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7. Electrochemical transport  
 

Electrochemical potential 
 

In the chapter on diffusion we learned that random diffusion is driven by thermal energy 
and that it in crystalline solids requires defects. Moreover, we learned that a net flux of a species 
can result from a gradient in its chemical potential. In the chapter on electrical conductivity we 
furthermore saw that a net flux of charged particles would result in a gradient of electrical 
potential.  

In ionic media (materials, liquids, and solutions) the chemical and electrical potentials act 
simultaneously, and it is often convenient to combine them into an electrochemical potential. For 
the species i we have 

 

φµη ez+= iii           (7.1) 

 

This is true whether the species is real or a defect, but in general we shall onwards deal mainly 
with real species and real charges zi.  

The electrochemical potential gradient is accordingly, in the one-dimensional case,  
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The combination of chemical and electrical potentials and potential gradients forms the basis for 
the treatment of all mass transport processes involving charged species (ions) in ionic solids, and 
is the theme of this chapter. The theory is termed Wagner-type after Carl Wagner, who was the 
first to derive it, originally to describe oxidation of metals. 
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Flux equations – Wagner theory 

General derivation of Wagner-type flux expressions 
 

We have seen in a preceding paragraph that a force, expressed as gradient in a potential Pi 
acting on a species i, gives rise to a flux density of that species which is proportional to its self-
diffusion coefficient Di. By assuming that the potential acting is the electrochemical potential, 
we obtain 
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Via the Nernst-Einstein equation we may substitute conductivitiy for the random diffusivity and 
obtain the following alternative expression for the flux density:  
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If the species is charged, the flux density for i gives rise to a partial current density ii:   
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The net current density in the sample is obtained by summing the partial current densities over 
all the species k: 
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The sample is next assumed to be connected to an external electric circuit. This may be real, with 
electrodes and wires and an electrical supply or load, or it may be absent, in which case we say 
that we have an open circuit. Since the sample makes a series connection with the external 
circuit, the currect in the sample must be the same as in the external circuit. 
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For a bare sample, a gas permeation membrane, or for an open-circuit fuel cell or other 
electrochemical device, the total current is zero. For fuel cells or electrolysers in operation, on 
the other hand, the current is non-zero. 

By using the definition of total conductivity, kktot = σσ ∑ , and the definition of transport 

number, 
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This relates the electrical potential gradient to the total (net, external) current density, the total 
conductivity, and the transport number and chemical potential gradient of all charge carriers. 

 

From charged to neutral species: the electrochemical reaction  
 

The chemical potentials of charged species are not well-defined, and we need to represent 
them instead by chemical potentials of neutral species. For this purpose we may assume 
equilibria between neutral and charged species and electrons, i.e. in the electrochemical red-ox- 
reaction 

 

−ze+S=S z           (7.8) 

 

where S is a neutral chemical entity and z may be positive or negative. The equilibrium condition 
for this is expressed in terms of the chemical potentials of products and reactants: 

 

0=− µµµ SeS dzd+d -z         (7.9) 

 

and can be rearranged with respect to the ionic species: 

 

µµµ eSS -z zddd −=          (7.10) 
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We insert this for all ionic species n in the expression for the electrical potential gradient. The 
entry (among k) for electrons is left unsubstituted. By using 1=∑ kk t  we obtain 
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for which the chemical potentials now refer to the neutral forms of each carrier.  

 

The voltage over a sample 
  

 We now integrate the electrical potential gradient over the thickness of the sample, from 
side 1 to side 2, in order to obtain the voltage over the sample: 
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We further assume that the voltage is measured on each side using the same inert metal, e.g. Pt. 
This eliminates the difference between chemical potentials of electrons on the two sides, and the 
voltage measured between the two sides is  
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 Under open circuit conditions, itot=0, and we obtain 
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We shall later see how this is used to calculate transport numbers based on open circuit voltage 
measurements of cells exposed to a well-defined gradient in chemical activities. Alternatively, if 
tn is known to be unity for ionic charge carriers this expression will yield the open circuit voltage 
of a fuel cell or a galvanic sensor. 

 If current is drawn from the sample, as in a fuel cell or battery under load, we need to know 
how itot varies with x. If we assume that it is constant, we get  
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where X is the thickness of the sample and rtot is the area-specific resistance of the sample. 
Alternatively, itotrtot (current density and area specific resistance) may be replaced by RI, (sample 
resistance and current): 
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 The voltage of a fuel cell or battery is thus composed of a thermodynamic part that arises 
from the chemical gradient, and the well-known “IR”-term which arises from the limiting 
kinetics (transport) in the sample. The letters “IR” may be taken to reflect current times 
resistance, or to mean “internal resistance”. We will later see that the direction of the current 
ends up such that the IR-term reduces the voltage over the fuel cell or battery. 

 

Flux of a particular species 
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 One of the general expression for the electrical potential gradient can now be inserted in an 
expression for the flux density of an individual species (Eq. 7.4) or the corresponding partial 
current density (Eq. 7.5). Since these two sum over chemical potential gradients of charged 
species, we may conveniently use Eq. 7.7 for our purpose. Inserting this into Eq. 7.4 and 
rearranging yields 
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The first term in the right hand side simply says what we expect: If there is a net current, a flux 
density of species i will be set up proportional to the total current density and the transport 
number ti, divided by the species’ charge. 

 The equation above is a rather general expression that we can use to calculate flux densities 
of one charged species in the company of many other species. However, it reflects the flux 
density and gradients and properties at a particular point through the membrane. The gradients 
will adjust according to the varying materials properties so as to maintain a constant flyx density 
everywhere – what we call steady state. In order to implement this, we integrate the flux density 
expression over the thickness of the membrane and require that the flux density remains 
constant: 
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If the transport number ti and the total current density itot can be taken as constant through the 
membrane we further obtain: 
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Wagner-type transport theory case studies 
 

Oxides with transport of oxide ions and electrons 
 

General equations 

We will now apply the general theory to a number of cases. The cases we will consider 
first is an oxide that conducts oxygen ions and electrons. Flux equations for the two are 
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By summing up the currents from the two we obtain (as in Eq. 7.7) the expression for the 
potential gradient:  
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In order to relate the potantial gradient to the chemical potential of neutral species we introduce 
electrochemical equilibria between neutral and charged species of oxygen: 
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for which equilibrium can be expressed by 

 

O
2d

e
4d+Od 2

2
(g) −− = µµµ         (7.25) 

 



7. Electrochemical transport  

 7.8

Introducing this we get  
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and knowing that the sum of transport numbers for oxygen ions and electrons in the oxide we 
have defined is unity, we further get 
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whereby we have exemplified Eq. 7.11. We now integrate over the thickness of the sample to 
obtain the voltage over it, eliminating the chemical potential of electrons (as in Eq. 7.14 and 
onwards): 
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Using  
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we get 
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If tO −2  is independent of the oxygen partial pressure, or if we can assume as an approximation 
that an average tO −2  is constant over the pressure range applied, then 
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where EN is the Nernst-voltage of the oxygen concentration cell. 

