KJM-5900

Nuclear Chemistry, Dept. Of Chem. University of Oslo

Genetically dependent nuclides

- When a radioactive nuclide disintegrates to a nucløide which in turn also is radioactive, we say that the two are genetically dependent
- There can be many consecutive nuclides in a genetic series, for instance: in the disintegration of ²³⁸U, the nucleus ends in ²⁰⁶Pb after 14 disintegrations.

Important example:

99
Mo (66h) $\xrightarrow{\beta^-}$ 99m Tc (6.0h) \xrightarrow{IT} $\xrightarrow{99}$ Tc (213 000 y)

Autumn 2004 Per Hoff

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

Genetic dependence

For genetically dependent nuclides it is important to remember that **the same** atom changees all the time, and goes through different stages before ending up as stable.

Autumn 2004 Per Hoff

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

Genetically dependent nuclides ctd.

Other important examples:

⁴⁹Cr (42m)
$$\xrightarrow{\beta+}$$
 ⁴⁹V (330d) \xrightarrow{EC} \rightarrow ⁴⁹Ti (stable)

$${}^{50}Sr (29y) \xrightarrow{\beta -} {}^{80}Y (2.7d) \xrightarrow{\beta -} {}^{90}Zr (stable)$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$$

137
Cs (30y) $\stackrel{\beta^-}{\longrightarrow}$ \rightarrow 137m Ba (2.6m) $\stackrel{\gamma}{\longrightarrow}$ \rightarrow 137 Ba (stable)

Autumn 2004 Per Hoff

KJM-5900

Nuclear Chemistry, Dept. Of Chem. University of Oslo

Mother/daughter relations

- We have two genetically connected radionuclides, 1 and 2
- Nuclide 1 → nuclide 2 → stable
 We want an expression of
 disintegration rates as function of
 time and start-conditions.

Assume that nuclide 1 is the first. Then we have:

 $N_1 = N_{1.0}e^{-\lambda}1^t$

in the time interval dt, the increase in N2 is:

 $dN_2 = (\lambda_1 N_1 - \lambda_2 N_2)dt$

or: $\frac{dN_2}{dt} + \lambda_2 N_2 - \lambda_1 N_{1,0} e^{-\lambda_1 t} = 0$

Autumn 2004 Per

KJM-5900 Nuclear Chem

Nuclear Chemistry, Dept. Of Chem. University of Oslo

Mother/daughter relations

Solve this differential equation:

N2 = uv,
$$\Rightarrow \frac{dN_2}{dt} = v \frac{du}{dt} + u \frac{dv}{dt}$$

$$v \frac{du}{dt} + u \frac{dv}{dt} + \lambda_2 uv - \lambda_1 N_{1,0} e^{-\lambda_1 t} = 0$$

Demand:
$$u(\frac{dv}{dt} + \lambda_2 v) = 0$$

Gives:
$$v = e^{-\lambda_2 t}$$

$$\frac{du}{dt} e^{-\lambda_2 t} - \lambda_1 N_{1,0} e^{-\lambda_1 t} = 0$$
 or

$$\frac{du}{dt} = \lambda_1 N_{1,0} e^{-(\lambda_1 - \lambda_2)t} \qquad \text{INTEGRATE}$$

$$u = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1,0} e^{-(\lambda_1 - \lambda_2)t} + C$$

Autumn 2004 F

KJM-5900

Nuclear Chemistry, Dept. Of Chem. University of Oslo

Mother/daughter relations.

