
7. Electrochemical transport  

 7.1 

7. Electrochemical transport  
 

Electrochemical potential 
 

In the chapter on diffusion we learned that random diffusion is driven by thermal 

energy and that it in crystalline solids requires defects. Moreover, we learned that a net flux 

of a species can result from a gradient in its chemical potential. In the chapter on electrical 

conductivity we furthermore saw that a net flux of charged particles would result in a 

gradient of electrical potential.  

In ionic media (materials, liquids, and solutions) the chemical and electrical potentials 

act simultaneously, and it is often convenient to combine them into an electrochemical 

potential. For the species i we have 

 

φµη ez+= iii
          (7.1) 

 

This is true whether the species is real or a defect, but in general we shall onwards deal 

mainly with real species and real charges zi.  

The electrochemical potential gradient is accordingly, in the one-dimensional case,  
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The combination of chemical and electrical potentials and potential gradients forms the basis 

for the treatment of all mass transport processes involving charged species (ions) in ionic 

solids, and is the theme of this chapter. The theory is termed Wagner-type after Carl Wagner, 

who was the first to derive it, originally to describe oxidation of metals. 

 

 

Flux equations – Wagner theory 

General derivation of Wagner-type flux expressions 

 

We have seen in a preceding paragraph that a force, expressed as gradient in a potential 

Pi acting on a species i, gives rise to a flux density of that species which is proportional to its 

self-diffusion coefficient Di. By assuming that the potential acting is the electrochemical 

potential, we obtain 
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Via the Nernst-Einstein equation we may substitute conductivitiy for the random diffusivity 

and obtain the following alternative expression for the flux density:  
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If the species is charged, the flux density for i gives rise to a partial current density ii:   
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The net current density in the sample is obtained by summing the partial current densities 

over all the species k: 
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The sample is next assumed to be connected to an external electric circuit. This may be real, 

with electrodes and wires and an electrical supply or load, or it may be absent, in which case 

we say that we have an open circuit. Since the sample makes a series connection with the 

external circuit, the currect in the sample must be the same as in the external circuit. 

For a bare sample, a gas permeation membrane, or for an open-circuit fuel cell or other 

electrochemical device, the total current is zero. For fuel cells or electrolysers in operation, 

on the other hand, the current is non-zero. 

By using the definition of total conductivity, kktot = σσ ∑ , and the definition of 

transport number, 
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This relates the electrical potential gradient to the total (net, external) current density, the 

total conductivity, and the transport number and chemical potential gradient of all charge 

carriers. 

 

From charged to neutral species: the electrochemical reaction  

 

The chemical potentials of charged species are not well-defined, and we need to 

represent them instead by chemical potentials of neutral species. For this purpose we may 

assume equilibria between neutral and charged species and electrons, i.e. in the 

electrochemical red-ox- reaction 

 

−
ze+S=S z           (7.8) 

 

where S is a neutral chemical entity and z may be positive or negative. The equilibrium 

condition for this is expressed in terms of the chemical potentials of products and reactants: 
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and can be rearranged with respect to the ionic species: 
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eSS

-z zddd −=          (7.10) 

 

We insert this for all ionic species n in the expression for the electrical potential gradient. The 

entry (among k) for electrons is left unsubstituted. By using 1=∑ kk t  we obtain 
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for which the chemical potentials now refer to the neutral forms of each carrier.  
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The voltage over a sample 

  

 We now integrate the electrical potential gradient over the thickness of the sample, 

from side 1 to side 2, in order to obtain the voltage over the sample: 
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We further assume that the voltage is measured on each side using the same inert metal, e.g. 

Pt. This eliminates the difference between chemical potentials of electrons on the two sides, 

and the voltage measured between the two sides is  

 

∫∫ ∑−−=−

II

I

n

n

n

n

II

I tot

tot

IIIIII d
ez

t
-dx

i
=U µ

σ
φφ        (7.14) 

 

 Under open circuit conditions, itot=0, and we obtain 
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We shall later see how this is used to calculate transport numbers based on open circuit 

voltage measurements of cells exposed to a well-defined gradient in chemical activities. 

Alternatively, if tn is known to be unity for ionic charge carriers this expression will yield the 

open circuit voltage of a fuel cell or a galvanic sensor. 

 If current is drawn from the sample, as in a fuel cell or battery under load, we need to 

know how itot varies with x. If we assume that it is constant, we get  
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where X is the thickness of the sample and rtot is the area-specific resistance of the sample. 

Alternatively, itotrtot (current density and area specific resistance) may be replaced by IR, 

(sample resistance and current): 

 

∫∑−=−

II

I

n

n

n

nIII d
ez

t
-IRU µ           (7.17) 

 

 The voltage of a fuel cell or battery is thus composed of a thermodynamic part that 

arises from the chemical gradient, and the well-known “IR”-term which arises from the 

limiting kinetics (transport) in the sample. The letters “IR” may be taken to reflect current 

times resistance, or to mean “internal resistance”. We will later see that the direction of the 

current ends up such that the IR-term reduces the voltage over the fuel cell or battery. 

 

Flux of a particular species i 

 

 One of the general expressions for the electrical potential gradient can now be inserted 

in an expression for the flux density of an individual species (Eq. 7.4) or the corresponding 

partial current density (Eq. 7.5). Since these two sum over chemical potential gradients of 

charged species, we may conveniently use Eq. 7.7 for our purpose. Inserting this into Eq. 7.4 

and rearranging yields 
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The first term in the right hand side simply says what we expect: If there is a net current, a 

flux density of species i will be set up proportional to the total current density and the 

transport number ti, divided by the species’ charge. 

 The equation above is a rather general expression that we can use to calculate flux 

densities of one charged species in the company of many other species. However, it reflects 

the flux density and gradients and properties at a particular point through the membrane. The 

gradients will adjust according to the varying materials properties so as to maintain a constant 

flux density everywhere – what we call steady state. In order to implement this, we integrate 
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the flux density expression over the thickness of the membrane and require that the flux 

density remains constant: 
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If the transport number ti and the total current density itot can be taken as constant through the 

membrane we further obtain: 
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Wagner-type transport theory case studies 
 

Oxides with transport of oxide ions and electrons 

 

General equations 

We will now apply the general theory to a number of cases. The cases we will consider 

first comprise an oxide that may conduct oxide ions and electrons. Flux equations for the two 

species are 
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By summing up the currents from the two we obtain (as in Eq. 7.7) the expression for the 

potential gradient:  
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In order to relate the potential gradient to the chemical potential of neutral species we 

introduce electrochemical equilibria between neutral and charged species of oxygen: 

 

O2e4+(g)O
2

2
−− =          (7.24) 

 

for which equilibrium can be expressed by 
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Introducing this we get  
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and knowing that the sum of transport numbers for oxide ions and electrons in the oxide we 

have defined is unity, we further get 
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whereby we have exemplified Eq. 7.11. We now integrate over the thickness of the sample to 

obtain the voltage over it, eliminating the chemical potential of electrons (as in Eq. 7.14 and 

onwards): 
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Using  
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we get 
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If tO −2  is independent of the oxygen partial pressure, or if we can assume as an approximation 

that an average tO −2  is constant over the pressure range applied, then 
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where EN is the Nernst-voltage of the oxygen concentration cell. 

