

Atomic nuclei and radioactivity

Stability and disintegration

Per Hoff

Department of Chemistry University of Oslo

Autumn 2004

Per Hoff

KJM-5900

Nuclear Chem., Dept.of Chem. University of Oslo

Concepts and definitions

- Atomic number number of protons in the nucleus (Z)
- Isotopes atoms with same Z but different number of neutrons (N)
- Mass number: A = Z+N
- Isobars: Atoms with same A, but different Z (and N)
- e.g. ⁸¹Zn, ⁸¹Ga, ⁸¹Ge
- (Isotones atoms with same N but different Z)
- Nuclide: atom type characterized by a specific N and Z
- Nucleon, proton or neutron
- Isomer, atoms a specifiv nuclide, in a particularly long-lived excited state, different from the ground state

Autumn 2004

er Hoff

KJM-5900

Nuclear Chem., Dept.of Chem. University of Oslo

Isotopes

- Fluorine isotopes exist on the following masses; 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, in total
- ▶ ¹9F is the only stable F isotope
- ¹⁸Fand ¹⁷Fare β*-active
- All the remaining are β-active
- 16F is unbound, i.e. it does not exist. It is not possible. This position is called the "proton dripline". All lighter F-isotopes are also unbound
- ²⁸F is unbound, so is ³⁰F and all heavier F-isotopes. ²⁸F and ³⁰F are just above the "neutron drip-line"

itumn 2004

Per Hoff

KJM-5900 Nuclear Chem., Dept.of Chem. University of Oslo

Notation

- •A mass number
- •Z proton number
- ●N neutron number
- •X chemical element signature

Example:

Or just:

³⁶C

Do not use: C►36 or C

Autumn 2004

KJM-5900

Autumn 2004

Nuclear Chem., Dept.of Chem. University of Oslo

Energies and units

- •1 eV (electron-volt) = 1.6•10⁻¹⁹ J
- ●1 keV = 10³ eV
- ●1 MeV = 10⁶ eV
- ●1 GeV = 109 eV
- ●1 TeV = 10¹² eV
- ~eV chemical binding
- •~keV binding energies for inner shell electrons in heavy elements
- •511 keV electron rest mass
- ~MeV energies in simple nuclear processes
- •~200 MeV fission energies
- ●0.94 GeV nucleon rest mass (proton or neutron)

KJM-5900

Nuclear Chem., Dept.of Chem. University of Oslo

Disintegration and time

Assumptions:

- 1. We have a number N radioactive atoms of the same nuclide
- •2. Their probability of decay is independent of their past history
- •3. They decay without interactions with the surroundings

•

• What is the disintegration rate as a function of time?

Autumn 2004

Per Hoff

The decay law

Consider a time-interval At. During this time a number of atoms $-\Delta N$ (positive number) will disintegrate. We consider Δt so small that the condition $-\Delta N \ll N$ is fulfilled. Then we have: $-\Delta N \propto \Delta t$ and $-\Delta N \propto N$ (assumption 3) Hence: $-\Delta N = \lambda N \Delta t$ or: $-dN = \lambda Ndt$ i.e. $-dN/N = \lambda dt$ Integration: assumption 2 $-dN/N = \lambda dt = \lambda dt$ gives -ln (N/N_0) = λt or N=N_ce-λt

Autumn 2004 Per Hoff

Like a 1st order chemical reaction

KJM-5900 Nuclear Chem., Dept.of Chem. University of Oslo

Disintegration and number of atoms

The constant λ is the decay constant, characteristic of each nuclide, and expresses the probability per unit time that one atom will decay. Hence the product

λN ≡ E

expresses the number of disintegrations per unit time, or the disintegration-rate of that particular nuclide. As for a 1st order chemical reaction, we have:

$$\lambda = \ln(2)/T_{1/2}$$

It is also easily seen that for a single decay, one has:

 $D = D_a e^{-\lambda t}$

where D_o is the disintegration rate at t=0

Autumn 2004

KJM-5900 Nuclear Chem., Dept.of Chem. University of Oslo

Unit

- Unit for disintegration-rate (decayrate): 1 becauerel = 1 Bq
- ●1 Bq = 1 disintegration per second
- 1 kBq = 10^3 Bq
- ●1 MBa = 10⁶ Ba
- •1 GBq = 10⁹ Bq
- •1 TBq = 10¹² Bq
- •1 PBa = 10¹⁵ Ba
- •
- Disintegration rate should be specified to a particular nuclide, or to total disintegration rate

Autumn 2004

Per Hoff

KJM-5900 Nuder Distinte Gration rate and mass

The total amount of Pu in the world was in 1992 approximately 1100 tons. Calculate the disintegration rate, assuming that all Pu is ²³⁹Pu, with half-life of 24 000 years.

- 1) Find the number of moles: $n=1.1 \cdot 10^9/239 = 4.6 \cdot 10^6$ 2) Number of atoms: $N=N_A \cdot n=6.022 \cdot 10^{23} \cdot 4.6 \cdot 10^6$ $=2.8 \cdot 10^{30}$ 3) $D=\lambda N=N(\ln 2)/T_{\frac{1}{2}}=$ $2.8 \cdot 10^{30} \cdot (\ln 2)/(24000 \cdot (y) \cdot 3.16 \cdot 10^7 \cdot (s/y))=$
 - 2.5•10¹⁸ Bq

KJM-5900

Autumn 2004

Nuclear Chem., Dept.of Chem. University of Oslo

Per Hoff

Environmental aspects

The Kara Sea is about 2000 km long, 500 km wide and 200 m deep.

Total volume: $V = 200 \cdot 500\ 000 \cdot 2000\ 000$ = $2 \cdot 10^{14} \text{ m}^3$.

Assume: Someone gets holds on all the wolrd's Pu, dissolves it in nitric acid and pours it into the Kara Sea, where it is not sedimented.

Specific activity; 2.5•10¹⁸ Bq/2•10¹⁴ m³ = 12500 Bg/m³ = **12.5 Bg/I**

KJM-5900

Nuclear Chem., Dept.of Chem. University of Oslo

Decay law, example

- A source of ^{99m}Tc (6.0 h) has a disintegration rate of 1.0•10⁷ Bq. What is the disintegration rate after 3.0 hours?
- $\bullet \lambda = (\ln 2)/T_{1/2} = (\ln 2)/6.0(h) = 0.116(h^{-1})$
- D = $D_0 e^{-\lambda t}$ = 1.0•10⁷ $e^{-0.116 \cdot 3.0}$ =7.1•10⁶ Bq
- How many atoms ^{99m}Tc are present now ?
- N = D/ λ = DT_{$\frac{1}{2}$} /(ln2) = 7.1•10⁶ (6.0•3600)/(ln2) = **2.2•10**¹¹
- What's the number of moles?
- •2.2•10¹¹/6.022•10²³ = 3.7•10⁻¹³

Autumn 2004

Per Hoff