$$\begin{aligned} N_2 &= uv = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1,0} e^{-\lambda_1 t} + C e^{-\lambda_2 t} \\ N_{2,0} &= \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1,0} + C \end{aligned}$$

$$C &= N_{2,0} - \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1,0}$$

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} \; N_{1,0} e^{-\lambda_1 t} - \frac{\lambda_1}{\lambda_2 - \lambda_1} \; \; N_{1,0} e^{-\lambda_2 t} + N_{2,0} e^{-\lambda_2 t}$$

$$= \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1,0} (e^{-\lambda_1 t} - e^{-\lambda_2 t}) + N_{2,0} e^{-\lambda_2 t}$$

$$= \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1,0} e^{-\lambda_1 t} (1 - e^{-(\lambda_2 - \lambda_1)t}) + N_{2,0} e^{-\lambda_2 t}$$

$$= \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1,0} e^{-\lambda_1 t} (1 - e^{-(\lambda_2 - \lambda_1)t}) + N_{2,0} e^{-\lambda_2 t}$$

$$= \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1 (1 - e^{-(\lambda_2 - \lambda_1)t}) + N_{2,0} e^{-\lambda_2 t}$$

$$D_2 = \lambda_2 N_2 = \frac{\lambda_2}{\lambda_2 - \lambda_1} \quad D_{1,0} e^{-\lambda_1 t} (1 - e^{-(\lambda_2 - \lambda_1)t}) + D_{2,0} e^{-\lambda_2 t}$$

Autumn 2004

Per Hoff

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

Mother/daughter relations.

Frequently, N₂₀ and D₂₀ are 0:

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1 (1 - e^{-(\lambda_2 - \lambda_1)t})$$

$$D_2 = \frac{\lambda_2}{\lambda_2 - \lambda_1} D_1 (1 - e^{-(\lambda_2 - \lambda_1)t})$$

Saturation factor

If $\lambda_1 << \lambda_2$:

$$N_2 = \frac{\lambda_1}{\lambda_2} N_1 (1 - e^{-\lambda_2 t})$$

$$D_2 = D_1 (1 - e^{-\lambda_2 t})$$

- Saturation factor:
- ► 0,999 after 10 daughter nuclide halflives ► Then $\lambda_1 N_1 = \lambda_2 N_2$ og $D_1 = D_2$
- •With more steps in the chain and $T_{1/2}(1) >> T_{1/2}(2)$:

 $\lambda_1 N_1 = \lambda_2 N_2 = \dots \lambda_n N_{n_1}$ and $D_1 = D_2 \dots = D_n$

Autumn 2004

Autumn 2004

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

Genetic independence $T_{1/2}(1) << T_{1/2}(2)$

Autumn 2004 Per Hoff

KJM-5900

Nuclear Chemistry, Dept. Of Chem. University of Oslo

Mother/daughter relations, three cases

- Short mother, long daughter $(\lambda_1 >> \lambda_2)$, T_{1/2}(1)<<T_{1/2}(2)
- No equilibrium
- Long mother, shorter daughter $(\lambda_1 < \lambda_2)$, T_{1/2}(1)>T_{1/2}(2)
- Transient equilibrium may occur
- Very long mother, short daughter $(\lambda_1 << \lambda_2)$, T_{1/2}(1)>>T_{1/2}(2)
- Secular equilibrium may occur

Autumn 2004 Per Hoff

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

Genetically dependent nuclides $T_{1/2}(1) < T_{1/2}(2)$

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

$T_{1/2}(1) >> T_{1/2}(2)$

● Equilibrium after approx.10 T_{1/4}

•The daughter nuclide may be chemically isolated, and reappears.

Autumn 2004

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

$T_{1/2}(1)>T_{1/2}(2)$, transient

Also applicable as isotope generator.

Autumn 2004

Total

Datternuklide

Korl

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

"Isotope generator"

- An isotope generator is a system where a short-lived daughter nuclide (or a nuclide further sown in the sequence) is allowed to "grow in", whereafter it is separated from the mother activity utilising differences in chemical properties:
- Some useful examples

- > 99Mo/99mTc > 68Ge/68Ga > 228Th/..../212Pb > 227Ac/227Th/223Ra
- ► ²³⁸U/...../²²⁶Ra/²²²Rn
- The latter is a natural isotope generator used by Marie and Pierre Curie to obtain Ra from uraniumcontaining minerals.

Autumn 2004 Per Hoff

99mTc-generator

Generator for elution of ^{99m}Tc (as water soluble $^{99m}TcO_4$) from unsoluble $^{99}Mo_2O_3$ (adsorbed on Al_2O_3)

Autumn 2004

Per Hoff