 

Open circuit voltage of concentration cell for transport number measurements 

 The equation above can be used to measure the average oxide ion transport number, by 

measuring the open circuit voltage (OCV) over a sample exposed to a small, well-defined 

gradient in partial pressure of oxygen: 
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Galvanic oxygen sensor 

 By using a material with 12 =−tO , i.e. a solid electrolyte, and a well-defined reference 

partial pressure of oxygen, the OCV can be used for measuring an unknown partial pressure: 
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Fuel cell  

 If we apply a solid electrolyte with 12 =−tO  and expose it to a gradient in oxygen partial 

pressure, we get  
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 This would be the voltage of a fuel cell. With I = 0, we obtain the OCV of the cell to be the 

Nernst voltage, of course. We furthermore see that the cell voltage diminishes due to the IR 

loss at increasing current, I. A plot of U vs I gives –R as the slope.  

 The power delivered by the cell is the current multiplied with the voltage; 

 

NIERIUIP +−== 2            (7.36) 

 

and it goes through a maximum at U=EN/2. Under these conditions, the power is split half-

half between external work and internal loss, so the electrical efficiency is no more than 50%. 

The efficiency increases as the power and current decrease, and fuel cells are commonly 

designed to run at around U=2/3 EN. 

 

Mixed conducting oxygen permeable membrane 

 Now we will show how we obtain the flux of oxygen through a mixed conducting 

oxygen membrane material. As mentioned in the general section this is done by inserting the 

electrical potential gradient back into the flux equation for oxide ions. Using e.g. Eqs. 7.21, 

7.23, and 7.25 we get: 
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The steady state restriction is introduced by integrating over the thickness of the membrane: 

 

µ
σ

)(2 2

22

22

82
gO

II

I

eO

II

I

totO

O

II

I

O
d

e

t
dx

e

it
Xjdxj ∫∫∫

−
−−

−− −−==       (7.38) 

 

pdt
Xe

kT
dxt

eX

i
j

O

II

I

eO

II

I

O

tot

O 2
222 ln

82 2 ∫∫ −−−− −−= σ        (7.39) 

 

If itot is not zero, i.e., some external current is drawn, then the first term says that the oxide 

ion flux is proportional to that current and to the oxide ion transport number. If the latter is 

independent of x, then the integral is straightforward. The last term adds to the flux; it is 

driven by an oxygen pressure gradient, and it is proportional to the oxide ion conductivity and 

the transport number of electrons. This term describes permeation of oxide ions, requiring 

transport of both oxide ions and electrons. Moreover, it is inversely proportional to the 

thickness of the sample, X. Under open circuit conditions we may simplify to get: 
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We now apply our derived expression for the example case of an oxygen-deficient oxide 

MO1-x. This contains oxygen vacancies compensated by electrons, and we have earlier shown 

that the defect concentrations are given by 
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and when we insert these in the flux expression we obtain 
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which integrates into 
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One may note that we here have utilised the Wagner approach for electrochemical transport 

of two defect species and combined it with the solution of the defect chemical equilibria to 

obtain an accurate description of the flux of oxide ions. Numerical values for the flux of 

course require that one knows 0σ , which contains many parameters relating to formation and 

mobility of the defects. In the right-hand parenthesis the negative exponent –1/6 has the 

consequence that the smaller of the two partial pressures of oxygen has the biggest influence. 

The larger partial pressure makes a comparatively smaller difference and may be neglected to 

a first approximation for large gradients. For instance, consider a gas separation membrane 

exposed to air on the one side and a very reducing gas (e.g. methane) on the other. The flux 

would then be essentially proportional to 
6/1)(

2

−red

Op  while it would largely be independent of 

ox

Op
2
. It would thus not help much to compress the air to 100 atm, while removal of oxidised 

products like H2O on the reducing side would lower 
red

Op
2

 and have a large effect. 

 

Ambipolar diffusion and conduction 

 

We have seen above that the transport coefficient term that enters in the flux of oxide 

ions in a mixed oxide ion conductor is a product which we may call the ambipolar 

conductivity 
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This reflects the fact that so-called ambipolar conduction of two species is necessary (in this 

case for charge compensation). 

The corresponding terms transformed to diffusivities are called the ambipolar diffusion 

coefficients for oxygen: 

 

tD=D eOamb --2           (7.45) 

 

Such terms, like partial conductivity and self-diffusion, reflect thermal random mobility 

as before, but are restricted by the slower of the two ambipolar diffusing species (ions or 

electrons). 

Many other cases of combined transport coefficients are in use, e.g. the combined 

(additive) transport of oxygen and metal ions commonly that we shall address later (and 

exemplify by the high temperature oxidation of metals), the combination of two diffusivities 

involved in interdiffusion (mixing) processes, and the mass transport in creep being rate 

limited by the smallest out of cation and anion diffusivities in a binary compound. As some 

of these sometimes are referred to as ambipolar or chemical diffusivities, we want to stress 

the above simple definition of ambipolar transport coefficients as relevant for membrane 

applications using mixed conductors. 

 

 

Chemical diffusion and tracer diffusion  

General case 

 

The chemical diffusion coefficient is the phenomenological coefficient that enters a 

Fick's 1st law expression of diffusion in a concentration gradient: 
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Unlike our previous treatment in this chapter (which uses Dr, B, u or σ), Fick’s 1
st
 law and the 

chemical diffucion coefficient says in general nothing directly about the self-diffusion 

coefficient. Neither is, as we shall see, the chemical diffusion coefficient in general a constant 

in any sense. Only when the species i is an effectively neutral particle that moves 

independently of other species will the chemical diffusion coefficient be identical to the self-

diffusion coefficient. If the flux and the concentration gradient are in terms of an isotope 

(tracer), the coefficient is the tracer diffusion coefficient, which is almost equal to the self-

diffusion coefficient:  

 

Df=D rt           (7.47) 

 

where the correlation factor f is a number usually equal to or somewhat smaller than unity, 

depending on structure and diffusion mechanism, reflecting the difference of transport 

between distinguishable and indistinguishable diffusing species. For vacancy diffusion, f 

usually falls around 0.75 depending on structure. 

Chemical diffusion is sometimes referred to as diffusion under a chemical potential or 

concentration gradient. However, we have seen that self-diffusion properly describes this, and 

that all diffusion phenomena we consider here are merely minor perturbations of thermally 

induced self-diffusion. Why then do we need to be concerned with chemical diffusivity? We 

use it whenever we want to or have to relate our flux to the concentration gradient. Under 

steady state processes, our flux vs force equivalents provides sufficient description, and can 

be integrated to yield steady state fluxes through membranes, as we have shown; Thus, for 

this purpose, the self-diffusion coefficients and conductivities are useful since they behave in 

a simple manner vs defect concentrations, and since we in general know the chemical and/or 

electrical potential gradents applied. However, if we know the concentration gradients and 

how the chemical diffusivity varies with concentration, we can use chemical diffusivity. 

In a transient experiment, however, parts of the material take up or give away matter 

(leading to changes in the concentration of species with time). This is sometimes referred to 

as a capacitive effect and is expressed in Fick's 2nd law: 
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If D is independent of c and thus of x and t, then we can simplify to obtain:  
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Mathematical solutions for interpretation of transient tracer, thermogravimetric and electrical 

conductivity experiments are based on this. The diffusion coefficient obtained is the tracer 

diffusion coefficient in case of a transient in isotope composition (whether measured 

radiographically, mass spectrometrically, thermogravimetrically or electrically) or chemical 

diffusion coefficients in case of a transient in chemical composition (measured 

thermogravimetrically or electrically or by other means). The latter is usually executed by 

stepping the oxygen activity by gas composition, total pressure, or electrochemical means. 

It may be noted that certain tracer experiments actually yield an interdiffusion 

coefficient between two tracers. The diffusion coefficient for oxygen in practice cannot and 

need not distinguish between the different isotopes in use (usually 
18

O and 
16

O, more rarely 
17

O). However, for protons, the difference to deuteron (or triton) transport coefficients is 

considerable (e.g. a factor of 2) and should be taken into account when interpreting the 

results. 

