

History

- 1896: Becquerel discovers strong ionising radiation from uranium salts. The radiation is present regardless of the chemical state or pre-treatment of the uranium
- 1898 Polonium and radium. Marie & Pierre Curie
- 1899 Observation of "radiumemanation" (radon), Rutherford
- 1902-03 Radioactivity is a sign of transmutation of one type of element to another. Rutherford, Soddy. Crookes
- 1903 β-particles = electrons, γ =electromagnetic (Becquerel), αparticles = ionised He-atoms (Rutherford)

Autumn 2004 Per Hoff KJM 5900 Nuclear Chemistry, University of Oslo

History

- 1907 Radiation therapy of skin cancer with Ra rays (Stenbeck)
- 1911 Small atomic nucleus. α on gold foil (Rutheford, Geiger, Marsden)
- 1912 Radioactivity used as tracer in chemistry (Hevesy)
- 1913 Cosmic radiation (Heβ); Isotope concept (Fajans, Soddy); Atomic model (Bohr)
- 1919 First nuclear reaction $^{14}N(\alpha,p)^{17}O$ (Rutherford)
- 1920 Neutron prediction (Rutherford)

Autumn 2004

KJM 5900 Nuclear Chemistry, University of Oslo

History

- 1921 Nuclear isomers (Hahn)
- 1924 Radioactivity in biology (Lacassagne & Lattes)
- 1928 Linear accelerator (Widerøe)
- 1930 Positron prediction (Dirac)
- 1932 Neutrino prediction (Pauli): Discovery of neutron (Chadwick); Discovery of positron (Anderson); Cyclotron (Lawrence)
- 1934 Artificial radioactivity (I.Curie, F.Joliot)
- 1935 Meson prediction (Yukawa); Liquid drop model (Bethe, von Weiszäcker)
- 1936 Neutron activation analysis (Hevesy & Levy);
- 1938 Fission (Hahn, Straβmann, Meitner), discussed separately: Electron capture (Alvarez)

Autumn 2004

KJM 5900

Nuclear Chemistry, University of Oslo

History

- . 1940 Neptunium and plutonium (Seaborg, McMillan, Wahl, Abelson)
- 1946 ¹⁴C dating method (Libby)
- 1948 π mesons (Powell): Hyperfine anomalies indicate non-spherical nuclei (Kopfermann, Brix)
- 1949 Nuclear Shell-model (Mayer, Jenser
- 1952 Collective model (Bohr, Mottelson)
- 1956 neutrino discovery (Cowan, Reines)
- 1940 ? New elements
- Berkeley (Am-Sg) (Seaborg, Ghiorso)
 Darmstadt (Db-112) (Münzenberg, Hofmann)
 Dubna (114,116) (Oganessian)
- 1950 Development of nuclear pharmacy and radio-biochemistry
- 1980 Ground-state protons (Hofmann); prediction of 14C decay (Ivascu, Poenaru)
- 1984 Discovery of ¹⁴C decay (Rose, Jones)
- 1987 Discovery of double β (Elliot, Moe)
- 1993 Indication for "superheavy region" (Lazarev)
- 1991 Radiotargeted therapy

Autumn 2004

KJM 5900

Nuclear Chemistry, University of Oslo

Per Hoff

Naturally occuring radionuclides

- Two types of natural radioactivity
- Primordial nuclides (i.e. nuclides left after the element synthesis 5 billion years ago
- ► 87Rb ► ²³⁸U (with daughters)
- ▶ ²³⁵U (with daughters)
- ► ²³²Th (with daughters)
- Cosmogeneous nuclides (i.e. nuclides continuously formed through cosmological nuclear processes in the atmosphere
- ► ¹⁴C ► ³H ► ³⁶CI

- ▶ 39Ar ► Etc..
- Autumn 2004

KJM 5900 Nuclear Chemistry, University of Oslo

Per Hoff

Radioactive series in nature

- · Series of radionuclides following a long-lived naturally occuring nuclide:
- Starts with:
- ► ²³²Th ▶ ²³⁸U
- ► ²³⁵U
- Ends with:
- ► 208Pb
- ► ²⁰⁶Pb
- ► ²⁰⁷Pb

Autumn 2004

Autumn 2004

KJM-5900

β-disintegrasjon

Pauli's neutrino postulate (1932)

In early investigations of the shape of β -spectra, a fundamental problem was discovered. The spectra were continuious. It the process was two-particle, it should have resulted in line spectra, to conserve energy and impulse.