 

Open circuit voltage of concentration cell for transport number measurements 

 The equation above can be used to measure the average oxygen ion transport number, by 
measuring the open circuit voltage (OCV) over a sample exposed to a small, well-defined 
gradient in partial pressure of oxygen: 
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Galvanic oxygen sensor 

 By using a material with 12 =−tO , i.e. a solid electrolyte, and a well-defined reference 

partial pressure of oxygen, the OCV can be used for measuring an unknown partial pressure: 
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Fuel cell  

 If we apply a solid electrolyte with 12 =−tO  and expose it to a gradient in oxygen partial 

pressure, we get  
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 This would be the voltage of a fuel cell. With I = 0, we obtain the OCV of the cell to be the 
Nernst voltage, of course. We furthermore see that the cell voltage diminishes due to the IR loss 
at increasing current, I. A plot of U vs I gives –R as the slope.  

 The power delivered by the cell is the current multiplied with the voltage; 

 

NIERIUIP +−== 2            (7.36) 

 

and it goes through a maximum at U=EN/2. Under these conditions, the power is split half-half 
between external work and internal loss, so the electrical efficiency is 50%. The efficiency 
increases as the power and current decrease, and commonly fuel cells are designed to run at ca. 
U=2/3 EN. 

 

Mixed conducting oxygen permeable membrane 

 Now we will show how we obtain the flux of oxygen through a mixed conducting oxygen 
membrane material. As mentioned in the general section this is done by inserting the electrical 
potential gradient back into the flux equation for oxygen ions. Using e.g. Eqs. 7.21, 7.23, and 
7.25 we get: 
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The steady state restriction is introduced by integrating over the thickness of the membrane: 
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If itot is not zero, i.e., some external current is drawn, then the first term says that the oxygen ion 
flux is proportional to that current and to the oxygen ion transport number. If the latter is 
independent of x, then the integral is straightforward. The last term adds to the flux; it is driven 
by an oxygen pressure gradient, and it is proportional to the oxygen ion conductivity and the 
transport number of electrons. This term describes permeation of oxygen ions, requiring 
transport of both oxygen ions and electrons. Moreover, it is inversely proportional to the 
thickness of the sample, X. Under open circuit conditions we may simplify to get: 
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We now apply our derived expression for the example case of an oxygen-deficient oxide MO1-x. 
This contains oxygen vacancies compensated by electrons, and we have earlier shown that the 

defect concentrations are given by 6/13/1/
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which integrates into 
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One may note that we here have utilised the Wagner approach for electrochemical transport of 
two defect species and combined it with the solution of the defect chemical equilibria to obtain 
an accurate description of the flux of oxygen ions. Numerical values for the flux of course 
require that one knows 0σ , which contains many parameters relating to formation and mobility 

of the defects. In the right-hand parenthesis the negative exponent –1/6 has the consequence that 
the smaller of the two partial pressures of oxygen has the biggest influence. The larger partial 
pressure makes a comparatively smaller difference and may be neglected to a first approximation 
for large gradients. For instance, consider a gas separation membrane exposed to air on the one 
side and a very reducing gas (e.g. methane) on the other. The flux would then be essentially 

proportional to 6/1)(
2

−red
Op  while it would largely be independent of ox

Op
2
. It would thus not help 

much to compress the air to 100 atm, while removal of oxidised products like H2O on the 

reducing side would lower red
Op

2
 and have a large effect. 

 

Ambipolar diffusion and conduction 

 

We have seen above that the transport coefficient term that enters in the flux of oxygen 
ions in a mixed oxygen ion conductor is a product which we may call the ambipolar conductivity 
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This reflects the fact that so-called ambipolar conduction of two species is necessary (in this case 
for charge compensation). 

The corresponding terms transformed to diffusivities are called the ambipolar diffusion 
coefficients for oxygen: 

 

tD=D eOamb --2           (7.45) 

 

Such terms, like partial conductivity and self-diffusion, reflect thermal random mobility as 
before, but are restricted by the slower of the two ambipolar diffusing species (ions or electrons). 

Many other cases of combined transport coefficients are in use, e.g. the combined 
(additive) transport of oxygen and metal ions commonly that we shall address later (and 
exemplify by the high temperature oxidation of metals), the combination of two diffusivities 
involved in interdiffusion (mixing) processes, and the mass transport in creep being rate limited 
by the smallest out of cation and anion diffusivities in a binary compound. As some of these 
sometimes are referred to as ambipolar or chemical diffusivities, we want to stress the above 
simple definition of ambipolar transport coefficients as relevant for membrane applications using 
mixed conductors. 

 

 

Chemical diffusion and tracer diffusion  

General case 

 

The chemical diffusion coefficient is the phenomenological coefficient that enters a Fick's 
1st law of diffusion in a concentration gradient: 
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Unlike our previous treatment in this chapter (which uses Dr, B, u or σ), Fick’s 1st law and the 
chemical diffucion coefficient says in general nothing directly about the self-diffusion 
coefficient. Neither is, as we shall see, the chemical diffusion coefficient in general a constant in 
any sense. Only when the species i is an effectively neutral particle that moves independently of 
other species will the chemical diffusion coefficient be identical to the self-diffusion coefficient. 
If the flux and the concentration gradient are in terms of an isotope (tracer), the coefficient is the 
tracer diffusion coefficient, which is almost equal to the self-diffusion coefficient:  

 

Df=D rt           (7.47) 

 

where the correlation factor f is a number usually equal to or somewhat smaller than unity, 
depending on structure and diffusion mechanism, reflecting the difference of transport between 
distinguishable and indistinguishable diffusing species. For vacancy diffusion, f usually falls 
around 0.75 depending on structure. 

Chemical diffusion is sometimes referred to as diffusion under a chemical potential or 
concentration gradient. However, we have seen that self-diffusion properly describes this, and 
that all diffusion phenomena we consider here are merely minor perturbations of thermally 
induced self-diffusion. Why then do we need to be concerned with chemical diffusivity? We use 
it whenever we want to or have to relate our flux to the concentration gradient. Under steady 
state processes, our flux vs force equivalents provides sufficient description, and can be 
integrated to yield steady state fluxes through membranes, as we have shown; Thus, for this 
purpose, the self-diffusion coefficients and conductivities are useful since they behave in a 
simple manner vs defect concentrations, and since we in general know the chemical and/or 
electrical potential gradents applied. However, if we know the concentration gradients and how 
the chemical diffusivity varies with concentration, we can use chemical diffusivity. 

