the temperature is lowered from high temperatures, where the native point defects 
predominate, to low temperatures, where the point defect concentrations are 
determined by the impurity concentration or, in other cases, frozen in. The 
temperature dependencies and the corresponding change in activation energy of 
the random diffusion in such a case are illustrated in Figure 5-13. 

The above situations represent ideal cases. As the temperature is decreased 
defect interactions may become increasingly important. This may be treated as 
formation of associated defects. In the non-stoichiometric (intrinsic) case one may 
for instance have association between charged vacancies and electrons forming 
singly charged or neutral vacancies. This will change the oxygen pressure 
dependency of Nd and probably the temperature dependencies of Nd and ω, but 
probably not dramatically. Of larger effect, and more frequently observed, are the 
associations between the mobile vacancies and the relatively stationary acceptors 
in the extrinsic regime: The associated vacancies can be regarded as immobilised, 
and the concentration of mobile vacancies (Nd) starts to decrease with decreasing 
temperature. This is seen as an increasing activation energy of diffusion with 
decreasing temperature in many heavily doped oxides. One may note that instead 
of expressing the effect as a changing concentration of free vacancies one may 
express it as a changing mobility in that the activation energy for diffusion is 
increased by the trapping energy exerted by the acceptor. However, the simple 
model of free and stationary (associated) point defects appears capable of 
explaining most behaviours fairly well. 
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Figure 5-13. The diffusion coefficient for oxygen diffusion by the vacancy mechanism in an 

oxygen deficient oxide in which oxygen vacancies are the predominant native point defects. At high 

temperatures the oxide exhibits intrinsic behaviour and at reduced temperatures extrinsic 

behaviour (i.e. the oxygen vacancy concentration is determined by the concentration of lower 

valent cations). 

 

  

Interstitial diffusion of solute.  

From Eq.5.36 it is seen that Nd does not enter into the expression for the 
diffusion coefficient for interstitial diffusion in dilute solutions, thus in this case 
the activation energy, Q, represents that of the mobility of the diffusing interstitial 
atoms: ∆Hm= Q. 

For interstitial diffusion between octahedral sites in bcc metals Do is by 
combination of Eqs. 5.37 and 5.41 given by  
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Assuming that ν ~ 1013 s-1 and ao = 1.5.10-8 cm, and as it is probable that ∆Sm > 
0, one may estimate a lower limit of Do of 
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The diffusion of protons by the free transport mechanism is another case of 
interstitial diffusion of a solute.  
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Interstitial diffusion of a constituent  

The diffusivity of a constituent such as the host metal or oxide ions by an 
interstitial mechanism is not only proportional to the probability that the 
interstitial defect jumps, but also to the probability that a constituent ion is 
interstitial, i.e., the fractional concentration of interstitials. Thus the diffusion 
coefficient of the constituent contains the temperature and oxygen pressure 
dependencies of the concentration of interstitials in addition to the temperature 
dependency of the diffusivity of the defects. As in the case of vacancy diffusion, 
the fixation of the defect concentration by doping or freezing as well as 
association and trapping of defects apply also to interstitial diffusion. 

 

 

Diffusion coefficients of point defects 

 

In the above treatment of vacancy diffusion, only the diffusion coefficients 
of the atoms have been considered. For many purposes it may be convenient to 
consider the diffusion coefficients of the vacancies themselves. 

When an atom diffuses by the vacancy mechanism, it can only jump if a 
vacancy is located on an adjacent site, and the number of jumps per unit time is 
thus proportional to Nd (Eq. 5.33). However, the vacancy itself can jump to any 
one of the occupied nearest neighbour positions, provided it is occupied by an 
atom. Accordingly the vacancy diffusion coefficient Dv for a cubic system is 
given by (cf. Eq.5.35) 

 

Dv = α ao
2 ω Ν        (5.53) 

 

where N is the fraction of occupied atom positions. In dilute solutions of 
vacancies, N~1, and the diffusion coefficient of the vacancies is then not 
dependent on Nd.  

From Eqs. 5.35 and 5.53 Dv for vacancies is related to Dr for the atoms 
through the relation  

 

 Dr N = Dv Nd        (5.54) 

 

where, as stated above, N denotes the fraction of sites occupied by atoms, often 
approximated as ~1. This relation can be generalised to be a very important and 
useful approximation for any point defect: 

 

 Dr N = Dd Nd        (5.55) 



5 Diffusion 

 5.27 

 

where Dd is the defect diffusion coefficient. It proves to be a good approximation 
for component diffusion by the interstitialcy mechanism. It is also a useful 
approximation for component diffusion by interstitial diffusion in the case of 
small defect concentrations (N~1) but as the concentration of defects increases the 
term N must reflect the number of unoccupied interstitial sites. 

