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This compendium replaces chapter 5.3 and 6 in West. 
 
 
Sections not part of the curriculum are enclosed in asterisks (*). It is recommended that the 
textbooks of West and Jastrzebski are used as supplementary reading material, with special 
emphasis on illustrative examples. In this compendium illustrative examples (in italics) have 
been chosen from close packed structures. A few symbols and synonyms are given in 
Norwegian as information. The compendium contains exercises which will not be explained 
in the classes. It is recommended to work through the exercises while reading this 
compendium. 
 
 
Introduction. 
 
Condensed phases may be liquids as well as solids. There are fundamental differences 
between liquids and solids regarding the long-range distribution of atoms. While liquids have 
long range disorder in a large scale, solids are mainly ordered, i.e. there is regularity in the 
repetition of structural fragments (atoms and/or groups of atoms) in the 3 dimensional 
material. Surfaces of solid materials are often somewhat differently organized than the “bulk” 
(i.e. the inner part of the material). The atomic (structural) arrangement near the surface will 
often be different from the bulk arrangement due to surface reconstruction in order to 
minimize the energy loss associated with complete chemical bonding in all actual directions. 
Liquids are disordered in bulk, but they often have an ordered surface structure. 
 
Solids do not need to display systematic long-range order, i.e. to be crystalline. Some phases 
can be prepared as amorphous materials, e.g. glasses. They may be made crystallized by a 
suitable temperature treatment. A few phases exist which are only known in an amorphous 
state. 
 
In order to simplify the description of symmetry relations in atomic arrangements (i.e. the 
“appearance” of a structure fragment, molecule or complex) symmetry operations are used. 
Symmetry-operations like mirroring and rotation are known from every-day-life. If one 
wishes to describe how structure fragments are repeated (translated) through a solid 
compound, symmetry-operations which include translation must be used in addition. 
Symmetry-descriptions of given isolated objects are also known from every-day-life, e.g. a 
lump of sugar, a dice, a wheel (with an n-fold rotation axes for n spokes equally distributed) 
or a pyramid (with four-fold rotation axis perpendicular to the basis plan). 
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This compendium does not intend to give complete introduction to the basics of symmetry 
descriptions of solids. That is not the objective of this part of KJ-MV 210. The text is not 
written in order to give the reader a perfect and full understanding of crystallography. Instead 
it will give a simplified picture of the field. The intension of the compendium is to provide a 
basic knowledge of central issues, so that the reader will be able to draw different structures 
based on published structural data and available references (International Tables of 
Crystallography). This will be very useful in later courses concerned with properties of 
inorganic materials. It is important to realise that there is a close connection between atomic 
arrangements (structure, chemical bonding) and chemical and physical properties. 
 
The chosen examples in the compendium are related to close packing of atoms. The reader is 
recommended to carefully work through the examples. 
 
The unit cell. 
 
In the crystalline state there are rules for how structural elements are repeated through the 
solid. One can identify structural fragments that form the smallest repeating units; by 
repeating these in 3 dimensions they build the whole material. One can think of the smallest 
repeating unit as described inside a box. By stacking of the boxes in 3 dimensions a complete 
description of the structure of the solid material is obtained. Such a box is called a unit cell 
(enhetscelle). The box is defined by 3 vectors, t1, t2 and t3 [with unit cell volume V = t1 ·(t2 x 
t3)]. The vectors are not necessarily orthogonal. As a starting point there are no conditions on 
the 3 angles between the vectors, α, β and γ. (i.e. they are not restricted in any way, e.g. to be 
90˚). 
 
When describing the structure of a solid material in the scientific literature, relevant data for 
the crystallographic unit cell are given. The unit cell is given by the length of the three axes, 
a, b and c (unit cell dimensions, unit cell parameters, cell edges; i.e. the lengths of the vectors 
t1, t2 and t3) and the angles α, β and γ. Definition of the angles relative to the axes (t1, t2 and t3 
or equivalent a, b and c) is shown in Figure 1. In order to describe the atomic arrangement, 
one has in addition to defining the shape of the unit cell and also to state where the atoms are 
in the repeating unit cell. This is done by giving the position of the atoms as coordinates 
(x,y,z). The atomic coordinates are given as fractions of the unit length of the vectors. Thus 
position (0,0,0) is the origo of the unit cell, while the point (1,0,0) is moved (t1,0,0), i.e. one 
cell edge along the a-axis parallel to t1. An atom in the corner of the unit cell therefore has the 
coordinates (0,0,0), while an atom on the centre of the a-axis has the coordinates (1/2,0,0). As 
a principal rule, any given atom can be transferred to one or more atoms, of the same type and 
with the same surroundings, within the unit cell by symmetry operations. In order to describe 
all the atoms in the unit cell it is enough to give the coordinates of a certain part of the atoms 
along with the necessary symmetry operations. 
 
Within a unit cell one often find several atoms of the same kind. If the surroundings of these 
atoms are identical, the atoms are related by symmetry operations (they are crystallographic 
equivalent atoms). If the surroundings are more or less different, the difference is signified by 
using different notations for the atoms, e.g. Cu(1) and Cu(2), where the number in brackets is 
just numbering of the same type of element. In such cases one would say that Cu(1) and Cu(2) 
are not crystallographic equivalent atoms. 
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Figure 1. The definition of relations between angles and axes in unit cells. The unit cell is 
shown as the box on the left. 
 
 Example 1  (2-dimensional unit cell) 

A number of simple structures, e.g. for metals and alloys, may be derived from close 
packing of spheres. Here the atoms are thought to be ideal, non compressible spheres 
of the same size. Before we look at such 3-dimensional structures in details, we will 
take a closer look at how symmetry-notation can be used to describe close packing in 
2-dimensions. Then we will add different symmetry operations, still looking at the 2-
dimensional model of the structure. 
 
Consider a 2-dimensional close packing of identical spheres. The spheres are placed 
as close as possible (i.e. with the least possible space between them). This is shown to 
the left below. 