In a transient experiment, however, parts of the material take up or give away matter 
(leading to changes in the concentration of species with time). This is sometimes referred to as a 
capacitive effect and is expressed in Fick's 2nd law: 
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If D is independent of c and thus of x and t, then we can simplify to obtain:  
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Mathematical solutions for interpretation of transient tracer, thermogravimetric and electrical 
conductivity experiments are based on this. The diffusion coefficient obtained is the tracer 
diffusion coefficient in case of a transient in isotope composition (whether measured 
radiographically, mass spectrometrically, thermogravimetrically or electrically) or chemical 
diffusion coefficients in case of a transient in chemical composition (measured 
thermogravimetrically or electrically or by other means). The latter is usually executed by 
stepping the oxygen activity by gas composition, total pressure, or electrochemical means. 

It may be noted that certain tracer experiments actually yield an interdiffusion coefficient 
between two tracers. The diffusion coefficient for oxygen in practice cannot and need not 
distinguish between the different isotopes in use (usually 18O and 16O, more rarely 17O). 
However, for protons, the difference to deuteron (or triton) transport coefficients is considerable 
(e.g. a factor of 2) and should be taken into account when interpreting the results. 

The multitude of transport coefficients collected can thus be divided into self-diffusion 
types (total or partial conductivities and mobilities obtained from equilibrium electrical 
measurements,  ambipolar or self-diffusion data from steady state flux measurements through 
membranes), tracer-diffusivities, and chemical diffusivities from transient measurements. All but 
the last are fairly easily interrelated through definitions, the Nernst-Einstein relation, and the 
correlation factor. However, we need to look more closely at the chemical diffusion coefficient. 
We will do this next by a specific example, namely within the framework of oxygen ion and 
electron transport that we have restricted ourselves to at this stage. 

 

Chemical diffusivity in the case of mixed oxygen vacancy and electronic 
conductor 

 

In a system with oxygen vacancies as the only oxygen point defects, the concentration of 
oxygen ions is the concentration of oxygen sites minus the concentration of vacancies:  
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such that  
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We manipulate this in the following manner: 
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and insert the result into the flux equation for oxygen ions, Eq. 7.37 (open circuit, itot = 0):  
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We have thus derived an expression for the flux that relates it to the concentration gradient of 
oxygen ions. We may now therefore compare this expression with that of the oxygen flux in 
terms of Fick's 1st law involving the concentration gradient in oxygen ions and the chemical 
diffusion coefficient: 
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and we obtain  
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Further, by using the Nernst-Einstein-relation and inserting the relation cD=cD VVOO ..
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Thus, depending on the pO2
-dependency of the vacancy concentration, the chemical 

diffusion coefficient becomes a varying function of the vacancy (defect) self diffusion 
coefficient. When the sample is mainly an electronic conductor and the transport number for 
electrons is unity, the collection of remaining terms (the enhancement factor) takes absolute 
values from 1 to 3 when the sample has a variable non-stoichiometry, while it increases beyond 
this (and can take on very large values) as the stoichiometry approaches a constant value, as in 
certain doped materials or materials with prevailing point defect (Schottky or Frenkel) disorder; 
the vacancy concentration is then close to independent of pO2

.  

The full range of aspects of chemical diffusion coefficients make them rather difficult to 
translate  into other transport coefficients, and they tend to live their own lives in the literature. 
They can, as said before, be applied directly to calculate fluxes in membranes if the 
concentration gradients through the membranes are known. However, we note that the chemical 
diffusion coefficient (for oxygen ions) is 

- proportional to the self diffusivity of the oxygen defect (here the vacancy), 

 - proportional to the electronic transport number (but which is often unity),  

- enhanced by the term c/2dpd VO O2
lnln , which for various limiting cases of 

simplified defect situations takes on values of 1, 3 or 4, and  

- fully forwards and backwards transformable into defect diffusivities (and in turn 
self diffusivities) if we know the transport numbers and how defect concentrations vary 
with pO2. 
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Surface and interface kinetics limitations 
 

The flux of matter through a fuel cell or electrolyser is limited by the electrolyte (ionic) 
resistance, the electrode kinetics, and the external electronic load resistance. We commonly 
express the steady state situation and the fact that the current is the same through the entire 
closed circuit in terms of the voltage drops around the circuit: 

 

)+(-RI-E=E aciN ηη         (7.57) 

 

where I is the current, EN is the open circuit (Nernst) voltage, Ri is the ionic electrolyte 
resistance, and ηc and ηa are the cathode and anode overpotentials, respectively. (The 
conventions and practices on measuring and reporting the sign of various voltages may vary, so 
that the equation may take various forms with respect to signs).  

Similarly, the current of matter through an electrodeless gas separation, mixed conducting 
membrane will be limited by ionic conduction, the surface kinetics, and by the internal electronic 
resistance, the latter replacing the external circuit in the previous case. 

However, we may need to express the loss of potential in terms of the chemical potential of 
oxygen. 

If we look at the system without any gradients or currents applied, there will be 
equilibrium at both the electrodes and the surfaces. Depending on the application and the side of 
the membrane, the electrochemical processes in operation on an oxygen ion conductor may be:  

 

O2e4+(g)O -2-
2 =          (7.58) 

 

and  

 

e+O(g)HO+(g)H -
2

-2
2 2=         (7.59) 
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In all of these the electrons can be supplied to or from an electrode or a mixed conductor surface. 
Thus, basically, the reactions are the same in the electrolyte/electrode as in the mixed conductor, 
although the physical presence of the electrode can promote (by catalysis) or obstruct the 
reaction.  

Most surface reactions are believed to be made up of a sequence of reactions steps. Some 
possible step reactions in the case of the reduction of oxygen gas are given by the following 
reaction sequence; 

O(g)O ads2,2 =  

Oe+O -
ads2,

-
ads2, =  

O2e+O -
ads

--
ads2, =  

Oe+O -2
ads

--
ads =  

OO -2
O

-2
ads =  

The last of these steps may involve bulk defects (e.g. a vacancy that the adsorbed ion may 
occupy) but we will not attempt here an analysis of surface or electrode kinetics in terms of 
defect chemistry. Determination of the nature of the rate limiting step of a reaction is a difficult 
task. Studies of surface exchange kinetics using 18O or by relaxation methods can give 
information about the temperature and pressure dependence of the rate determining step. 
However, it should be pointed out that information from such methods do not give direct 
information about the exact mechanism and which intermediate species that are involved. Each 
step will have its own specific rate and resistance to the mass transport across the membrane. In 
lack of detailed knowledge of the rate limiting step(s) we normally have to relate to the overall 
reaction. 