The multitude of transport coefficients collected can thus be divided into self-diffusion 

types (total or partial conductivities and mobilities obtained from equilibrium electrical 

measurements,  ambipolar or self-diffusion data from steady state flux measurements through 

membranes), tracer-diffusivities, and chemical diffusivities from transient measurements. All 

but the last are fairly easily interrelated through definitions, the Nernst-Einstein relation, and 

the correlation factor. However, we need to look more closely at the chemical diffusion 

coefficient. We will do this next by a specific example, namely within the framework of 

oxide ion and electron transport that we have restricted ourselves to at this stage. 

 

Chemical diffusivity in the case of mixed oxygen vacancy and electronic 

conductor 

 

In a system with oxygen vacancies as the only oxygen point defects, the concentration 

of oxide ions is the concentration of oxygen sites minus the concentration of vacancies:  

 

c-c=c v

0

OO
..
O

-2-2           (7.50) 

 

such that  



7. Electrochemical transport  

 7.15 

 

dx

dc
-=

dx

dc vO
..
O

-2

          (7.51) 

 

We manipulate this in the following manner: 
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and insert the result into the flux equation for oxide ions, Eq. 7.37 (open circuit, itot = 0):  
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We have thus derived an expression for the flux that relates it to the concentration gradient of 

oxide ions. We may now therefore compare this expression with that of the oxygen flux in 

terms of Fick's 1st law involving the concentration gradient in oxide ions and the chemical 

diffusion coefficient: 
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and we obtain  
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Further, by using the Nernst-Einstein-relation and inserting the relation cD=cD VVOO
..
O

..
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-22  we 

get 
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Thus, depending on the p
O2

-dependency of the vacancy concentration, the chemical 

diffusion coefficient becomes a varying function of the vacancy (defect) self diffusion 

coefficient. When the sample is mainly an electronic conductor and the transport number for 

electrons is unity, the collection of remaining terms (the enhancement factor) takes absolute 

values from 1 to 3 when the sample has a variable non-stoichiometry, while it increases 

beyond this (and can take on very large values) as the stoichiometry approaches a constant 

value, as in certain doped materials or materials with prevailing point defect (Schottky or 

Frenkel) disorder; the vacancy concentration is then close to independent of p
O2

.  

The full range of aspects of chemical diffusion coefficients make them rather difficult 

to translate  into other transport coefficients, and they tend to live their own lives in the 

literature. They can, as said before, be applied directly to calculate fluxes in membranes if the 

concentration gradients through the membranes are known. However, we note that the 

chemical diffusion coefficient (for oxide ions) is 

- proportional to the self diffusivity of the oxygen defect (here the vacancy), 

 - proportional to the electronic transport number (but which is often unity),  

- enhanced by the term c/2dpd VO O2
lnln , which for various limiting cases of 

simplified defect situations takes on values of 1, 3 or 4, and  

- fully forwards and backwards transformable into defect diffusivities (and in turn 

self diffusivities) if we know the transport numbers and how defect concentrations vary 

with pO2. 

 

 

Surface and interface kinetics limitations 

 

The flux of matter through a fuel cell or electrolyser is limited by the electrolyte (ionic) 

resistance, the electrode kinetics, and the external electronic load resistance. We commonly 

express the steady state situation and the fact that the current is the same through the entire 

closed circuit in terms of the voltage drops around the circuit: 
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)+(-RI-E=E
aciN ηη         (7.57) 

 

where I is the current, EN is the open circuit (Nernst) voltage, Ri is the ionic electrolyte 

resistance, and ηc and ηa are the cathode and anode overpotentials, respectively. (The 

conventions and practices on measuring and reporting the sign of various voltages may vary, 

so that the equation may take various forms with respect to signs).  

Similarly, the flux of matter through an electrodeless gas separation, mixed conducting 

membrane will be limited by ionic conduction, the surface kinetics, and by the internal 

electronic resistance, the latter replacing the external circuit in the previous case. 

However, we may need to express the loss of potential in terms of the chemical 

potential of oxygen instead of loss of electrical potential, as in the case with electrodes. 

If we look at the system without any gradients or currents applied, there will be 

equilibrium at both the electrodes and the surfaces. Depending on the application and the side 

of the membrane, the electrochemical processes in operation on an oxide ion conductor may 

vary, but a typical pair would be:  

 

O2e4+(g)O
-2-

2 =          (7.58) 

 

e+O(g)HO+(g)H
-

2
-2

2 2=         (7.59) 

 

In these the electrons can be supplied to or from an electrode or a mixed conductor surface. 

Thus, basically, the reactions are the same in the electrolyte/electrode as in the mixed 

conductor, although the physical presence of the electrode can promote (by catalysis) or 

obstruct the reaction.  

Most surface reactions are believed to be made up of a sequence of reactions steps. 

Some possible step reactions in the case of the reduction of oxygen gas are given by the 

following reaction sequence; 

O(g)O ads2,2 =  

Oe+O
-

ads2,
-

ads2, =  

O2e+O
-
ads

--
ads2, =  

Oe+O
-2

ads
--

ads =  
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OO
-2

O
-2

ads =  

The last of these steps may involve bulk defects (e.g. a vacancy that the adsorbed ion may 

occupy) but we will not attempt here an analysis of surface or electrode kinetics in terms of 

defect chemistry. Determination of the nature of the rate limiting step of a reaction is a 

difficult task. Studies of surface exchange kinetics using 
18

O or by relaxation methods can 

give information about the temperature and pressure dependence of the rate determining step. 

However, it should be pointed out that information from such methods do not give direct 

information about the exact mechanism and which intermediate species that are involved. 

Each step will have its own specific rate and resistance to the mass transport across the 

membrane. In lack of detailed knowledge of the rate limiting step(s) we normally have to 

relate to the overall reaction. 

At equilibrium the overall reaction takes place forwards and backwards at equal rates r0 

as a result of thermal energy (as for random diffusion). The activation process back and forth 

may not be symmetrical in this case, but that will not affect us at present. Similarly to the 

random diffusion coefficient connected with these thermal disorders in bulk (Dr = 1/6 r0 s
2
) 

we introduce an exchange coefficient for interfaces; ki = r0si which says something about the 

thermal fluctuations of the reaction across the interface of thickness si. We can alternatively 

express this as an exchange flux density  

 

csr=ck=j i0i0
         (7.60) 

 

or an exchange current density  

 

necsr=neck=nej=i i0i00         (7.61) 

 

where n is the number of electrons involved in the reaction. If we now apply a small force 

over the interface, we get a perturbation and a net flux, given by 

 

kT

dP
k-c=j i           (7.62) 

 

where c is the volume concentration of species in the interface, and dP is the potential step 

over the interface. The net current density is 
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kT

dP
i=

kT

dP
kcne=jne=i 0i         (7.63)  

 

If dP is taken as the electrical (over-)potential energy step affecting the reaction, dP = ηne 

and the overpotential becomes 

 

i

i

ne

kT
=

0

η           (7.64) 

 

This is the linear or ohmic (small overpotential) form of the kinetics expression, as we expect 

from our specification of small forces and perturbations. We note that the interface thickness 

si has dropped out and is mostly not an interesting parameter at this level. 

By measuring the overvoltage vs current density by voltammetric DC or impedance 

spectroscopy AC methods, we may obtain the charge transfer resistance 

 

cken

kT
=

ine

kT
=

i
=R

i
22

0

e

η
        (7.65) 

 

The overpotential enters directly into the sum of voltages over the fuel cell or electrolyser 

circuit, and we can solve the system in terms of current and voltage. As the force and 

perturbations of the reaction become larger, the full so-called Butler-Volmer exponential 

dependence of current and flux on overpotential (and force) must be taken into account: 

 

)
i

i
(

ne

kT
=

0

lnη           (7.66) 

 

, but we will not elaborate on this here. 