 
Let us now define a 2-dimensional unit cell for the pattern of repeating spheres. We 
choose the centre of sphere A as origo. (You will get the same unit cell with any other 
choice of origo, but there will be less symmetry around the origo). The direction and 
length of the translation vectors (cell edges) must first be determined. Let t1 be the 
vector from the centre of sphere A to the centre of sphere 4, and let t2 be the vector 
form the centre of sphere A to the centre of sphere 2. The unit cell is completed by 
translating t2 so that it starts in the centre of sphere 4 and t1 to start in the centre of 
sphere 2. The lengths of the vectors t1 and t2 are called a and b. It is obvious that a 
and b (= 2r; the radius of the sphere). The angle between t1 and t2 can easily be 
calculated by looking at the equilateral triangle that is formed by the centres of three 
adjacent spheres. The unit cell is therefore defined as a = b and the angle γ = 120˚ 
(look above to the right) 
 
This 2-dimensional packing of spheres is the closest possible, and such layers 
constitutes the 2-dimensional units that are stacked when making 3-dimensional close 
packed structures (notation AB... = hcp, ABC... = ccp, or more unusual and 
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complicated stacking sequence as e.g. ABAC..... An .... AA...stacking will not be close 
packed in 3-dimensions even though it is built from 2-dimensional close packed units). 
 

The values of the coordinates (x, y, z) of a point within the unit cell are all between 0 and 1 
(look above). Because the unit cell is a repeating unit, any multipla of the unit vectors can be 
added to or subtracted from any point (x, y, z), in order to get to identical points in other unit 
cells. The point (x, y, z) or an atom positioned in A in figure 2, e.g. with coordinates (0.21, 
0.33, 0.45) is therefore identical to the point B with the coordinates (0.21, 0.33, 1.45) through 
the translation (x, y, z+1); and C (-0.79, 0.33, 0.45) through the translation (x-1, y, z); and D 
(-0.79, 1.33, -0.55) through the translation (x-1, y+1, z-1). A, B, C and D will have identical 
surroundings in the unit cell and in any given atomic arrangement in a solid material. When 
atoms are called identical (equivalent) it means that they have absolute identical surroundings 
in relation to all nearby points/atoms. 

 
In example 1, it is seen that the surroundings of e.g. sphere A and sphere 2 are 
identical. This means that the spheres with centre at the coordinates (0, 0) and (0, 1) 
are identical. In reality one can view the two spheres as one and the same. Sphere 2 is 
just sphere A translated one unit translation (the cell edge) along t2. All the spheres in 
example 1 are therefore equivalent, and the 2-dimensional packing is completely 
defined by giving a, b and γ together with the information that there is a sphere in 
origo. 
 

Because the unit cell is a repeating unit, a description of the symmetry and the atom 
coordinates is the unit cell, will describe the symmetry and structure of the solid material. 
This is of course only true for crystalline phases, where, as mentioned, a systematic long-
range order exists. In amorphous materials there are not repeating unit cells. 

 
Figure 2: Same point in several unit cells. 
 
The chemical composition of a solid material is given by the ratios between the different kind 
of atoms in the unit cell. If the unit cell is known, it must be possible to make a correct 
account of the content. One must take in to consideration that one unit is close up against 
other unit cells and that it shares faces, edges and corners with the surrounding unit cells. 
Thus, an atom in a unit cell count as 1, whereas an atom on a face counts as ½ (but this is 
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repeated on the opposite unit cell, and together the two half atoms counts as 1); while an atom 
in a corner counts as 1/8 (but eight corners share a point, so that 8 · 1/8 = 1); figure 3. As an 
illustrated, look at Figure 3 where 8 filled symbols are drawn, two open and one hatched. 
There are the same number of filled, open and hatched symbols in the repeating unit (one of 
each). 

 
Figure 3. Atoms are placed inside the unit cell (hatched), on the faces (open) and at the 
corners (filled). The unit cells share faces. 
 

 Exercise 1 
Draw a 2-dimensional orthogonal unit cell with cell edges a = 3.80 Å and b = 
3.90 Å. Place these atoms in the unit cell: 
Cu(1) in (0, 0) 
O(1) in (0, 0.5) 
O(2) in (0.5, 0) 
Calculate the distance between Cu and O and between Cu and Cu. 
Check the calculation against what you would expect based on ion/covalent 
bonding between cupper and oxygen. 
Such an atomic arrangement is found in 2-dimensional sections of high 
temperature superconductors. 

  
Example 2 (3-dimensional unit cell; modes of illustration) 
Imagine taking the 2-dimensional layer of spheres as shown in example 1 and putting 
it right above the exact same layer. The spheres are positioned right on top of one 
another, and do not fall down the hollows in the layers. It is obvious that this is not a 
good utilization of the available volume and that the structure is not close packed in 3-
dimensions. 
 
Stacking of layers is thought continued in such a way that a 3-dimensionel object is 
built. The unit cell of the 2-dimensional layer is exactly as seen in example 1. The 
repeating length in the stacking direction is given by the vector (t3) from the centre of 
sphere A to sphere A’ in the next stacking layer. This vector is perpendicular to t1 and 
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t2 in the basal plane. The 3-dimensional unit cell is therefore a = b ≠ c, α= β = 90˚ 
and γ = 120˚. The unit cell can be drawn like this: 
 

 
The structure that arises from such a stacking is said to be a simple hexagonal 
packing of the type ...AA... (NB not a close hexagonal packing). By using the rules for 
adding up the spheres/atoms will in a unit cell, one finds that the number of atoms is 8 
• 1/8 = 1, i.e. the unit cell contains a formula unit of spheres/atoms; this is given as Z 
= 1. 
 