At equilibrium the overall reaction takes place forth and back at equal rates r0 as a result of 
thermal energy. The activation process forth and back may not be symmetrical in this case, but 
that will not affect us at present. Similarly to the random diffusion coefficient connected with 
these thermal disorders in bulk (Dr = 1/6 r0 s2) we introduce an exchange coefficient for 
interfaces; ki = r0si which says something about the thermal fluctuations of the reaction across 
the interface of thickness si. We can alternatively express this as an exchange flux density  

 

csr=ck=j i0i0          (7.60) 
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or an exchange current density  

 

necsr=neck=nej=i i0i00         (7.61) 

 

where n is the number of electrons involved in the reaction. If we now apply a small force over 
the interface, we get a perturbation and a net flux, given by 

 

kT
dP

k-c=j i           (7.62) 

 

where c is the volume concentration of species in the interface, and dP is the potential step over 
the interface. The net current density is 

 

kT
dP

i=
kT
dP

kcne=jne=i 0i         (7.63)  

 

If dP is taken as the electrical (over-)potential energy step affecting the reaction, dP = ηne and 
the overpotential becomes 

 

i
i

ne
kT=

0

η           (7.64) 

 

This is the linear or ohmic (small overpotential) form of the kinetics expression, as we expect 
from our specification of small forces and perturbations. We note that the interface thickness si 
has dropped out and is mostly not an interesting parameter at this level. 

By measuring the overvoltage vs current density by voltammetric DC or impedance 
spectroscopy AC methods, we may obtain the charge transfer resistance 

 

cken
kT=

ine
kT=

i
=R

i
22

0
e

η         (7.65) 
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The overpotential enters directly into the sum of voltages over the fuel cell or electrolyser circuit, 
and we can solve the system in terms of current and voltage. As the force and perturbations of 
the reaction becomes larger, the full so-called Butler-Volmer exponential dependence of current 
and flux on overpotential (and force) must be taken into account: 

 

)
i
i(

ne
kT=

0

lnη           (7.66) 

 

, but we will not elaborate on this here. 

In order to approach an interpretation of transport measurements, we take as starting point 
that the flux(es) through the interface must be the same as that in the bulk of the membrane next 
to the interface in all cases (and in the entire membrane in the steady state cases). This is done in 
reality and in the mathematical solutions by adjusting the potential at the border between the 
interface and the bulk so as to equalise the two fluxes. However, this soon becomes difficult, as it 
is not trivial to choose the proper set of potentials to apply for different interface processes. 

We resort first to chemical diffusion and assume that the interface process is one which can 
be described as species flowing from a high to a lower concentration. Then 

 

c-k=)
dx
dcD(- interfacebulk ∆         (7.67)  

 

, and D as well as k must refer to chemical coefficients. This requirement can be included in the 
solution of Fick's 2nd law for transients, and D and k can in principle be found independently by 
fitting transient data to this solution. The k's obtained in this way can be used to predict steady 
state fluxes if they are measured as a function of e.g. pO2

 or at the pO2
 extremes which the 

membrane is going to be subjected to. Otherwise, the k values are not immediately easy to relate 
to other data.   

In a tracer experiment, we obtain Dt which is close to the self diffusivity (Dt = f Dr) and 
then the exchange coefficient should also reflect the tracer exchange coefficient kt . ki and this 
should be comparable to that calculated as above from measurements of Re; the difference 
should say to what extent the presence of an electrode has changed the kinetics of the rate 
limiting step of the surface reaction. 
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In order to analyse the effect of interface kinetics on fluxes through a membrane under 
steady state conditions, we may take an approach similar to that for fuel cells and electrolysers. 
Principally, no electrodes are involved, and voltages are therefore not directly appropriate as in 
the other cases. Instead we may sum up chemical potential changes of oxygen (or hydrogen) 
through the membrane and its interfaces. We start out with the membrane interior, and from 
earlier we have for a mixed oxygen ion and electron conductor of thickness L (earlier also 
referred to as X or ∆x): 

 

µ
σ

)(2 2

2

2

8
1

gO

II

I

eO
O d

e
t

L
j ∫

−−

− −=           (7.68) 

 

If we introduce ambipolar diffusivities and conductivities and assume these constant, the 
equation may be integrated to obtain 

 

Le8
=

L2kT
cD=j O

2
ambOOamb

O
22

-2

2

µσµ ∆∆
       (7.69) 

 

and, by rearrangement, the chemical potential drop over the bulk of the membrane is  

 

σ
µ

amb

2
O

Oamb

O
O

Le8j-
=

cD
kTLj2-

= 2

-2

2

2
∆        (7.70) 

 

This drop over the membrane bulk is given by the external full gradient minus the losses at the 
interfaces. In the present terms, the flux through an interface is, from Eqs. 7.62 and 7.65 given by 

 

Re8
-

=
2kT

kc-
=j

e
2

interface
O

interface
OiO

O
22

-2

-2

µµ ∆∆
         (7.71) 

 

such that, by rearrangement, 
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Re8j-=
ck

kTj2-
= e

2
O

Oi

Ointerface
O 2

-2

2

2
µ∆        (7.72) 

 

Now, we sum up the total gradient in chemical potential of oxygen over the bulk of the 
membrane and the two interfaces  

 

µµµ interface
O

bulk
O

tot
O 222

2+= ∆∆∆         (7.73) 

 

and after insertion of the above expressions for bulk and interface, we can solve for the flux of 
oxygen ions through a membrane with two equally contributing interfaces under the conditions 
given: 

 

R2+L
e8/-

=

k
2+

D
L

/2kTc-
=j

e
amb

2tot
O

iamb

O
tot
O

O
2-22

-2

σ

µµ ∆∆
       (7.74) 

 

This result simply states that the flux is given by the driving force (which easily transforms to 
Nernst voltage) divided by the total ambipolar resistance, in our case namely that of the bulk and 
twice that of one interface.   

In lack of full understanding of the relations involved in interface kinetics of membranes, 
we may refer to a critical thickness; the thickness of the bulk membrane where the interface and 
bulk impose equally large restrictions on the flux. In any membrane application, going much 
below this thickness is not of much use. We see from the above that this thickness is Lcrit=D/k for 
the thickness of the part of a membrane relating to one interface, or Lcrit =2D/k for thickness of a 
membrane with two equally limiting interfaces, typically the two surfaces. 

 Experimentally the value of Lcrit has been found to be of the order of 100 µm for many 
polished samples of different fluorite and perovskite materials, indicating that there is a close 
relationship between e.g. vacancy concentration in bulk and the surface exchange. Roughing the 
surface should increase relatively the surface flux, and this has been shown to work. 
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Ionic transport of both anions and cations 
  

General expressions 
 

 We have in the previous section considered ionic transport by oxygen ions (anions) only. 
This was done for simplicity, because it represents many real applications, and because oxygen 
ions relate most directly to the oxygen (non-metal) activity which we may control most 
conveniently. 