Solution proposed by Wolfgang Pauli: Simultaneously with the electron, the nucleus emits a massless particle, the neutrino. The particle must have spin ½ in order to conserve angular momentum for the process.

Autumn 2004

Per Hoff

β -disintegration

Nobel prize 1938

Nobel prize 193

Wolfgang Pau

Enrico Fern

Per Hoff

Fermi's β -theory gives the shape of the β -spectrum:

 $P(p_e)dp_e = c F(Z, E_e)(E_o - E_e)p_e^2dp_e$ where p_e og E_e are impulse and energy for the emitted electron, and E_o er maximuml desintegration energy (often called $E_{\beta,max}$). $F(Z, E_e)$ is the coulomb correction. Note that the endpoint $E = E_{\beta,max}$

Autumn 2004

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

β⁻-disintegration

Nobel prize 1995

Frederick Reines

The neutrino was discovered by the socalled "reverse β -decay" by Cowan and Reines in 1956:

one has $p \rightarrow n + v + e^+$ and thereby: $p + \overline{v} \rightarrow n + e^+$ (reverse β).

Processes giving a neutron and a positron simultaneously are so rare that they will be a unique confirmation of the antineutrino's existence.

Autumn 2004

Per Hoff

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

β-disintegration

Energy relations

$$\beta^-: (Z,N) \to (Z+1,N-1) + e^- + v^-$$

$$M_{\text{nucl}}(Z,N) = M_{\text{nucl}}(Z+1,N-1) + E_{\beta,\text{max}} + M_{\text{e}}$$

(+E, \approx 0)

$$E_{\text{B max}} = M_{\text{nucl}}(Z,N) - M_{\text{nucl}}(Z+1,N-1) - M_{\text{e}}$$

$$\begin{split} &M_{\text{nucl}}(Z,N)\approx M(Z,N) - zM_e\\ &M_{\text{nucl}}(Z+1,N-1)\approx M(Z+1,N-1) - (z+1)M_e \end{split}$$

$$E_{6 \text{ max}} = M(Z,N) - zM_{e} - (M(Z+1,N-1) - (z+1)M_{e}) - M_{e}$$

$$E_{\beta,max} = M(Z,N) - M(Z+1,N-1) = Q_{\beta}$$

Autumn 2004

KJM-5900 Nuclear Chemi

Nuclear Chemistry, Dept. Of Chem. University of Oslo

β⁺-disintegration

Energy relations

$$\beta^+$$
: $(Z,N) \to (Z-1,N+1) + e- + v$

$$M_{\text{nucl}}(Z,N) = M_{\text{nucl}}(Z-1,N+1) + E_{\beta,\text{max}} + M_{\text{e}}$$

(+E_r \approx 0)

$$E_{\beta,max} = M_{nucl}(Z,N) - M_{nucl}(Z-1,N+1) - M_e$$

$$M_{nucl}(Z,N) \approx M(Z,N) - zM_{e}$$

 $M_{nucl}(Z-1,N+1) \approx M(Z-1,N+1) - (z-1)M_{e}$

$$E_{R \text{ max}} = M(Z,N) - zM_e - (M(Z-1,N+1) - (z-1)M_e) - M_e$$

$$E_{\beta,max} = M(Z,N) - M(Z-1,N+1) - 2M_e = Q_{\beta+} - 2M_e$$

At Q₆₊ < 2M_e only electron capture is possible

Autumn 2004 Pe

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

Exotic decays

- Ground-state protons (Hofmann 1979)
- Emission of unbound protons, delayed by the coulomb barrier.
- Double β (with and without neutrino (Elliot and Moe 1987)
- Very unlikely process, but allowed only way to bypass an odd-oddnucleus. Very long half-lives (10²⁰)
- ¹⁴C-emission (Rose and Jones 1984)
- Exotic and particular form of decay arising because the coulomb barrier is sufficiently low for light, neutronrich fragments.

Autumn 2004

Per Hoff

KJM-5900 Nuclear Chemistry, Dept. Of Chem. University of Oslo

Exotic decays

- Delayed neutrons
- β'-disintegration with so high energy that it superceeds the neutron binding energy.
 There is also 2 and 3 neutron emission
- Delayed protons
- β⁺-disintegration with so high energy that it superceeds the proton binding energy.
- Delayed α
- Delayed tritium and ³He
- Delayed fisssion

Autumn 2004

Per Hoff