Note that when one using the notation packing of spheres and looking at rigid 
touching spheres, this is of course a model, which does not directly describe the 
properties of the atoms. Atoms (e.g. the noble gases), ions (e.g. Na+, or Cl-) and metal 
atoms (e.g. Fe in metallic iron or a iron containing alloy with metallic conductivity) 
can to a certain degree be seen as spherical. When we draw a crystal structure, where 
the spheres of the packing model is replaced by atoms, for clarity they are usually 
drawn so small, that they do not touch one another (look at the figure above). This is 
done in order to make the figure easier to interpret. When illustrating how much inner 
volume there is in e.g. a channel in the structure (e.g. a zeolite) the atoms are drawn 
with a size proportional to covalent, ionic or Van der Waals radius.   
 

It is desirable to describe an actual crystal structure with the highest possible symmetry of the 
structure. For a given structure, it is quite easy to find several unit cells that all fulfil the 
criteria of repeatability. The crystallographic unit cell must in addition fulfil other criteria. It 
must: 

- Display the maximal symmetry of the structure and 
- At the same time be the smallest repeating unit that does this 

 
*In physics (e.g. in theoretical band structure calculations) an other unit cell, the Wigner-Seitz 
cell, is often used. This is the smallest repeating unit, but does not show full translational 
symmetry. When this is used, it is in order to reduce the complexity by including the smallest 
possible number of atoms. The crystallographic unit cells may contain many formula units, Z 
(Z is of course an integer, and takes the value of 2n3m, e.g. 1, 2, 3, 6, etc). The Wigner-Seitz 
cell is the smallest repeating closed volume around origo (a lattice point). It contains only one 
lattice point (see space-/Bravais lattice) and shows the full rotational symmetry of the crystal 
system (see below). The Wigner-Seitz cell is constructed by drawing connecting lines from 
one lattice point to every neighbouring lattice point. Then perpendicular planes are 
constructed halfway between the lattice points and the surrounded volume that is defined by 
the planes is the Wigner-Seitz cell. This volume can have many faces.* 
 
 
 



 7

Exercise 2: 
Estimate which of the four following 2-dimensional cells fulfil the 
requirements of a unit cell. 

 

 
E
x
e
r
c
i
s
e 3: 
Draw the NiAs type structure based exclusively on the basis of the following 
information: 
a = b = 3.60 Å, c = 5.10 Å, α = β = 90˚, γ = 120˚. 
Ni(1) in ( 0, 0, 0) 
Ni(2) in ( 0, 0, 0.5) 
As(1) in ( ⅓, ⅔, ¼) 
As(2) in ( ⅔, ⅓, ¾) 
Draw sketches showing the structure seen slightly from the side and as a 
projection on the ab-plane. 
How many formula units (Z) of NiAs are there per unit cell? 
SI rules say that pm or nm should be used (in stead of Å) to give the unit cell 
dimensions. What is the unit cell dimensions of NiAs expressed in pm and nm? 
Calculate the volume of the unit cell and the volume per formula unit. 
 

The density of a material is often determined pycnometrically. This returns a measure of the 
macroscopic density. Porosity (voids, pores between grains/crystallites) and contaminants will 
contribute to the measured density being smaller than the theoretical value for the material if 
it was “perfect” and built in three dimensions from the atomic arrangement found in the unit 
cell. Using X-ray diffraction it is possible to obtain information about the unit cell 
dimensions. The so-called “X-ray density” is the density calculated from the crystallographic 
data for the unit cell, i.e. for a perfect material: 
 

ρ = m/V = Z · FW/V/NA 
 
Where FW is the formula weight, NA is Avogadro’s number, V is the unit cell volume and Z 
is the number of formula units in the unit cell. 
 
In a number of materials vacancies are found on crystallographic sites, which would be 
occupied in a perfect case. In other cases additional atoms are situated on non-framework 
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positions (interstitial atoms). From accurate experimental density data it may be possible to 
estimate the likely defect structure in strongly defect materials (as e.g. defect-generating solid 
solution phases, see Chapter 10 in West) if the density for different defect models can be 
calculated. 
 

Exercise 4. 
Calculate the X-ray density of NiAs. Use data for exercise 3. Would you 
expect the pycnometrically determined density to be larger or smaller than 
this? 
NiAs type phases often have significant non-stoichiometry, i.e. the phases may 
exist with a small or large compositional region. NiAs does not display non-
stoichiometry to any significant extent, but let us assume that the phase has 
interstitial Ni-atoms, and can be prepared with a composition Ni1.01As. In 
addition let us assume that the unit cell parameters do not change (which they 
in practice would). Calculate the X-ray density for Ni1.01As and compare it 
with the value calculated for NiAs. 

 
Crystal systems 
 
There are seven different crystal systems. They differ by having different relations between 
unit cell axes and angles. The relations between the length of the unit cell axes and the angles 
between them are given in Table 1 and simple unit cells (with one atom in each corner) are 
shown in Figure 4. (The notation P in Figure 4 indicate that the unit cells are primitive, i.e. 
they contain only one point or atom, see section on space lattice). 
 
Table 1 
Relations      Crystal system 
 
(t1, t2, t3) 
a = b = c α = β = γ = 90º   Cubic 
a = b ≠ c α = β = γ = 90º   Tetragonal 
a ≠ b ≠ c α = β = γ = 90º   Orthorhombic 
a ≠ b ≠ c α = γ; β ≠ 90º    Monoclinic 
a ≠ b ≠ c α ≠ β ≠ γ ≠ 90º   Triclinic 
a = b = c α = β = γ ≠ 90º   Trigonal (Rhombohedral) 
a = b ≠ c α = β; γ = 120º   Hexagonal 

 
Figure 4. Schematic representation of the unit cells for the seven crystal systems (drawn with 
one atom in each corner of the unit cell). 
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Exercise 5. 
Give the formula for the volume of (a) a tetragonal, (b) a monoclinic and (c) a 
hexagonal unit cell expressed by a, b, c, α, β and/or γ. 