 Now we will include cation (metal ion) transport. Some systems have predominant 
transport of cations, and we thus need to see how this relates this to the non-metal activity. Some 
systems have both anion and cation transport so we need to take both into account. In some cases 
we may not know which one is dominating and as we shall see it is not always easy or necessary 
to distinguish them. 

In an inorganic compound the total ionic current density, iion, is given by the sum of the current 
densities of anions, ian, and the cations, icat. From our previously derived expressions for partial 
current densities we thus obtain 

 

dx
d

ezdx
d

ez
ejzejziii cat

cat

catan

an

an
catcatanancatanion

ησησ −
+

−
=+=+=    (7.75) 

  

where zan and zcat represent the valences and thus ionic charges of the anions and cations, 
respectively. 

In order to relate the current density of the cations and anions let us consider the 
equilibrium involving the formation of the compound MaOb from its ions: 

 

ba
zz OMbOaM ancat =+         (7.76) 

 

Through the Gibbs-Duhem relation, equilibrium in this reaction may be expressed as 

 

)(sOMOM baanzcatz dbdad µµµ =+        (7.77) 
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The fact that 0)( =sOM ba
dµ  arises from MaOb(s) being a pure condensed phase. It may further be 

noted that  

 

ancat bzaz −=           (7.78) 

 

so that we obtain the very important expression 

 

dx
d

z
z

dx
d

a
b

dx
d an

an

catancat µµµ
=−=        (7.79) 

 

From this we note that the cation and anion chemical potential gradients are the negative of each 
other in a binary compound, a relation that is used extensively, mathematically or by intuition.  

By adding 
dx
dezcat
φ   to both sides of the equation and rearranging on the right hand side we 

obtain 

 

dx
d

z
z

dx
d an

an

catcat ηη
=          (7.80) 

 

By combining Eqs 7.75. and 7.80 the total ionic conductivity may be expressed by 

 

dx
d

ezdx
d

ez
i an

an

ioncat

cat

ion
ion

ησησ
−

==        (7.81) 

 

Thus, the ionic current density can be expressed in terms of the ionic conductivity (sum of 
cationic and anionic conductivities) and the gradient in the chemical potential of cations or 
anions. 

 From this it becomes clear that the derivations of oxygen ion fluxes and currents in 
various situations done earlier could have been done for the case of ions (sum of cations and 
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anions) simply by inserting ionσ  instead of −2Oσ , but with for instance the oxygen activity 

gradient as the driving force.  

 

Membrane ”walk-out” 

Metal ions are transported from the low oxygen pressure to the high oxygen pressure side 
of the membrane while metal vacancies are transported in the opposite direction. During the 
process oxygen is liberated and oxygen and metal sites are annihilated at the low oxygen 
pressure side, e.g. for a metal deficient oxide M1-∂O with doubly charged metal vacancies: 

 

 OO + V
2'
M  + 2h.   =  12  O2(g)       (7.82) 

 

while equivalent number of lattice sites are formed at the high oxygen pressure side: 

 

 1
2  O2(g) = OO + V

2'
M  + 2h.        (7.83) 

 

In this way the oxide membrane is actually moving in laboratory space in the direction of the 
higher oxygen potential.  

From this we see that even a very minor transport of metal ions may be detrimental to the 
operation of an oxygen separation membrane or fuel cell: Over the many years of operation the 
electrolyte or membrane will simply “walk out” of its housing, towards the high oxygen 
pressure. 

 

Demixing of oxide solid solutions 

An additional important aspect of diffusional transport of metal ions in a chemical potential 
gradient is that in a homogeneous crystal of an oxide solution, e.g. (A,B)1-δO such as for 
instance (Co,Ni)1-δO, a demixing process begins to take place. Both cations move by vacancy 
diffusion. When one of the cations in (A,B)1-δO, e.g. A2+, has a higher mobility than the other, 
the A2+ ions will move faster to the side of the higher oxygen potential. The solid solution is 
enriched in AO at this side and thus becomes kinetically demixed. After extended time a steady 
state concentration profile is reached. This can be formulated through the use of the appropriate 
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transport equations and by taking into account the conditions of electroneutrality and of local 
thermodynamic equilibrium. The process is schematically illustrated below. 

 

Figure 7-1. Schematic illustration of kinetic demixing of the oxide solid solution (A,B)1-δO in a oxygen 
potential gradient. 

 

Multicomponent compounds, e.g. ABO3 and AB2O4, can similarly be demixed in an 
oxygen potential gradient. In this case defects are formed due to the nonstoichiometric A/B ratio. 
Both in the case of the solid solution and in the case of a ternary oxide, new phases may be 
precipitated as soon as the concentration of solute or defects exceeds the solubility limit. We may 
in fact end up in the peculiar situation that the starting oxide is stable in both the low and the 
high oxygen activities separately, but unstable in the gradient between them.  

 The decomposition and precipitation of new phases may violate the functional or 
mechanical properties of the material. These types of phenomena are not only of importance in 
oxide membranes, but also in oxidation of alloys where solid solutions of two or more oxides or 
multicomponent compounds may be formed in the oxide scales. 

 

High temperature oxidation of metals; the Wagner oxidation theory 
 

When high temperature oxidation of metals results in the formation of compact scales and 
sufficient oxygen is available at the oxide surface, the rate of reaction is governed by the solid 
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state diffusion of the reactants or transport of electrons through the scale. As the diffusion 
distance increases as the oxide grows in thickness, the rate of reaction decreases with time. When 
the diffusion takes place homogeneously through the scale, the rate of growth of the oxide 
thickness, x, is inversely proportional to the oxide thickness: 

 

x
k

dt
dx

p
1*=           (7.84) 

 

In the integrated form this becomes 

 

00
*2 2 CtkCtkx pp +=+=         (7.85) 

 

where )2( *
pp kk =  and *

pk  are expressions for the rate constants and Co is an integration constant. 

The oxide thickness may alternatively be measured in terms of the oxygen uptake by the metal 
specimen during oxidation by using, for instance, thermogravimetry. The oxide thickness or 
oxygen uptake is parabolic with time, and the oxidation is termed parabolic. Accordingly pk  and 

*
pk  are termed parabolic rate constants. The figure below illustrates the variation in the oxide 

thickness or oxygen uptake as a function of time. 

 

Figure 7-2.  The variation in oxide thickness as a function of time (x vs t and x2 vs t) during parabolic 
oxidation of metals 
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Carl Wagner developed the theory for parabolic oxidation assuming that the reaction is 
governed by lattice diffusion of the reacting ions (metal and oxygen ions) or transport of 
electrons. The important aspect of the Wagner oxidation theory is that the parabolic rate constant 
is expressed in terms of independently measurable properties, i.e. the electronic and ionic 
conductivity of the oxide or alternatively in terms of the self-diffusion coefficients of the reacting 
ions. This thus provides an interpretation of the reaction mechanism and a theoretical basis for 
changing and improving the oxidation resistance of metals and alloys. The Wagner theory has 
been one of the most important contributions to our understanding of the high temperature 
oxidation of metals. 