In order to approach an interpretation of transport measurements, we take as starting 

point that the flux(es) through the interface must be the same as that in the bulk of the 

membrane next to the interface in all cases (and in the entire membrane in the steady state 

cases). This is done in reality and in the mathematical solutions by adjusting the potential at 

the border between the interface and the bulk so as to equalise the two fluxes. However, this 

soon becomes difficult, as it is not trivial to choose the proper set of potentials to apply for 

different interface processes. 
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We resort first to chemical diffusion and assume that the interface process is one which 

can be described as species flowing from a high to a lower concentration. Then 

 

c-k=)
dx

dc
D(- interfacebulk

∆         (7.67)  

 

, and D as well as k must refer to chemical coefficients. This requirement can be included in 

the solution of Fick's 2nd law for transients, and D and k can in principle be found 

independently by fitting transient data to this solution. The k's obtained in this way can be 

used to predict steady state fluxes if they are measured as a function of e.g. p
O2

 or at the p
O2

 

extremes which the membrane is going to be subjected to. Otherwise, the k values are not 

immediately easy to relate to other data.   

In a tracer experiment, we obtain Dt which is close to the random (self) diffusivity 

(Dt = f Dr) and then the exchange coefficient should also reflect the tracer exchange 

coefficient kt . ki and this should be comparable to that calculated as above from 

measurements of Re; the difference should say to what extent the presence of an electrode has 

changed the kinetics of the rate limiting step of the surface reaction. 

In order to analyse the effect of interface kinetics on fluxes through a membrane under 

steady state conditions, we may take an approach similar to that for fuel cells and 

electrolysers. Principally, no electrodes are involved, and voltages are therefore not directly 

appropriate as in the other cases. Instead we may sum up chemical potential changes of 

oxygen (or hydrogen) through the membrane and its interfaces. We start out with the 

membrane interior, and from earlier we have for a mixed oxide ion and electron conductor of 

thickness L (earlier also referred to as X or ∆x): 

 

µ
σ

)(2 2

2

2

8

1
gO

II

I

eO

O
d

e

t

L
j ∫

−−

− −=           (7.68) 

 

If we introduce ambipolar diffusivities and conductivities and assume these constant, the 

equation may be integrated to obtain 

 

Le8
=

L2kT

cD
=j O

2

ambOOamb

O

22
-2

2

µσµ ∆∆
       (7.69) 
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and, by rearrangement, the chemical potential drop over the bulk of the membrane is  

 

σ
µ

amb

2

O

Oamb

O

O

Le8j-
=

cD

kTLj2-
=

2

-2

2

2
∆        (7.70) 

 

This drop over the membrane bulk is given by the external full gradient minus the losses at 

the interfaces. In the present terms, the flux through an interface is, from Eqs. 7.62 and 7.65 

given by 

 

Re8

-
=

2kT

kc-
=j

e
2

interface

O

interface

OiO

O

22
-2

-2

µµ ∆∆
         (7.71) 

 

such that, by rearrangement, 

 

Re8j-=
ck

kTj2-
= e

2

O

Oi

Ointerface

O
2

-2

2

2
µ∆        (7.72) 

 

Now, we sum up the total gradient in chemical potential of oxygen over the bulk of the 

membrane and the two interfaces  

 

µµµ
interface

O

bulk

O

tot

O 222
2+= ∆∆∆         (7.73) 

 

and after insertion of the above expressions for bulk and interface, we can solve for the flux 

of oxide ions through a membrane with two equally contributing interfaces under the 

conditions given: 

 

R2+
L

e8/-
=

k

2
+

D

L

/2kTc-
=j

e
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O
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O
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O
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σ

µµ ∆∆
       (7.74) 
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This result simply states that the flux is given by the driving force (which easily transforms to 

Nernst voltage) divided by the total ambipolar resistance, in our case namely that of the bulk 

and twice that of one interface.   

In lack of full understanding of the relations involved in interface kinetics of 

membranes, we may refer to a critical thickness; the thickness of the bulk membrane where 

the interface and bulk impose equally large restrictions on the flux. In any membrane 

application, going much below this thickness is not of much use. We see from the above that 

this thickness is Lcrit=D/k for the thickness of the part of a membrane relating to one 

interface, or Lcrit =2D/k for thickness of a membrane with two equally limiting interfaces, 

typically the two surfaces. 

 Experimentally the value of Lcrit has been found to be of the order of 100 µm for many 

polished samples of different fluorite and perovskite materials. There are indications that 

there is a close relationship between e.g. vacancy concentration in bulk and the surface 

exchange kinetics. Roughing the surface should increase relatively the surface flux, and this 

has been shown to work. 

 

Ionic transport of both anions and cations 
  

General expressions 

 

 We have in the previous section considered ionic transport by oxide ions (anions) only. 

This was done for simplicity, because it represents many real applications, and because oxide 

ions relate most directly to the oxygen (non-metal) activity which we may control most 

conveniently. 

 Now we will include cation (metal ion) transport. Some systems have predominant 

transport of cations, and we thus need to see how this relates to the non-metal activity. Some 

systems have both anion and cation transport so we need to take both into account. In some 

cases we may not know which one is dominating and as we shall see it is not always possible 

to distinguish them. 

In an inorganic compound the total ionic current density, iion, is given by the sum of 

the current densities of anions, ian, and the cations, icat. From our previously derived 

expressions for partial current densities we thus obtain 
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where zan and zcat represent the valences and thus ionic charges of the anions and cations, 

respectively. 

In order to relate the current density of the cations and anions let us consider the 

equilibrium involving the formation of the compound MaOb from its ions: 

 

ba

zz
OMbOaM ancat =+         (7.76) 

 

Through the Gibbs-Duhem relation, equilibrium in this reaction may be expressed as 

 

)(sOMOM baanzcatz dbdad µµµ =+        (7.77) 

 

The fact that 0)( =sOM ba
dµ  arises from MaOb(s) being a pure condensed phase. It may further be 

noted that  

 

ancat bzaz −=           (7.78) 

 

so that we obtain the very important expression 

 

dx

d

z

z

dx

d

a

b

dx

d an

an

catancat µµµ
=−=        (7.79) 

 

From this we note that the cation and anion chemical potential gradients are the negative of 

each other in a binary compound, a relation that is used extensively, be it mathematically or 

by intuition. 

By adding 
dx

d
ezcat

φ
  to both sides of the equation and rearranging on the right hand side 

we obtain 
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dx
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=          (7.80) 

 

By combining Eqs 7.75. and 7.80 the total ionic current density may be expressed by 

 

dx

d

ezdx

d

ez
i an

an

ioncat

cat

ion

ion

ησησ

−
==        (7.81) 

 

Thus, the ionic current density can be expressed in terms of the ionic conductivity (sum of 

cationic and anionic conductivities) and the gradient in the chemical potential of cations or 

anions. 

 From this it becomes clear that the derivations of oxide ion fluxes and currents in 

various situations done earlier could have been done for the case of ions (sum of cations and 

anions) simply by inserting ionσ  instead of −2O
σ , but still with for instance only the oxygen 

activity gradient as the driving force.  

 

Membrane ”walk-out” 

Metal ions are transported from the low oxygen pressure to the high oxygen pressure 

side of the membrane while metal vacancies are transported in the opposite direction. During 

the process oxygen is liberated and oxygen and metal sites are annihilated at the low oxygen 

pressure side, e.g. for a metal deficient oxide M1-∂O with doubly charged metal vacancies: 

 

 OO + V
2'

M
  + 2h.   =  

1

2  O2(g)       (7.82) 

 

while equivalent number of lattice sites are formed at the high oxygen pressure side: 

 

 
1

2  O2(g) = OO + V
2'

M
  + 2h.        (7.83) 

 

In this way the oxide membrane is actually moving in laboratory space in the direction of the 

higher oxygen potential.  