 
Crystal systems are arranged hierarchically in such a way that the higher crystal system 
contains at least one symmetry element that the lower system does not contain, see Figure 5. 
The cubic system is said to have the highest symmetry, and the triclinic the lowest. The 
symmetry may be seen as increasing from triclinic, via monoclinic, orthorhombic, hexagonal, 
tetragonal or rhombohedral to the cubic system. 
Different crystallographic point groups belong to each of the seven different crystal systems 
(see below). The crystal systems are characterized by having certain symmetry operations. 
This is further detailed in the section on crystallographic point groups. 
 

 
Figure 5. Hierarchy of crystal systems. 
 
The simplest structure types (atomic arrangements) are metals and disordered alloys that 
crystallize with one of the close packed atomic arrangements, i.e. hexagonal (hcp, hexagonal 
close packing) or cubic (ccp, cubic close packing. NB! ccp is equivalent to fcc, face centred 
cubic). As examples could be mentioned that Mg, subgroup III (group 3) (Sc, Y, La) and 
subgroup IV (group 4) (Ti, Zr, Hf) have hcp structures, while Ni, Pd, Pt, Cu, Ag and Au have 
ccp structures. Co has both hcp and ccp phases. Hcp phases belong to the hexagonal crystal 
system, and ccp to the cubic. The simplest anion-cation (metal – non-metal) phases mentioned 
in West’s book are based on close packing of anions with the cations in the small holes. For 
instance the NaCl-, CaF2-, CsCl- and zinc blende structure types belong to the cubic crystal 
system, NiAs-type to the hexagonal crystal system, while rutile belong to the tetragonal 
crystal system. This means that when unit cell dimensions are tabulated for e.g. NaCl, it is 
sufficient to give the length of the a-axis, as the other relations (a = b = c, angles = 90º) are 
given by the cubic symmetry. For TiO2 with the rutile structure, only the a- and c-axes are 
given. 
 
Example 3 (Assignment of unit cells) 
Consider the simple hexagonal unit cell, which was described in example 2. From the 
axes/angle-relations it is seen to satisfy the conditions for a hexagonal unit cell. Therefore the 
symmetry is said to be hexagonal. In much the same way a simple primitive cubic unit cell 
may be described by: a = b = c and α = β = γ = 90º. The unit cell is shown below. The cubic 
unit cell (looking like a cube) has one atom in each corner. It is sufficient to specify that the 
unit cell is cubic and to give the length of the a-axis. When the structure is drawn as a 
projection on the ab- plane with the radius of the atoms r = a/2, the atoms will touch, and it 
will be evident that the structure is not close packed, as there are big voids between the 
spheres. 
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Example 4. (Close packing of spheres in three dimensions) 
Again the starting point is the two-dimensional packing of spheres from example 1. Such a 
layer is close packed. Closer consideration reveals that the spheres touch and are placed like 
pearls on a string in three directions. Thus, in a close packed layer of spheres there are three 
close packed directions. If such layers are stacked on top of each other (along the c-axis) and 
systematically shifted with respect to each other in such a way that the spheres of one layer is 
positioned above the holes of the layer below, a three dimensional close packing of spheres is 
obtained.  
 
This may be best illustrated by drawing the layers on individual transparent foils: 
 
Consider one layer. On this layer you draw the two-dimensional unit cell described in 
example 1. The centre of atom A is the origo of the two-dimensional unit cell. We now choose 
this position as the origin of the three-dimensional unit cell, which we will derive from 
stacking of several close packed layers. The A-sphere therefore has the position (coordinate) 
(0,0,0). Also the spheres numbered 2, 3, and 4 in example 1 are described with this position. 
This is because their positions may be generated by adding to the position (0, 0, 0) multipla of 
the two-dimensional unit cell translations. This means that the position of all the spheres in 
the layer, which we now will call layer A, are given as (0+n, 0+m, 0) where n and m are 
integers. 

 
Consider the four spheres in the unit cell. Between the spheres there are two indentations, 
between the 3 spheres A, 4 and 3, and between A, 2 and 3, respectively. We may call the 
positions which characterize the two indentations B and C. Consider now e.g. the triangle 
A,4,3 and the point B. By a bit of trigonometry the coordinates (2/3, 1/3) is found for B and 
(1/3, 2/3) for C. We define two new 2-dimentional sheets, named B and C, identical to the A 
sheet. The B sheet is placed so that there is a sphere right above the B position in the A sheet. 
The spheres of the B sheet have the coordinates (2/3, 1/3) relative to the chosen origo of the A 
sheet. In the same way the C sheet is placed so that the spheres have the coordinates (1/3, 
2/3) relative to the chosen origo of sheet A. 
 
By adding layers on top of each other and using the indentations one obtains a 3-dimensional 
close packing. If the repeating sequence of layer positions is ...AB..., it is a hexagonal closest 
packing (hcp), if the sequence is ...ABC... it is a cubic close packing (ccp). 
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Any (more complicated) ordering of layers is also a close packing, if there are no layers 
directly above an identical layer (i.e. there is no ...AA..., ...BB... or ...CC... sequence). The 
simple ordering sequences are those mentioned above, ...AB... and ...ABC.... However in 
many cases there is very little difference in energy between different ordering sequences for 
real materials, and the material has many different modifications. The ordering sequences 
may be complicated (e.g. ...ABCACBCAB...). The different ordering variants are called 
polytypes. These have an identical structure in two-dimentions, but some differences in the 
third dimension, the ordering direction. Polytypes are known in compounds such as Co, SiC, 
ZnS, ABO3 and others.  

 
 
schematic – ordered stacking of 
sheets seen from the side (not 100 
% correct displacement along the 
side) 
 
 
 

 
Space lattice. 
 
The notation space lattice or lattice (rom-gitter) is a mathematical description of repeating 
units in solid materials. It is important to realize that a lattice is not the same as a structure. A 
structure is the atomic arrangement, whereas a lattice is made of mathematical points in space, 
and these may be translated by certain operations. 
 