The basic assumption of the theory is that the lattice diffusion of the reacting ions or the 
transport of electrons through the dense scale is rate-determining for the overall reaction. Lattice 
diffusion is assumed to take place because of the presence of point defects, and the migrating 
species may alternatively be considered to constitute lattice and electronic defects. Wagner 
further assumed that ions and electrons migrate independently of each other and that local 
equilibria exist within the oxide. Such transport processes through a dense, single-phase scale 
growing by lattice diffusion is illustrated in the figure below. One part (a) illustrates the transport 
of metal and oxygen ions and electrons, while the other (b) illustrates the transport processes 
when the predominant diffusion processes involve metal vacancies and interstitials. 

 

Figure 7-3. Transport processes during growth of a dense, single phase scale growing by lattice diffusion. a) 
transport processes illustrated by transport of reacting ions, b) transport processes illustrated by transport of 
diffusion of important point defects (in this case assumed to be metal vacancies and interstitials). 
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As diffusion through the scale is rate-determining, reactions at the phase boundaries are 
considered to be rapid, and it is assumed that thermodynamic equilibria are established between 
the oxide and oxygen gas at the oxide/oxygen interface and between the metal  and the oxide at 
the metal/oxide interface. 

The overall "driving energy" of the reaction is the Gibbs free energy change associated 
with the formation of the oxide, e.g. MaOb, from the metal M and the oxygen gas. 
Correspondingly, a gradient in the partial pressure (activity) of oxygen exists across the scale 
from the partial pressure of oxygen in the ambient atmosphere at the outer surface to the partial 
pressure of oxygen at the metal/oxide interface. The latter partial pressure is the decomposition 
pressure of the oxide in equilibrium with its metal. 

The main driving force for the transport through the plane is the chemical potential 
gradient. But when one considers the transport of the reacting ions and of the electrons through 
the scale, it may also be noted that the mobilities of the cations, anions and electrons are not 
equal. Because of this difference, a separation of charges takes place in a growing scale. This 
creates a space charge (diffusion potential) that opposes a further separation of charges, and a 
stationary state is reached for which no net electric current flows through the scale. In describing 
the transport of ions and electrons through the scale, it is thus necessary to take into account both 
the transport due to the gradient of the chemical potential and that due to the gradient of the 
electrical potential, i.e. the electrochemical potential gradient. Thus, the treatment of the 
transport through the oxide scale is identical to that done earlier for electrochemical transport 
through a mixed conducting oxide. 

The net ionic current is from earlier given by 
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and the electronic current is given by 
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As no net current flows through the scale during the scale growth, then itot = iion + iel = 0. By 
solving this system in the usual manner (solving for the electrical potential gradient, inserting 
into the expression for the ionic current density and inserting the equilibrium condition between 
oxygen ions, oxygen molecules and electrons) we obtain 
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The rate of oxygen ions reacting per unit area is obtained by dividing the ionic current density by 
the charge of the oxygen ions. Moreover, the rate dn/dt of oxide molecular units MaOb formed 
per unit area is obtained by further division by b:  
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Similar to the integrations we have done earlier over the thickness of the oxide, we now integrate 
over the instantaneous thickness ∆x and from the ambient oxygen pressure, 0

2Op , to the partial 

pressure at the metal/oxide interface, i
Op

2
. The growth rate dn

dt     then takes the form 
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We have chosen to organize the equation and direction of integration such that the rate is positive 
if 0

2Op > i
Op

2
. In general the directionalities and signs of the fluxes and processes that go on pose 

a problem for us. One may most often neglect this issue because the output, namely growth 
(increase in amount of oxide or thickness of scale) is intuitively positive. However, it may not be 
just that easy, since there is nothing preventing scale reduction (reverse of growth) if the outer 
oxygen partial pressure is smaller than the activity at the metal/oxide. 

 Many readers will probably wonder about another small apparent problem: We integrate 
over the scale to take into account the steady state condition, namely that the fluxes are constant 
throughout the scale. Still, the scale grows, so how can it be steady state? The answer is that it is 
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steady state (constant fluxes) for that moment of time with that instantaneous thickness of the 
scale. So our integration is for a given moment in time. At another moment the integration will 
give a different flux.    

The expression in the parentheses, 



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∫
o
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8 Oelion p dtσ
be

kT , can be considered to be one 

form of the parabolic rate constant and is in the following written kt: 

 

∆x
k

dt
dn

t
1=           (7.91) 

 

kt thus represents a time-independent coefficient, while the flux and thickness of the scale vary 
according to the parabolic relation above.  

As written in this form 
dn
dt     is expressed in number of molecular units of MaOb per cm2sec 

and ∆x in cm. The derivation of Wagner's equation that we here have done for growth of oxide 
scales, may be applied to many other gas-metal reactions. 

It may be noted that although the total particle current is equal to the rate of growth of the 
scale, the rate-determining process may either be diffusion of ions or transport of electrons 
depending on the properties of the scales. If the scale is an electronic conductor, tel ≈ 1, the 
diffusion of the reacting ions through the scale is rate-determining, while the transport of 
electrons through the scales is rate-determining if the scale is an ionic conductor, tion ≈ 1. The 
oxygen pressure dependence of the reaction will depend on whether the scale is an ionic or 
electronic conductor and in the latter case on the type of nonstoichiometry that prevails in the 
oxide scale. 

In our derivation, the growth rate is proportional to σiontel = σtottiontel = (σan + σcat) tel. 
However, the conductivity of the metal and oxygen ions in MaOb can be expressed in terms of 
the self-diffusion coefficients of the metal and oxygen ions in MaOb through the Nernst -Einstein 
relation (zi2e2Dici = kT σi). Let us insert this relationship in Eq.7.89 and assume that the oxide is 
an electronic conductor (tel ≈ 1). Let us furthermore take into account that concentrations of 
metal ions (cations), cM, and oxygen ions, cO, in an oxide MaOb with relatively small deviation 
from stoichiometry are related through cM/cO = a/b = |zan|/zcat. The expressions for the flux 
through the growing scale (expressed in terms of the number of MaOb units per cm2sec.) and for 
kt then become  
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cO denotes the number of oxygen ions in MaOb per cm3 and DM and DO are respectively the 
self-diffusion coefficients of the metal and oxygen ions in MaOb. It should be noted that DM and 
DO are the self-diffusion coefficients for random diffusion of the respective ions.  