From this we see that even a very minor transport of metal ions may be detrimental to 

the operation of an oxygen separation membrane or fuel cell: Over the many years of 
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operation the electrolyte or membrane will simply “walk out” of its housing, towards the high 

oxygen pressure. 

 

Demixing of oxide solid solutions 

An additional important aspect of diffusional transport of metal ions in a chemical 

potential gradient is that in a homogeneous crystal of an oxide solution, e.g. (A,B)1-δO such 

as for instance (Co,Ni)1-δO, a demixing process begins to take place. Both cations move by 

vacancy diffusion. When one of the cations in (A,B)1-δO, e.g. A2+, has a higher mobility than 

the other, the A2+ ions will move faster to the side of the higher oxygen potential. The solid 

solution is enriched in AO at this side and thus becomes kinetically demixed. After extended 

time a steady state concentration profile is reached. This can be formulated through the use of 

the appropriate transport equations and by taking into account the conditions of 

electroneutrality and of local thermodynamic equilibrium. The process is schematically 

illustrated below. 

 

Figure 7-1. Schematic illustration of kinetic demixing of the oxide solid solution (A,B)1-δO in a oxygen 

potential gradient. 

 

Multicomponent compounds, e.g. ABO3 and AB2O4, can similarly be demixed in an 

oxygen potential gradient. In this case defects are formed due to the nonstoichiometric A/B 

ratio. Both in the case of the solid solution and in the case of a ternary oxide, new phases may 

be precipitated as soon as the concentration of solute or defects exceeds the solubility limit. 

We may in fact end up in the peculiar situation that the starting oxide is stable in both the low 

and the high oxygen activities separately, but unstable in the gradient between them.  
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 The decomposition and precipitation of new phases may violate the functional or 

mechanical properties of the material. These types of phenomena are not only of importance 

in oxide membranes, but also in oxidation of alloys where solid solutions of two or more 

oxides or multicomponent compounds may be formed in the oxide scales. 

 

High temperature oxidation of metals; the Wagner oxidation theory 

 

When high temperature oxidation of metals results in the formation of compact scales 

and sufficient oxygen is available at the oxide surface, the rate of reaction is governed by the 

solid state diffusion of the reactants or transport of electrons through the scale. As the 

diffusion distance increases as the oxide grows in thickness, the rate of reaction decreases 

with time. When the diffusion takes place homogeneously through the scale, the rate of 

growth of the oxide thickness, x, is inversely proportional to the oxide thickness: 

 

x
k

dt

dx
p

1*=           (7.84) 

 

In the integrated form this becomes 

 

00

*2 2 CtkCtkx pp +=+=         (7.85) 

 

where )2( *

pp kk =  and *

pk  are expressions for the rate constants and Co is an integration 

constant. The oxide thickness may alternatively be measured in terms of the oxygen uptake 

by the metal specimen during oxidation by using, for instance, thermogravimetry. The oxide 

thickness or oxygen uptake is parabolic with time, and the oxidation is termed parabolic. 

Accordingly pk  and *

pk  are termed parabolic rate constants. The figure below illustrates the 

variation in the oxide thickness or oxygen uptake as a function of time. 
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Figure 7-2.  The variation in oxide thickness as a function of time (x vs t and x2 vs t) during parabolic 

oxidation of metals 

 

Carl Wagner developed the theory for parabolic oxidation assuming that the reaction is 

governed by lattice diffusion of the reacting ions (metal and oxide ions) or transport of 

electrons. The important aspect of the Wagner oxidation theory is that the parabolic rate 

constant is expressed in terms of independently measurable properties, i.e. the electronic and 

ionic conductivity of the oxide or alternatively in terms of the self-diffusion coefficients of 

the reacting ions. This thus provides an interpretation of the reaction mechanism and a 

theoretical basis for changing and improving the oxidation resistance of metals and alloys. 

The Wagner theory has been one of the most important contributions to our understanding of 

the high temperature oxidation of metals. 

The basic assumption of the theory is that the lattice diffusion of the reacting ions or the 

transport of electrons through the dense scale is rate-determining for the overall reaction. 

Lattice diffusion is assumed to take place because of the presence of point defects, and the 

migrating species may alternatively be considered to constitute lattice and electronic defects. 

Wagner further assumed that ions and electrons migrate independently of each other and that 

local equilibria exist within the oxide. Such transport processes through a dense, single-phase 

scale growing by lattice diffusion is illustrated in the figure below. One part (a) illustrates the 

transport of metal and oxide ions and electrons, while the other (b) illustrates the transport 

processes when the predominant diffusion processes involve metal vacancies and interstitials. 
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Figure 7-3. Transport processes during growth of a dense, single phase scale growing by lattice 

diffusion. a) transport processes illustrated by transport of reacting ions, b) transport processes illustrated by 

transport of diffusion of important point defects (in this case assumed to be metal vacancies and interstitials). 

 

As diffusion through the scale is rate-determining, reactions at the phase boundaries are 

considered to be rapid, and it is assumed that thermodynamic equilibria are established 

between the oxide and oxygen gas at the oxide/oxygen interface and between the metal  and 

the oxide at the metal/oxide interface. 

The overall "driving energy" of the reaction is the Gibbs free energy change associated 

with the formation of the oxide, e.g. MaOb, from the metal M and the oxygen gas. 

Correspondingly, a gradient in the partial pressure (activity) of oxygen exists across the scale 

from the partial pressure of oxygen in the ambient atmosphere at the outer surface to the 

partial pressure of oxygen at the metal/oxide interface. The latter partial pressure is the 

decomposition pressure of the oxide in equilibrium with its metal. 

The main driving force for the transport through the plane is the chemical potential 

gradient. But when one considers the transport of the reacting ions and of the electrons 

through the scale, it may also be noted that the mobilities of the cations, anions and electrons 

are not equal. Because of this difference, a separation of charges takes place in a growing 

scale. This creates a space charge (diffusion potential) that opposes a further separation of 

charges, and a stationary state is reached for which no net electric current flows through the 

scale. In describing the transport of ions and electrons through the scale, it is thus necessary 

to take into account both the transport due to the gradient of the chemical potential and that 

due to the gradient of the electrical potential, i.e. the electrochemical potential gradient. Thus, 
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the treatment of the transport through the oxide scale is identical to that done earlier for 

electrochemical transport through a mixed conducting oxide. 

The net ionic current is from earlier given by 
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and the electronic current is given by 
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As no net current flows through the scale during the scale growth, then itot = iion + iel = 0. 

By solving this system in the usual manner (solving for the electrical potential gradient, 

inserting into the expression for the ionic current density and inserting the equilibrium 

condition between oxide ions, oxygen molecules and electrons) we obtain 
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The rate of oxide ions reacting per unit area is obtained by dividing the ionic current density 

by the charge of the oxide ions. Moreover, the rate dn/dt of oxide molecular units MaOb 

formed per unit area is obtained by further division by b:  
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Similar to the integrations we have done earlier over the thickness of the oxide, we now 

integrate over the instantaneous thickness ∆x and from the ambient oxygen pressure, 0

2Op , to 

the partial pressure at the metal/oxide interface, i

Op
2
. The growth rate dn/dt then takes the 

form 
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We have chosen to organize the equation and direction of integration such that the rate is 

positive if 0

2Op > i

Op
2
. In general the directionalities and signs of the fluxes and processes that 

go on pose a problem for us. One may most often neglect this issue because the output, 

namely growth (increase in amount of oxide or thickness of scale) is intuitively positive. 