The similarity between a lattice and the unit cell is striking, especially for the primitive space 
lattices. The primitive space lattices contain only one point in the repeating unit, and it is 
placed in the corners of the unit. The different repeating units were described in “Unit cells 
and Crystal systems”. There are 7 possibilities, and so there are 7 primitive space lattices. The 
relations between the translation vectors are also described above. Figure 4 was used to 
illustrate simple unit cells. The drawings in figure 4 may also represent the primitive space 
lattices with a lattice point placed in each corner. The primitive lattices are denoted with a P. 
The primitive rhombohedral is an exception to this rule – it is denoted with R. 
 
 Example 5 (primitive space lattices): 

Consider the primitive hexagonal space lattice. A (lattice)point (x, y, z) is transferred 
to equivalent points in the lattice by the translation vectors (t1, t2, t3). New 
(lattice)points have the coordinates (x+nt1,y+mt2, z+ot3), where n, m and o are 
integers. This is drawn in a 2-dimentionel projection below. 

 
Consider the objects below. They are meant to represent a fragment of a structure. We 
see that the fragment is repeated in two dimensions. The repetition may be described 
as (new fragment) = (original fragment) + lattice translation. We choose a random 
point in one of the fragments, and mark similar points in the other fragments. These 
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points can now be connected by translation vectors t1 and t2, which are translation 
vectors of the 2-dimentional, primitive lattice.  

 
 An absolute requirement to a space lattice is identical surroundings around every single 
lattice point. This is the starting point to the consideration whether there can be other space 
lattices than the primitive space lattices described above. It turns out, that all in all there are 
14 different lattices which met the requirement. They are called Bravais lattices and are 
described below. 
 
Bravais lattices. 
 
It is relatively easy to prove that there are a total of 14 three-dimensional lattices which met 
the criteria of identical surroundings of the lattice points. These are called Bravais lattices, see 
figure 6. Seven of these are the primitive lattices described above. 

 
Figure 6. The 14 Bravais lattices. 
 
The primitive Bravais lattices contain only one lattice point. The non primitive Bravais 
lattices contain more than one lattice point per unit cell (2 or 4), and are called centred 
lattices: 
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•Body-centred lattice (notation I for Innenzentrierung, new lattice point in a/2 + b/2 + c/2) 
•Face-centred lattice (F, Flächenzentrierung, new lattice points a/2 + b/2 and + a/2 + c/2 and 
b/2 + c/2) 
•Side-centred lattice (A, B or C, side centred on only some of the sides, e.g. a/2 + b/2. This is 
a C side centred lattice, which means that the centring are on the sides normal to the c 
direction/z axes) 
 
The four different types of lattices are illustrated by the orthorhombic Bravais lattices in 
figure 6. The Bravais lattices matching the crystal systems are given in table 2. 
 
 Example 6 (Bravais lattices) 

Close packed, hcp and ccp, have a primitive hexagonal Bravais lattice and a face 
centred cubic Bravais lattice, respectively (see example 7). The relationship between 
the ccp packing and the cubic unit cell is discussed in West (see figure 7.5) but the 
relationship may be somewhat difficult to see. The close packed layers in the ccp 
structure lies perpendicular to the space diagonals in the cubic cell. The cubic unit 
cell has atoms placed in the corners and in the center of all the faces. If we neglect 
that there are atoms in the cell and replace them with mathematical points, it is clear 
that it is a cubic Bravais lattice with F centring. If an atom is placed at every lattice 
point, the face centred cubic structure is reached. This is known as fcc. This is also 
identical to ccp. For a fcc-metal Z = 4. 

 
Table 2: 
Crystal system  Bravais lattice  Z 
 
Cubic   P   1 
   I   2 
   F   4 
Tetragonal  P   1 
   I   2 
Orthorhombic  P   1 
   I   2 
   C   2 
   F   4 
Monoclinic  P   1 
   C   2 
Triclinic  P   1 
Rombohedral  R   1 
Hexagonal  P   1 
 
The centred Bravais lattices may also be represented by smaller primitive unit cells. These 
will however not show the highest symmetry of the system, which is a requirement for a 
crystallographic unit cell. See figure 7. 
 
  Exercise 6: 

Show how the cubic F-Bravais lattice fulfils the requirements of a lattice 
(consider the surroundings of every lattice point). 
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Exercise 7: 
Draw a tetragonal P lattice. Place an extra lattice point in ½, ½, 0, i.e. make a C 
centring of the lattice. Show that a tetragonal C lattice does not exist as such, 
i.e., that it is equivalent to (another) P lattice. 

 
Brasvais lattices define the way a lattice point (ore a fragment of a structure, see example 5) is 
transferred to identical points (ore fragments). A crystal structure can therefore be described 
as 

structure = lattice + basis 
 
where the basis is made of the repeating structure fragment with a number of atoms with 
coordinates (xi, yi, zi). 

 
Figure 7. Relationship between primitive cells and F-, I- and C centred cells. 
 
Some simple crystal structures are shown in Figure 8. From these it is possible to say what 
type of Bravais lattice the different structure types has. E.g. CsCl type structure has a Bravais 
lattice P-cubic, NaCl- and CaF2 type have a F-cubic, NiAs type is P-hexagonal, whereas bcc 
(metal) has a I-cubic Bravais lattice. How this is seen is explained in example 7. 

 
Figure 8. Schematic representation of NaCl-, CaF2-, CsCl- and bcc type crystal structure. The 
symbols below the figures are space group notation. 
 
 Example 7 (Bravais lattice): 
 In this example we take a closer look at the CsCl type structure and hcp. 
  