In Eqs.7.92 and 7.93, kt represents the rate of formation of MaOb units per cm2 per second 
for an MaOb scale of thickness 1 cm. One may as said before alternatively express the parabolic 
rate constant in terms of the rate of growth of the oxide thickness 
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The dimensions of  k
*
p   are then cm2sec-1, and Eq.7.93 then takes the form 
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Growth of metal-deficient Ma-yOb on M  

Let us make use of Eq. 7.95 to illustrate the temperature and oxygen pressure dependence 
of the parabolic rate constant. Consider the growth of the metal deficient oxide Ma-yOb on high 
purity M. Let us assume that the predominant defects throughout the entire scale are metal 

vacancies with an effective charge α, i.e. V
α'
M . Let us further assume that the metal ion diffusion 

is much faster than the oxygen diffusion, i.e. DM >> DO. Eq. 7.95 then reduces to  
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In order to integrate this we need to analyse the defect structure of the oxide. The formation of 
the metal vacancies may be written as  
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If other defects may be neglected  and the electroneutrality condition is given by α[V
α'
M ] = p, the 

concentration of metal vacancies is given by  
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where /α
MV

K  is the equilibrium constant for the formation of the metal vacancies (Eq. 7.97) and 

][ /α
Mv  denotes the fraction of the metal ion sites that are vacant. On the basis of this relation, 

2
ln Opd  may be written 
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When this expression for 
2

ln Opd  is introduced in Eq.7.96 , the expression for  k
*
p  becomes  
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If the concentration of metal vacancies at the oxide/oxygen interface is much larger than at the 
metal/oxide interface, i.e. i/o/ ][][ αα

MM vv >>  then  
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where o/ ][/
α

α Mv
o
M vDD

M
=  is the self-diffusion coefficient of the metal ions in Ma-yOb at the 

oxide/oxygen interface. Thus under these conditions the parabolic rate constant and the self-
diffusion coefficient of M in Ma-yOb has the same temperature and oxygen pressure 
dependences. 

 
Growth of oxygen-deficient MaOb-y on M  

The same procedure may be used to derive the parabolic rate constant for the growth of 
oxygen deficient MaOb-y on M. let us assume that the oxygen vacancies have α charge α, i.e. 

Vα.
O  , and the formation of the oxygen vacancies may then be written 

 

OO = Vα.
O   + αe' + 12 O2        (7.102) 

 

If DO>>DM and (p
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where •α
OvD  is the self-diffusion coefficient of the oxygen vacancies, i][ •α

Ov  the concentration of 

oxygen vacancies and DOi  the self-diffusion coefficient of oxygen in MaOb-y at the metal/oxide 

interface. DO0 is the oxygen self-diffusion coefficient at 1 atm. O2, and p
i
O2  is the oxygen 

activity at the metal/oxide interface. For this case the parabolic rate constant is independent of 
the ambient oxygen pressure, and the temperature dependence is given by that of the oxygen 
self-diffusion coefficient in MaOb-y at the metal/oxide interface. In this respect it may be further 
noted that the oxygen self-diffusion coefficient at the metal/oxide interface is given by that the 
product of the self-diffusion coefficient of oxygen at constant oxygen pressure (at 1 atm O2) and 

(p
i
O2 )-1/2(α+1) , i.e. DOi = DO0 (p

i
O2 )-1/2(α+1) . In these terms the activation energy of the 

parabolic rate constant is under these conditions given by the activation energy associated with 
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DO0 and the enthalpy term associated with (p
i
O2 )-1/2(α+1) . Similar treatments may be given for 

oxide scales growing by interstitial metals ions or interstitial oxygen ions.  

 
Scales with ionic conductivity predominant. 

Most oxides encountered in high temperature oxidation of metals are electronic 
conductors. In the literature there are no examples of high temperature metal-oxygen reactions  
involving conventional metals or alloys with essentially pure ionic conductivity over the entire 
existence range of the oxide. Such type of reactions are, however, found in metal-halogen 
reactions, e.g. Ag+Br2 to form AgBr. The same treatment as given above may be applied to 
reactions involving formation of ionically conducting scales, and the important feature of these 
reactions is that it is the electronic transport through the scale that is rate-determining. 

 

Varying defect structure situations through the scale. 

In the preceding examples it has been assumed that the same defect structure prevails 
throughout the entire scale from the scale/gas to the metal oxide interfaces. This is an 
oversimplified model for many systems. The charge on the defects, or even the predominant 
defects may change with changing oxygen activity. Furthermore, the presence of impurities and 
dopants may significantly affect the defect structure situation. Thus, following the discussion in 
Ch.4 one part of the scale may possibly have intrinsic properties and another part extrinsic 
properties. As part of such behaviour one part of the scale may have significant ionic 
conductivity while the rest has electronic conductivity.  

In the presence of water vapour, hydrogen defects may affect the diffusional behaviour in 
growing oxide scales in many different ways. 

 

Diffusion–limited creep 
 

General terms and mechanisms 

Creep represents plastic deformation of solids under an applied stress. At high 
temperatures and under constant applied stress, a steady state is reached (secondary creep stage) 
where the rate of deformation remains constant. The steady state creep rates of crystalline solids 
can be expressed by the equation   
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 ε = f(s) σn
str  exp( -Q/RT)       (7.104) 

 

where f(s) is a function which is dependent upon the structure, σstr is the applied stress, n is a 
constant and Q the activation energy. 

Several mechanisms based on diffusion controlled  processes have been proposed to 
explain experimentally observed creep behaviour: the Nabarro-Herring  and Coble mechanisms, 
grain boundary sliding, and dislocation movements. The Nabarro-Herring mechanism applies to 
low stress levels at high temperatures. It is based on the assumption of stress-directed lattice 
diffusion of solids. If this takes place by the vacancy mechanism, the vacancies diffuse from 
regions under tension to regions under compressive stress. This is illustrated schematically in the 
figure below. If the diffusion takes place by interstitial defects, the defects move in the opposite 
direction.  

 

Figure 7-4. Vacancy fluxes in single grains due to imposed stresses: a) through vacancy lattice diffusion 
(Nabarro-Herring creep; b) through diffusion along grain boundaries (Coble creep) 

 

Creep in an elemental solid 

The theory  predicts that the tensile strain rate due to creep under a tensile stress σ is given 
by  

 

 ε = K 
Ω Dl σ

kT g2           (7.105) 
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where K is a geometrical constant, Ω is the atomic volume, Dl is the lattice self-diffusion 
coefficient, g is the length of the diffusion path (i.e. the average grain size), k is the Boltzmann 
constant and T the absolute temperature. The Nabarro-Herring creep rate is thus proportional to 
the stress and the activation energy is equal to that for the self-diffusion. 