However, it may not be just that easy, since there is nothing preventing scale reduction 

(reverse of growth) if the outer oxygen partial pressure is smaller than the activity at the 

metal/oxide. 

 Many readers will probably wonder about another apparent problem: We integrate 

over the scale to take into account the steady state condition, namely that the fluxes are 

constant throughout the scale. Still, the scale grows, so how can it be steady state? The 

answer is that it is steady state (constant fluxes) for that moment of time with that 

instantaneous thickness of the scale. So our integration is for a given moment in time. At 

another moment the integration will give a different flux, which is steady state at that 

moment.    

The expression in the parentheses, 
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 , can be considered to be 

one form of the parabolic rate constant and is in the following written kt: 
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=           (7.91) 

 

kt thus represents a time-independent coefficient, while the flux and thickness of the scale 

vary according to the parabolic relation above.  

As written in this form dn/dt is expressed in number of molecular units of MaOb per 

cm2sec and ∆x in cm. The derivation of Wagner's equation that we here have done for growth 

of oxide scales, may be applied to many other gas-metal reactions. 

It may be noted that although the total particle current is equal to the rate of growth of 

the scale, the rate-determining process may either be diffusion of ions or transport of 

electrons depending on the properties of the scales. If the scale is an electronic conductor, tel 

≈ 1, the diffusion of the reacting ions through the scale is rate-determining, while the 

transport of electrons through the scales is rate-determining if the scale is an ionic conductor, 
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tion ≈ 1. The oxygen pressure dependence of the reaction will depend on whether the scale is 

an ionic or electronic conductor and in the latter case on the type of nonstoichiometry that 

prevails in the oxide scale. 

In our derivation, the growth rate is proportional to σiontel = σtottiontel = (σan+σcat)tel. 

However, the conductivity of the metal and oxide ions in MaOb can be expressed in terms of 

the self-diffusion coefficients of the metal and oxide ions in MaOb through the Nernst -

Einstein relation (zi
2e2Dici = kT σi). Let us insert this relationship in Eq.7.89 and assume that 

the oxide is an electronic conductor (tel ≈ 1). Let us furthermore take into account that 

concentrations of metal ions (cations), cM, and oxide ions, cO, in an oxide MaOb with 

relatively small deviation from stoichiometry are related through cM/cO = a/b = |zan|/zcat. 

The expressions for the flux through the growing scale (expressed in terms of the number of 

MaOb units per cm2s) and for kt then become  
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cO denotes the number of oxide ions in MaOb per cm3 and DM and DO are respectively the 

self-diffusion coefficients of the metal and oxide ions in MaOb. It should be noted that DM 

and DO are the self-diffusion coefficients for random diffusion of the respective ions.  

In Eqs.7.92 and 7.93, kt represents the rate of formation of MaOb units per cm2 per 

second for an MaOb scale of thickness 1 cm. One may as said before alternatively express the 

parabolic rate constant in terms of the rate of growth of the oxide thickness 
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The dimensions of  k
*

p   are then cm2s-1, and Eq. 7.93 then takes the form 
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Growth of metal-deficient Ma-yOb on M  

Let us make use of Eq. 7.95 to illustrate the temperature and oxygen pressure 

dependence of the parabolic rate constant. Consider the growth of the metal deficient oxide 

Ma-yOb on high purity metal M. Let us assume that the predominant defects throughout the 

entire scale are metal vacancies with an effective charge α, i.e. V
α'
M

 . Let us further assume 

that the metal ion diffusion is much faster than the oxygen diffusion, i.e. DM >> DO. Eq. 7.95 

then reduces to  
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In order to integrate this we need to analyse the defect structure of the oxide. The formation 

of the metal vacancies may be written as  

 

x

OM O
a

b
hvgO

a

b
++= •αα /

2 )(
2

        (7.97) 

 

If other defects may be neglected  and the electroneutrality condition is given by α[V
α'
M

 ] = p, 

the concentration of metal vacancies is given by  

 

ab

OVM pKv
M

2/1/

2
/][ α

ααα =+
        (7.98) 

 

where /α
MV

K  is the equilibrium constant for the formation of the metal vacancies (Eq. 7.97) 

and ][ /α
Mv  denotes the fraction of the metal ion sites that are vacant. On the basis of this 

relation, 
2

ln
O

pd  may be written 
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When this expression for 
2

ln
O

pd  is introduced in Eq.7.96 , the expression for  k
*

p  becomes  
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If the concentration of metal vacancies at the oxide/oxygen interface is much larger than at 

the metal/oxide interface, i.e. i/o/ ][][ αα
MM vv >>  then  

 

o

MMvp DvDk
M

)1(][)1( o/*
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α        (7.101) 

 

where o/ ][/

α
α Mv

o

M vDD
M

=  is the self-diffusion coefficient of the metal ions in Ma-yOb at the 

oxide/oxygen interface. Thus under these conditions the parabolic rate constant and the self-

diffusion coefficient of M in Ma-yOb has the same temperature and oxygen pressure 

dependences. 

 

Growth of oxygen-deficient MaOb-y on M  

The same procedure may be used to derive the parabolic rate constant for the growth of 

oxygen deficient MaOb-y on M. let us assume that the oxygen vacancies have a charge α, i.e. 

V
α.

O
 , and the formation of the oxygen vacancies may then be written 

 

OO = V
α.

O
  + αe' + 

1

2 O2        (7.102) 

 

If DO>>DM and (p
i

O2 <<p
o

O2 ) then  k
*

p  becomes 
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where •α
Ov

D  is the self-diffusion coefficient of the oxygen vacancies, i][ •α
Ov  the concentration 

of oxygen vacancies and DO
i  the self-diffusion coefficient of oxygen in MaOb-y at the 

metal/oxide interface. DO
0 is the oxygen self-diffusion coefficient at 1 atm. O2, and p

i
O2

  is 

the oxygen activity at the metal/oxide interface. For this case the parabolic rate constant is 

independent of the ambient oxygen pressure, and the temperature dependence is given by that 

of the oxygen self-diffusion coefficient in MaOb-y at the metal/oxide interface. In this respect 
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it may be further noted that the oxygen self-diffusion coefficient at the metal/oxide interface 

is given by that the product of the self-diffusion coefficient of oxygen at constant oxygen 

pressure (at 1 atm O2) and (p
i
O2

 )-1/2(α+1) , i.e. DO
i = DO

0 (p
i
O2

 )-1/2(α+1) . In these terms the 

activation energy of the parabolic rate constant is under these conditions given by the 

activation energy associated with DO
0 and the enthalpy term associated with (p

i

O2
 )-1/2(α+1) .

 Similar treatments may be given for oxide scales growing by interstitial metals ions or 

interstitial oxide ions.  

 

Scales with ionic conductivity predominant. 

Most oxides encountered in high temperature oxidation of metals are electronic 

conductors. In the literature there are no examples of high temperature metal-oxygen 

reactions  involving conventional metals or alloys with essentially pure ionic conductivity 

over the entire existence range of the oxide. Such type of reactions are, however, found in 

metal-halogen reactions, e.g. Ag+Br2 to form AgBr. The same treatment as given above may 

be applied to reactions involving formation of ionically conducting scales, and the important 

feature of these reactions is that it is the electronic transport through the scale that is rate-

determining. 

 

Varying defect structure situations through the scale. 