In CsCl (figure 8) the black spheres form a primitive cubic lattice (a=b=c, angles = 
90º). The sphere in the centre is of another type and has nothing to do with the lattice 
of the black spheres. If several unit cells are drawn beside each other, it is possible to 
see which repeating rules that can be applied to the open spheres. You will find that 
the repeating unit is an identical cubic box with the same edge as the one of the black 
spheres. The Bravais lattice is the same, but because the spheres are different, they 
both are part of the basis of the structure; i.e. the CsCl type structure has a cubic P-
lattice with Cs in (0, 0, 0) and Cl in (½, ½, ½). This can be seen as: 

 
CsCl type structure = cubic P-lattice + basis [Cs in (0, 0, 0) and Cl in ((½, ½, ½)] 
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It is also easy to show that the hcp structure has a primitive hexagonal Bravais lattice. 
Look at the figure below. 

  
The open spheres represent sheet A, the black sheet B, as in previous examples. Four 
unit cells (with a sphere A in origo) are marked with a full line. Consider now the 4 B-
spheres. They define a unit cell as well (dotted line) which in shape and size is 
identical to the one defined by the A-spheres. The only difference is that the B-cells 
origo has been moved to (2/3, 1/3). In order to describe the hcp structure, the Bravais 
lattice can be said to be hexagonal primitive and basis to be two atoms in respectively 
(0, 0, 0) and (2/3, 1/3, 1/2); i.e. 
 
hcp type structure = hexagonal P-lattice + basis [M in (0, 0, 0) and M in (2/3, 1/3, 
1/2)] 
 
A better description is given in example 9, where symmetry elements are considered as 
well. 

 
  Exercise 8: 

Draw the structure of the anion-cation compound AB on the basis of the 
following information: 
The Bravais lattice is F-cubic 
Basis: A atom in (0, 0, 0) and B atom in (1/2, 0, 0) 
What is the name of this type of structure? 
 
Exercise 9: 
Ni has a cubic face centred structure, known as fcc, i.e. face centred cubic with 
basis: Ni in (0, 0, 0). The cell edge is 351 pm. Calculate the radius of the Ni 
spheres (metallic radius). Calculate the density of Ni. 

 
Symmetry operations 
 
In the following we will consider symmetry operations that can be used to describe isolated 
objects, e.g. a molecule in gas phase. The requirement of a symmetry operation is that when it 
operates (is used) on an atom with a set of atomic coordinates (x, y, z), an atom of the same 
type and with identical surroundings is created, but with the coordinates (x’, y’, z’). These are 
the symmetry elements which exist: 
 

- Identity, that is (x, y, z) is transferred to itself (x, y, z). This symmetry element is 
included, because it is a requirement in the definition of a group in group theory, 
which is the mathematical tool used in symmetry considerations. 

- Inversion, that is (x, y, z) is translated to (-x, -y, -z). If an object has this symmetry 
element, it is said to be centrosymmetric (det er sentrosymmetrisk). 
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- Rotation axis, a rotation axis is two fold, three fold etc. A n-fold axis rotate an object 
360º/n.  

- Mirror plane which places the object laterally reversed (mirror image) as far behind 
the mirror plane as it was in front. E.g. an xy-mirror plane (i.e. the xy plane is thought 
to be the plane of the mirror) transfers a point (x, y, z) to (x, y, -z). 

 
Inversion symmetry and mirror planes both transfers a right handed object to a left handed 
object (like a mirror image; this is shown by writing a comma (,) in the circles, as shown in 
figure 9. The effect of these symmetry operations is schematically shown with hands in figure 
9. The nomenclature (symbols) are also shown. 

 
Figure 9: Inversion, reflection and two fold axes. The effect of the operations is shown with 
hands. The use of symbols is further described in point groups. 
 
The origin of the symmetry operations and the coordinate system are chosen so as to reveal 
the highest possible symmetry. 
 
Two sets of nomenclature are used to indicate symmetry operations. Schönflies nomenclature 
is often used in spectroscopy, whereas Hermann-Mauguin nomenclature is used in 
crystallography (description of structure). The notation is different, but the operations are of 
course the same, see Table 3. 
 
Table 3 
Symmetry operation  Schönflies symbol  Hermann-Mauguin symbol 
 
Identity   E or I    I 

Inversion   i    
_
1  

(centro symmetric) 
Rotation axis   Cn (n=fold)   n 
Mirror plane   σh, σv    m 
(reflection) 
 
σh and σv are the notation for the horizontal and the vertical mirror plane respectively (defined 
relative to the main rotation axis. 
 
  Exercise 10: 
  Which symmetry operations can you identify for the following objects: 

(a) H2O  (b) NH3  (c) CO2  (d) CH4  (e) a dxy orbital 
 
There are also combined symmetry operations, which means that two symmetry operations 
are performed right after each other and thus the “intermediate state” is not considered. 
Rotation-inversion axes are used in crystallography [rotation-inversion axes are denoted as –

n, often expressed as 
−

n ], i.e. a n-fold rotation is done followed by an inversion. In the 
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Schönflies notation rotation-inversion axes are denoted Sn. Some examples of such symmetry 
operations are shown in figure 10. 
 
  Exercise 11: 

The tetrahedron belongs to the group of objects with a symmetry in the cubic 
system. Compare the 4-fold rotation axes in a cube and in a tetrehedra. 

    
Figure 10: Symmetry operations   4, 6,  

−

4  &
−

6 .  
 
 Example 8 (Rotation axes, crystal system) 

Let us consider hcp close packing. Let us first consider a 2-dimensional A sheet, and 
choose origo to be in the centre of a chosen sphere. We can now evaluate the n-fold 
rotation axis perpendicular to the close packed sheet. By a rotation of 60º the picture 
is identical, i.e. we have a 360º/60º = 6-fold rotation axis. 
This is characteristic for the hexagonal crystal system, cf. Table 5. If we construct an 
…AB… packing, we see that the 6-fold axes is not preserved, but in each sheet there 
are points with a 6-fold symmetry. This is discussed further in the paragraph on glide 
planes and screw axes. 
 