In polycrystalline solids the defects (or atoms) can migrate by both lattice and grain 
boundary diffusion and as discussed in Chapter 5 the effective diffusion coefficient may be 
written  
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If this value for Deff is substituted for the lattice diffusion coefficient, Dl, the creep rate becomes  
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If lattice diffusion is negligible compared with grain boundary diffusion, this reduces to  

 

ε = K 
3Ω σ
kT g3  δDgb          (7.108) 

 

This mechanism was first proposed by Coble, and it is illustrated schematically in Fig.7.8b. Also 
in this case the strain rate is proportional to the stress.  Both the Nabarro-Herring and Coble 
mechanisms are favoured by small grain sizes. 

 

Creep in compounds 

In a compound, e.g. an oxide MaOb, the creep process is more complicated in that both 
metal and oxygen atoms (or ions) must migrate in order to conserve electroneutrality and 
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maintain local composition of the oxide. Thus the fluxes of the metal and oxygen ions are 
coupled, and one must consider the flow of "molecular units" of MaOb. The molecular diffusion 
coefficient Dmol is a composite value of the self-diffusion of the metal and oxygen ions and is 
given by  

 

 Dmol = 
DM DO

aDO + bDM         (7.109) 

 

In the expressions for the creep rates, the molecular volume must be substituted for the atomic 
volume:  

 

 Ωmol = aΩM + bΩO        (7.110) 

 

The value of Dmol may be expressed either in terms of the lattice self-diffusion coefficients for 
metal and oxygen ions for Nabarro-Herring creep or in terms of Deff for creep taking place by 
simultaneous lattice and grain boundary diffusion.  

From Eq. 7.109 it is seen that the creep rate is governed by the diffusion of the slower 
moving species. Thus, if metal ions diffuse much faster than the oxygen ions, DM>>DO, then  

 

 Dmol = 
1
b DO         (7.111) 

 

and accordingly the creep rate is determined by the diffusion of oxygen atoms in MaOb. A 
meaningful interpretation of the creep behaviour in terms of the diffusion processes thus requires 
knowledge of the self-diffusion of both components in the binary compound. 

In addition to the above models other creep mechanism have been advanced based on 
dislocation movements in the material. 
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Sintering 
 

Stages of the sintering process 

Sintering is the process whereby powders and small particles agglomerate and grow 
together to form a continuous polycrystalline body. As a rule of thumb the material must be 
heated to 2/3 of the melting temperature to achieve considerable sintering.  

The overall sintering process may conveniently be divided into different stages. The 
principal stages involved is illustrated schematically below.  

 

Figure 7-5. Principle stages during the sintering process: a) particles in contact prior to sintering; b) neck 
growth between particles during initial stage of sintering; c) further neck growth and formation of continuous pore 
channels along grain boundaries; and d) further sintering in closing channels and formation of closed pores at 
grain corners. 

 

During an initial stage the surface roughness is decreased and the particles begin to adhere 
and grow together. At the end of this stage grain growth begins to occur and grain boundaries 
and metastable pore phase is established. Only modest shrinkage of a few percent takes place 
during the initial stage. 

During an intermediate stage grain growth continues, and the cross-sectional area of the 
pore phase decreases. The final stage begins when the body achieves 90-95% theoretical density. 
At this point the pore phase becomes discontinuous, and the closed pores usually remain at grain 
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boundaries. The final stage may involve complete removal of the remaining pores, leading to a 
completely dense material. Alternatively, it may involve discontinuous growth of the large grains 
at the expense of the small ones, and closed pores may as a consequence be isolated  inside the 
grains. If the latter process occurs, complete densification becomes extremely difficult. 

 

Driving force for sintering 

During sintering, as for other spontaneous processes, the total free energy of the system 
decreases. For elemental solids and homogeneous compounds the only free energy change 
involved in sintering is that of the surface free energy or surface tension, γ, of the particles.  

Any surface atom or molecule is subjected to a resultant inward attraction because of the 
unsaturated chemical bonds at the surface. The surface therefore tends to contract to the smallest 
possible area. In the case of a spherical particle with radius r, the interior is subjected to an 
excess force of πr2p, where p is the pressure. This is counteracted by the surface tension acting 
along the circumference: 2πrγ. When equating these opposing forces, the pressure is given by  

 

 p = 2πrγ
πr2

  = 
2γ
r           (7.112) 

 

From this it is seen that the vapour pressure of a sphere is larger the smaller the radius and 
as a result a large sphere will grow at the expense of a neighbouring small sphere. This type of 
grain growth in polycrystalline solids is termed Ostwald's law. Similarly the vapour pressure of 
convex surfaces is larger than the vapour pressure of a concave surface and as a result surface 
roughness of particles is reduced during the initial stage of sintering. 

 

Transport processes during sintering 

As for creep, sintering of oxides implies that molecular units of the oxide are transported 
from areas from high to low surface free energies, e.g. from convex to concave surfaces. 
Generally it is concluded that transport of the slower moving species determines the overall 
sintering rate. Thus, in a binary oxide where oxygen ions diffuse much more slowly than the 
metal ions, it is generally to be expected that the sintering rate is determined by the transport, e.g. 
lattice or grain boundary diffusion of oxygen. 
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Sintering governed by lattice diffusion will be dependent upon the concentration of point 
defects in oxides. Accordingly, sintering rates of an oxide can be optimised by close control of 
impurities or dopants and the ambient partial pressures of oxygen and of water vapour in cases 
where proton defects affect the defect structure of the oxide. 

 

 

Oxides with additional transport of protons 
 

If an oxidic material conducts protons in addition to oxygen ions and electrons we need to 
introduce electrochemical equilibria between neutral and charged species of both oxygen and 
hydrogen: 
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for which equilibria can be expressed by 
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We insert these into the flux equations for the species and utilise that the sum of all transport 
numbers equals unity. We furthermore use that dµ = kTdlna • kTdlnp, where a and p are activity 
and partial pressure, respectively, and obtain 
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This can now be integrated to obtain the voltage of a cell, or inserted into a flux equation of a 
species of interest in the usual manner. We now have a system with two chemical driving forces 
for electrochemical transport; that of oxygen activity and that of hydrogen activity.  

 

 

Other cases 
 

We have in the present version of the treatment of electrochemical transport omitted many 
cases. These include a more full coverage of proton transport in oxides and transport by other 
hydrogen species and other foreign species. Moreover, we have left out the case of solid-solid 
reactions. Also, creep and sintering were given more phenomenological than defect-chemical 
treatments. 

We have throughout assumed isothermal conditions. If we instead of (or in addition to) 
chemical driving forces considered a temperature gradient, our integrations over membranes 
would have been from one temperature to another. The voltage we would have obtained would 
be the thermoelectric voltage. It has several contributions, but in general it is related to the 
transport numbers and the gradients in concentrations of defects. The variations of concentration 
is in turn given by the entropy of the defects. 

 

More on these themes will be included in future updates.    
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