In the preceding examples it has been assumed that the same defect structure prevails 

throughout the entire scale from the scale/gas to the metal oxide interfaces. This is an 

oversimplified model for many systems. The charge on the defects, or even the predominant 

defects may change with changing oxygen activity. Furthermore, the presence of impurities 

and dopants may significantly affect the defect structure situation. Thus, following the 

discussion in Ch.4 one part of the scale may possibly have intrinsic properties and another 

part extrinsic properties. As part of such behaviour one part of the scale may have significant 

ionic conductivity while the rest has electronic conductivity.  

In the presence of water vapour, hydrogen defects may affect the diffusional behaviour 

in growing oxide scales in many different ways, as dominating defects, as charge 

compnsating charge carriers, and as catalysts for surface reaction steps. 
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Sintering 

 

Stages of the sintering process 

Sintering is the process whereby powders and small particles agglomerate and grow 

together to form a continuous polycrystalline body. As a rule of thumb the material must be 

heated to 2/3 of the melting temperature to achieve considerable sintering.  

The overall sintering process may conveniently be divided into different stages. The 

principal stages involved is illustrated schematically below.  

 

Figure 7-4. Principle stages during the sintering process: a) particles in contact prior to sintering; b) 

neck growth between particles during initial stage of sintering; c) further neck growth and formation of 

continuous pore channels along grain boundaries; and d) further sintering in closing channels and formation of 

closed pores at grain corners. 

 

During an initial stage the surface roughness is decreased and the particles begin to 

adhere and grow together. At the end of this stage grain growth begins to occur and grain 

boundaries and metastable pore phase is established. Only modest shrinkage of a few percent 

takes place during the initial stage. 

During an intermediate stage grain growth continues, and the cross-sectional area of the 

pore phase decreases. The final stage begins when the body achieves 90-95% theoretical 

density. At this point the pore phase becomes discontinuous, and the closed pores usually 

remain at grain boundaries. The final stage may involve complete removal of the remaining 

pores, leading to a completely dense material. Alternatively, it may involve discontinuous 
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growth of the large grains at the expense of the small ones, and closed pores may as a 

consequence be isolated  inside the grains. If the latter process occurs, complete densification 

becomes extremely difficult. 

 

Driving force for sintering 

During sintering, as for other spontaneous processes, the total free energy of the system 

decreases. For elemental solids and homogeneous compounds the only free energy change 

involved in sintering is that of the surface free energy or surface tension, γ, of the particles.  

Any surface atom or molecule is subjected to a resultant inward attraction because of 

the unsaturated chemical bonds at the surface. The surface therefore tends to contract to the 

smallest possible area. In the case of a spherical particle with radius r, the interior is subjected 

to an excess force of πr2p, where p is the pressure. This is counteracted by the surface tension 

acting along the circumference: 2πrγ. When equating these opposing forces, the pressure is 

given by  

 

 p = 
2πrγ

πr2
  = 

2γ
r

          (7.104) 

 

From this it is seen that the vapour pressure of a sphere is larger the smaller the radius 

and as a result a large sphere will grow at the expense of a neighbouring small sphere. This 

type of grain growth in polycrystalline solids is termed Ostwald's law. Similarly the vapour 

pressure of convex surfaces is larger than the vapour pressure of a concave surface and as a 

result surface roughness of particles is reduced during the initial stage of sintering. 

 

Transport processes during sintering 

As for creep, sintering of oxides implies that molecular units of the oxide are 

transported from areas from high to low surface free energies, e.g. from convex to concave 

surfaces. Generally it is concluded that transport of the slower moving species determines the 

overall sintering rate. Thus, in a binary oxide where oxide ions diffuse much more slowly 

than the metal ions, it is generally to be expected that the sintering rate is determined by the 

transport, e.g. lattice or grain boundary diffusion of oxygen. 

Sintering governed by lattice diffusion will be dependent upon the concentration of 

point defects in oxides. Accordingly, sintering rates of an oxide can be optimised by close 

control of impurities or dopants and the ambient partial pressures of oxygen and of water 

vapour in cases where proton defects affect the defect structure of the oxide. 
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Oxides with additional transport of protons 
 

If an oxidic material conducts protons in addition to oxide ions and electrons we need to 

introduce electrochemical equilibria between neutral and charged species of both oxygen and 

hydrogen: 
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2
−− =          (7.105) 
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−+= 2          (7.106) 

 

for which equilibria can be expressed by 
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We insert these into the flux equations for the species and utilise that the sum of all transport 

numbers equals unity. We furthermore use that dµ = kTdlna • kTdlnp, where a and p are 

activity and partial pressure, respectively, and obtain 
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This can now be integrated to obtain the voltage of a cell, or inserted into a flux equation of a 

species of interest in the usual manner. We now have a system with two chemical driving 

forces for electrochemical transport; that of oxygen activity and that of hydrogen activity. 

The solution to the integration is simple if only one gradient exists at any time or if transport 

numbers are considered constant over the gradient. 
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Exercises 

 

1. Electrochemical cell with stabilised zirconias (YSZ and CSZ)  

 

a) Consider an yttria-stabilised zirconia (YSZ) material with 90 mol% ZrO2 and 10 

mol% Y2O3. What is the site fraction of oxygen vacancies in the material? We often 

use and refer to the YSZ as an electrolyte. What is an electrolyte? What requirements 

does it put on a material? 

 

b) We make ourselves a disk of YSZ, attach Pt electrodes to both faces, and place the 

disk in a cell where we can expose the two faces to different gases. If the gases have 

different partial pressures of oxygen, a voltage will be set up over the electrodes, and 

we can draw current from the cell. Write equations for the two half-cell-reactions that 

run when current is drawn. Write the expression for the voltage over the cell given 

that the material is a purely ionic conductor. Which (high or low pO2) is the positive 

pole? 

 

c) Smith, Meszaros and Amata (J. Am. Ceram. Soc., 49 (1966) 240) found that the 

permeabilities at high temperatures of Ar and N2 through calcium-stabilised zirconia 

(CSZ) were immeasureable, while that of O2 was significant and proportional to 

pO2
1/4

. Suggest an explanation for these observations.  

 

2. Electrochemical cell for determination of thermodynamic properties 

 

a) Indicate how you can use a YSZ cell with Pt electrodes to determine 

the thermodynamic parameters for formation of a binary oxide (e.g. NiO). 

 

b) J.J. Egan (J. Phys. Chem. 68 (1964) 1978) studied an electrochemical 

cell built up as follows:  

 

 - (Mo)Th(s),ThF4(s)|CaF2(s)|ThF4(s),ThC2(s),C(s)(Mo) + 

in order to measure the thermodynamic properties of ThC2. The Mo serves as 

inert electrodes. The cell was kept under an inert atmosphere. The CaF2(s) is a solid 

electrolyte – a fluoride ion conductor – in the temperature range of operation of the 

cell (700-900°C). The signs indicate the polarity of the cell. Write the reactions at 

each electrode when current is drawn from the cell. Also, express the voltage of the 

cell as a function of the Gibbs energy, enthalpy and entropy of formation of ThC2. 