Example 9 (Choise of origo, center of symmetry): 
We consider at a projection of the hcp structure onto the ab plane: 

 
 
Let us evaluate if this unit cell has an inversion center, i.e. it is centro symmetric. In 
this case all atomic coordinates, were given relative to the centre of symmetry placed 
in origo, must be transferred to identical coordinates for atoms by the inversion 
operation 

(xi, yi, zi) → (-xi, -yi, -zi) 
If the origin chosen at the centre of an A-atom (open symbol, solid unit cell) we see 
that there are no centro symmetric surrounding A. For atom B with coordinates (2/3, 
1/3, 1/2) there are no identical B- or A-atoms (A and B are identical atoms/spheres) 
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with coordinates (1/3, 2/3, 1/2) = (-2/3, -1/3, -1/2) = (-2/3 +1, -1/3 +1, -1/2+1); see 
solid arrow. The apparent lack of centro symmetry is actually due to the fact that we 
have chosen the wrong point as the centre of symmetry. 
 
Let us choose the point (1/3, 2/3, 1/4) as origo, which is assumed to be a centre of 
symmetry. First the coordinates in sheet A and B must be transformed to (0 -1/3, 0 -
2/3, 0 -1/4) = (2/3, 1/3, 3/4) and (2/3 – 1/3, 1/3 – 2/3, 1/2 – 1/4) = (1/3, 2/3, 1/4), 
respectively. It is now easy to see that a centre of symmetry relates sheet A and sheet 
B, cf. the dotted arrow. The hcp structure is therefore centro symmetric. The unit cell 
with a center of symmetry in origo is dotted. A closer look at the figure reveals that 
there are more points, which are center of symmetry than (0, 0, 0). 

 
 
Point groups. 
 
A point group is described by a characteristic assembly of symmetry operations. A certain 
number of symmetry operations with defined geometrical relations among themselves can be 
found for any given object. The object is said to have symmetry described by the given point 
group. Different objects which have different symmetry will therefore be described with 
different point groups. All symmetry elements present refer to a common point, the origo. 
 
*A point group must fulfil the mathematical requirements of a group: 

- The product of two operations is another operation in the group 
- The identity element (I) is present 
- The existence of an inverse operator RR-1 = 1 
- Associative multiplication of operations* 

 
The point groups have different notation in Schönflies and Hermann-Mauguin nomenclature. 
In Schönflies nomenclature there are point groups such as Cnv, Cnh, Dnh, Td, Oh etc, where n is 
the highest number of rotation axes present and v is the vertical mirror plane, which is only 
mentioned if there are no horizontal mirror planes (h). If there are two-fold axes perpendicular 
to the highest rotation axes, the point group is Dnh. T is a tetrahedral and O is an octahedral 
point group (cubic crystal system). 
 
In the Hermann-Mauguin nomenclature similar information is given. The highest rotation axis 
is given first. E.g. a point group with only a two-fold rotation axes is denotated 2. C2h 
(Schönflies) is notated 2/m, where the slash indicate that the mirror plane is perpendicular to 
the two-fold axis. 
 
In the following only the Hermann-Mauguin nomenclature is used. The two types of 
nomenclature are compared for a number of point groups in Table 4. 
 
Table 4. 
Hermann-Mauguin nomenclature: 
  1 2 3 4 6 222 32 422 622 23 432 

  
−

1 2/m 
−

3  4/m 6/m mmm 
−

3 m 4/mmm 6/mmm m3 m3m 
 
Schönflies nomenclature: 
  C1 C2 C3 C4 C6 D2 D3 D4 D6 T O 
  Ci C2h S6 C4h C6h D2h D3d D4h D6h Th Oh 
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 Example 10 (point symmetry): 

Consider a small section of the close packing in twomensions in example 1 by 
choosing one sphere and the surrounding six. First we define the directions by letting 
the a- and b-axes be in the basal plane as shown in example 1. We let the c-axis be 
perpendicular to the ab-plane. The relations between the axes are those required in 
the hexagonal crystal system. We observe a 6-fold rotation axis runs through the 
central sphere and parallel to the c-axis. The basal plane is a mirror plane. Therefore 
the Hermann-Mauguin symbol must be 6/m. The full symbol is larger because all 
information on the symmetry relations along the axes in the basal plane must be given 
as well. This is described in the second part of the example below. 

 
  Exercise 12. 

Give the Schönflies and Hermann-Mauguin symbols for point groups with the 
following symmetry elements:  (a) a four-fold rotation axis  (b) identity and an 
inversion axis  (c) a four-fold rotation axis and a mirror plane perpendicular to 
the rotation axis. 
 
Exercise 13: 
Which symmetry elements can you identify in the point groups:     (a) –1     (b) 
3  (c) 6/m     (d) –4/m 

 
For isolated objects there is no limit on the “n”-fold of a rotation axis. Therefore one can 
imagine an infinite number of point groups, but only a few of these are found frequently in 
real objects. A five-fold rotation axis exists e.g. in an isolated flat C5H5 molecule. Global five-
fold symmetry cannot appear in ordered, three-dimensional crystalline phases. On the other 
hand it is possible to observe units with a local five-fold symmetry in solid materials, even 
though it is not possible to fit 5-fold symmetry into a repeating lattice (see below). 
 
The point group symbol tells which symmetry elements are essential to the point group (these 
may create other symmetry elements by being used on each other). Consider e.g. the point 
group 2/m. The symbol reveals that there is a two-fold rotation axis and a horizontal mirror 
plane. Because these elements are both present, the inversion element is automatically present 
too, figure 11. Thus, 2/m is a centro symmetrical point group. All in all the point group 2/m 
contain the symmetry operations. Identity, two-fold rotation axis, horizontal mirror plane and 
inversion. 

 
Figure 11. Structure fragment with point symmetry 2/m.  
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Those point groups which contain an inversion element are considered centro symmetrical. 
Certain properties in a material depend on the symmetry, e.g. the existence of electric dipoles, 
optic activity, pyro- and piezo-electricity. The last two are discussed in chapter 15 in West 
(not part of the curriculum). 
 