Eq. 5.55 still holds for interstitial diffusion of a dilute solution of an 
interstitially dissolved  solute, such as light elements (H, C etc. in metals or 
protons in oxides), but in this case the number of solute atoms or ions and the 
number of defects is of course the same, so that in these cases the diffusion 
coefficient for the solute and for the (interstitial) defects is the same.  

 

Diffusion of protons in oxides; isotope effects 

 

Transport of protons in an oxide (cf. Fig. 5.11) may be considered according 
to the principles above. For dilute solutions essentially all nearest neighbour oxide 
ions are available, and thus in this case Nd is unity. However, the specifications of 
Z, s and ω are not straightforward in this case. The dynamics of free proton 
diffusion in oxides are complicated by 1) the multistep process (jump+rotation), 2) 
the dependency on the dynamics of the oxide ion sublattice, and 3) the quantum 
mechanical behaviour of a light particle such as the proton. 

The uniquely large ratios between the masses of the isotopes of hydrogen 
give rise to a number of strong isotope effects in the case of diffusion of protons. 
(These are also in principle operative for diffusion of hydrogen atoms or hydride 
ions, but they would be essentially negligible for diffusion of protons on a heavier 
vehicle, such as in OH-.) The isotope effects for proton diffusion can be classified 
as follows: The attempt frequency ν (in the pre-exponential of ω) is given as the 
O-H stretching frequency, and it is given by the inverse of the square root of the 
reduced mass of the harmonic oscillator. The reduced mass equals 
(mO+mH)/mOmH and is roughly inversely proportional to the mass of the hydrogen 
species. Therefore, the ratios of the pre-exponentials of the diffusion coefficients 
of protons, deuterons, and tritons are approximately related by D0H : D0D : D0T = 

1 : 1/ 2  : 1/ 3 . This is called the classical effect. Furthermore, the oscillators 
have different ground-state or zero-point energies, such that diffusion of lighter 
isotopes may be expected to have a slightly smaller activation energy of jumping. 
Accordingly, proton diffusion typically has 0.04 - 0.06 eV lower activation energy 
than deuteron diffusion. This is called the non-classical effect. However, there are 
more factors involved, connected to the fact that the light proton/deuteron/triton 
must be treated quantum mechanically and to their dynamics in a dynamic lattice 
of much heavier oxide ions. For instance, the lighter isotope has a lower sticking 
probability after an otherwise successful jump. In effect, this reduces the effective 
diffusivity of all hydrogen isotopes and it can to a varying degree counteract or 
even seemingly inverse the classical effect. The neglectance of the latter have in 
general made many investigators ascribe higher diffusivities for protons compared 



5 Diffusion 

 5.28 

to deuterons to the classical effect, while in reality the non-classical zero-point 
energy difference appears to be the main contributor to the observed effect. 

The possibility of tunnelling as a major component of diffusion is not 
expected to apply to protons except at very low temperatures, and the orders-of-
magnitude isotope effects that would be expected for proton vs deuteron or triton 
diffusion have not been reported for oxidic materials at elevated temperatures. 

 

Literature 

 

Crank, J. (1956) The mathematics of diffusion, The Clarendon Press, 
Oxford. 

Meyer, W., Neldel, H. (1937), Z. Tech. Phys., 12, 588. 

Zener (1951,1952)…… 

 

Problems 

 

1. Random (self) diffusion 

a) The self-diffusion coefficient of a metal with cubic structure can be 
expressed as 

2

6
1

s
t

n
D =   

where n/t represents the jump frequency (i.e. number of jumps n over a time t). 
Close to the melting point most fcc and bcc metals have D ≈ 10-8 cm2/s.  

i) If the jump distance is 3 Å, what is the jump frequency near the melting 
point?  

ii) What is the relation between this frequency and the vibrational 
frequency? 

iii) How far has one atom traveled after 1 hour? 

iv) What is the root mean square displacement after one hour? 

v)  What is the root mean square displacement in one dimension after one 
hour? 

 

b) For a metal with cubic structure the diffusion coefficient can also be 
expressed as 

dNaD ωα 2
0=  

where α is a geometric factor, a0 the lattice constant, ω is the jump frequency, and 
Nd is the defect concentration. Derive the value for α for vacancy diffusion in a 
metal with fcc structure. 
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2. Defect and self diffusion 

TiO2 is doped with 1 mol% Al3+ acceptors substituting the Ti4+ ions. This 
is compensated by oxygen vacancies. The diffusivity of oxygen vacancies is at a 
given temperature equal to 1·10-8 cm2/s.  

a) Find the concentration (ratio) of oxygen vacancies in the doped TiO2.  

b) Find the self diffusion coefficient of oxygen (oxide ions) in the doped 
TiO2.    
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Answers and hints to selected Problems, Ch. 5 

1. a) i) 7·107 s-1    ii)  to be compared to ca 1013 s-1    iii) 75.6 m      iv) 0.015 
cm    v) 0.0085 cm    b)  α = 1 

2. a) 0.005 (site fraction)      b) 5·10-11 cm2/s 