7. Electrochemical transport  

 7.39 

 

3. Wagner’s oxidation theory 

 

Wagner’s equation for the oxidation rate of a metal, forming the oxide MaOb, can in 

one form be written 
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a) Specify what the different symbols denote in this equation. 

b) Examine the equality of units on both sides of the equation. 

c) What are the model and requirements for the theory. Why do the different terms 

enter the equation as they do? 

d) This type of behaviour is called parabolic. What does it reflect? Identify the 

parabolic rate constant. 

e) Which deviations from the requirements of the theory may give rise to non-

parabolic (e.g. linear) behaviour? 

f) Assume that the oxide has formula MO and is a p-type semiconductor with doubly 

charged metal vacancies as dominating point defects (DM >> DO). Assume that 

pO2
o
 >> pO2

i
 and find how the oxidation rate varies with the outer oxygen 

pressure pO2
o
. 

g) Assume that the oxide has formula MaOb and that it is an n-type semiconductor 

with Mi
…

 as dominating point defects and that DM >> DO. How does the oxidation 

rate in this case vary with the outer oxygen partial pressure (assuming also now 

that pO2
o
 >> pO2

i
)? 

h) The tracer self-diffusion coefficient for Co in CoO in air at 1200°C is 9*10
-9

 

cm
2
/s. Calculate the parabolic rate constant in cm

2
/s (which is kp in dx/dt = kp/x) 

when cobalt oxidizes to CoO under the same conditions. The dominating point 

defects in CoO are assumed to be singly charged metal vacancies vCo’. 

 

4. Sintering 

 

a) What happens during sintering? What are the driving forces? What are the 

contributing mechanisms and what may be the rate limiting factors? 

b) Powders of CoO can be sintered to dense samples. The defect structure of 

CoO is characterized by the following: There is a deficiency of metal and 

the dominating point defects are singly charged metal vacancies. DCo >> 

DO.Assume that the oxygen defects are interstitials with one negative 

effective charge. Draw a Brouwer-diagram for the oxide. Under what 

conditions should the oxide be sintered to achieve the highest sintering rate?  
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5. Creep 

 

a) What is creep? What are the driving forces, mechanisms, and rate limiting 

factors? 

b) TiO2 is an n-type electronic conductor with oxygen deficiency, dominated 

by doubly charged oxygen vacancies and triply charged titanium 

interstitials. Assume that the concentration of oxygen vacancies is 1000 

times higher than that of titanium interstitials at pO2 = 1 atm. Draw a 

Brouwer diagram for the oxide from pO2 = 10
-20

 to 1 atm. How would you 

qualitatively expect that the creep of TiO2 single crystals varies with pO2? 

 

6. General considerations 

 

b. The expression “uphill diffusion” is used for diffusion against a concentration 

gradient, referring to Fick’s 1
st
 law. From what you know about 

electrochemical transport, what might cause uphill diffusion? 

c. Eq. 7.4 is written with conductivity as the transport coefficient. Flux of a 

neutral species is not affected by the electrical potential gradient and can not 

be expressed by conductivity. It is therefore meaningful to express the 

equation using the random diffusion coefficient for the chemical potential 

gradient and the conductivity for the electrical potential gradient. Do this 

splitting/substitution. (This is mainly a simple exercise in the Nernst-Einstein 

relation). Check that both parts of the resulting equation will have units that 

confer with flux density. 

 

7. Transport number and partial conductivity measurements 

 

d. A membrane of a mixed oxide ion and electron conducting oxide is equipped 

with Pt electrodes and exposed to two different oxygen partial pressures: On 

one side is dry air (pO2 = 0.21 atm) and on the other is pure oxygen (pO2 = 1.00 

atm). What is the Nernst voltage of this cell at 1000°C?  

e. A voltage of 0.01 V is read over the cell at 1000°C using a high impedance 

voltmeter. What is the average ionic transport number of the oxide under these 

conditions? 

f. Make a sketch of the sample and gases and external circuitry during the 

voltage measurement. Indicate internal and external fluxes and currents (with 

directions). 

g. The total conductivity of the sample is measured and the result is 0.01 S/cm. 

What are the partial ionic and electronic conductivities?  

h. Assuming that the sample is 0.5 mm thick, what is the flux of oxygen gas 

through the sample during the voltage measurements?  
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i. If you had measured this flux in some way, and used this as your (only) 

transport measurement, what would be the transport parameter that you find? 

 

8. Sensor 

 

a) A sensor is made out of a membrane of yttria.stabilized zirconia (YSZ) with Pt electrodes 

and is operated at 700°C. As reference is used pure oxygen at 1 atm. A voltage of -950 mV is 

read over the sensor (measuring on the “unknown” side vs the reference side). What is pO2 at 

the “unknown” side?  

 

b) If you assume that the “unknown” side is hydrogen gas at 1 atm, what does the sensor 

voltage say about the water vapour content of that hydrogen gas? 

 

9. Fuel cell 

 

a) A fuel cell made of YSZ electrolyte with Pt electrodes is operated at 700°C and runs on 

hydrogen as fuel and air as oxidant, both at atmospheric pressure. Both gases contain 2% 

water vapour. What is the open circuit voltage of the fuel cell? 

 

b) Assuming that the electrolyte has a conductivity of 0.1 S/cm and is 100 µm thick, calculate 

the short-circuit current density, the maximum power density and the current and power 

densities at a voltage of 2/3 of the open circuit voltage. (Assume in all cases that the gas 

compositions remain unaffected by the current in the cell, and that electrode polarization is 

insignificant). 

c) Assuming the operation at 2/3 of the OCV voltage, what is the area of electrolyte needed 

for a power plant of 300 MW capacity? 

d) The assumption that the gas compositions are unaffected is not realistic for a real power 

plant; what would it mean in terms of fuel utilization? 

e) The system we have described can be operated at other temperatures. Still neglecting 

electrode polarization, what are the factors and processes that enter into the temperature 

dependency of the power density of the fuel cell? (Hint: refers to defects and transport.)  

 

10. Gas separation membranes 

 

a) 

A gas separation membrane that can separate oxygen from air is constructed from 

La2NiO4+d, a material where we for simplicity may assume that the defect structure is 

dominated by doubly ionized oxygen interstitials compensated by electron holes. In the 

following assume further that the cell is operated at 1000°C and that the membrane is 100 µm 

thick and has no surface kinetics limitations. Assume also that the oxide ion conductivity (by 

interstitials) is 1 S/cm at 1 atm O2 and that the electronic (hole) conductivity is 200 S/cm at 1 
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atm O2. The membrane is operated with atmospheric air on one side and pumped to 

effectively 0.1 atm at the other side. What is the area-specific flux of oxygen? 

b) 

What would increase the flux more: Compress the air to 10 atm or pump the vacuum side to 

0.01 atm? 

1. Find an expression for the chemical diffusion coefficient for oxide ions. 

2. During operation the membrane may possibly suffer from both membrane 

“walk-out” and decomposition. Explain both phenomena qualitatively. 

c) Solid –solid reactions 

 

1. La2NiO4 may be synthesized by solid-state reaction between La2O3 and 

NiO. Imagine that you investigate this reaction by making tablets of the 

two reactants and holding them together at high temperature. Sketch how 

the product La2NiO4 is formed as a phase between the reactants and what 

diffusion process (or processes) that take place to constitute the reaction.  

2. Suggest how you might use a marker (e.g. a Pt wire) to identify the rate 

limiting diffusion process.  

3. The reaction rate can be measured as the thickness of the product layer. It 

would be expected to grow parabolically. Explain. 

d) High temperature oxidation of metals 

 

1. Zr metal is used at high temperatures in nuclear installations. It is 

protected by an oxide layer of ZrO2-y, dominated by oxygen vacancies and 

electrons.  

2. What is rate limiting for the parabolic oxidation process in your opinion? 

3. Nb is often used as allyoing element in Zr in order to reduce oxidation of 

the metal. Explain how this dopant might work when it ends up in the 

oxide scale. 

4. In nuclear reactors it is a problem that hydrogen diffuses as protons 

through the oxide scale, dissolves in the Zr alloy and makes it brittle. How 

would you expect Nb alloying to affect the proton transport through the 

oxide scale? 

5. Ni oxidizes to Ni1-xO, i.e. an oxide dominated with Ni vacancies and 

electron holes. How would you suggest to dope this oxide to reduce 

oxidation? 

 

 

 