  Exercise 14: 

Explain why a molecule with a permanent electric dipole (i.e. the molecule has 
a dipole moment) cannot be centro symmetric. Can a material built by hcp-
packing display permanent polarization (i.e. have a total sum of dipole 
moments that is not zero)? 

 
So far we have limited the description to cases with one rotation axis and one mirror plane 
(vertical or horizontal). If the description is extended to include also symmetry relations in 
orthogonal directions, the result is a number of new point groups. One can e.g. imagine a 
point group with three two-fold rotation axes, in the directions x, y and z in a cartesian 
coordinate system. This point group is called 222 (orthorhombic system) where all the 
symbols (the 2’s) describe the symmetry relations in the orthogonal directions. 
 
The combined point group symbols e.g. mm2 are interpreted following certain rules. For 
example the first symbol for orthorhombic and tetragonal point groups describes the 
symmetry along the z-axis (which is thereby chosen to have the highest rotation axis in the 
tetragonal crystal system), the next symbol describes the relations in a perpendicular direction 
(e.g. the y-axis) and in the orthorhombic system the last symbol describes the relations in the 
third direction, whereas in the tetragonal system it describes the symmetry in the [110] 
direction. More specialized rules for symbol, 2 and 3 must be used for trigonal, hexagonal and 
cubic point groups. 
 
 Example 10 (point symmetry, continued): 

In the hexagonal crystal system the first part of the combined point group symbol 
describes the symmetry conditions along the c-axis, the next the conditions along the 
a- and b-axes, and the third the conditions along a direction perpendicular to the a- 
and b-axes. If we look at the isolated object (1+6 spheres) we see that the a-axis is a 
two-fold rotation axis with a perpendicular mirror plane, i.e. with the symbol 2/m. We 
also note that perpendicular to the a-axis there is another two-fold rotation axis with a 
perpendicular mirror plane. The correct point group symbol is therefore 6/m2/m2/m. 

 
  Exercise 15: 

Consider the flat molecule trans-dichloro-ethen C2H2Cl2. Draw the molecule in 
the xy-plane (let the z-direction be the direction with the two-fold axis). 
Identify the symmetry operations I, C2

z, σh
xy and i (in Schönflies 

nomenclature). What are these called in Hermann-Mauguin nomenclature? 
Explain why the point group symbol is C2h (Schönflies). How would you 
describe the point group with crystallographic nomenclature? Show that the 
assembly of symmetry elements fulfils the requirements of a group. 

 
The point groups are classified under the different crystal systems. For a given crystal system 
certain characteristic symmetry elements can be identified, see Table 5. Note that the cubic 
crystal system is not characterized by the presence of four-fold axes, but by the existence of 
four three-fold axes. 
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Table 5: 
Characteristic symmetry of different crystal systems: 
Triclinic  - 
Monoclinic  2 || y 
Orthorhombic  2 || x, 2 || y, 2 || z 
Trigonal  3 || [111] 
Hexagonal  6 || z 
Tetragonal  4 || z 
Cubic   four times 3 || <111> 
 
 Example 11 (point group symbol): 

The point group belonging to the hcp-packed structure is 6/m 2/m 2/m. From the 
symbol it is possible to say something about which crystal system the point group 
belongs to. 6/m means that the group has a six-fold rotation axis with a perpendicular 
mirror plane. A six-fold rotation axis is characteristic of the hexagonal crystal system, 
cf. table 5. Note that the highest rotation axis is always chosen to be parallel to the z-
axis (Table 5). In the symbol of the point group, the symmetry along the highest 
rotation axis is mentioned first. 

 
  Exercise 16: 
  What can you read from the point group symbol:  (a) 4/mmm  (b) –42m? 
 
Representation of point groups. 
 
Visualization of symmetry relations is important in order to show which symmetry operations 
are present and at the same time show their relative position. This can be done by stereograms 
or by other kinds of projections. The different symmetry elements are assigned different 
symbols when they are represented in stereograms or in figures of symmetry elements of a 
space group (see below). The symbols are given in table 6 (the symbols have previously been 
used in the figure on symmetry operations). 
 
Table 6: 
Symmetry element H-M symbol  graphic symbol 
 
Rotation axes  1   nothing 
(n-fold)  2     
   3    
   4    
   5    
   6    
Inversion axes  -1   nothing 
   -2 (≡m)  ─ 
   -3    
   -4    

   -6    
Mirror plane  m   ─ 
 
Stereographic projections are used to represent the symmetry relations of a point group. These 
projections are made the following way (cf. figure 12): 
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(i) The crystal (object) is imagined surrounded by a sphere 
(ii) The object is projected down on a xy-equatorial plane 
(iii)The projection point at the xy-plane of a point on the object is found by drawing a 

connection line between the point and the opposite pole (notation + and – 
respectively) of the sphere. The point is at the interception between the line and the 
xy-plane 

(iv) If the point lies in the + side of the sphere, it is drawn as •, if it in the – part, it is drawn 
as ◦. 

 
Figure 12. Principle of the stereographic projection. 
 
It is easy to identify the symmetry elements from the distribution of points in a stereogram. 
On the other hand, if one draws one point in a stereogram and use the different symmetry 
operations in the point group on this, one will obstain a picture of how and how many times 
the point is repeated in the sphere/stereogram. Stereograms are used to indicate points, 
symmetry elements or crystal planes. Points are shown as open or closed symbols, and 
symmetry elements are shown by thick lines or symbols as shown in table 6. 
 
A circle limits the stereograms, representing the intersection of the xy-plane with the sphere. 
Help lines are drawn as thin lines, e.g. marking the x- and y-direction. The z-axis, which is 
always chosen as the highest rotation axe, is perpendicular to the projection plane. Symmetry 
elements are drawn using the graphical symbols shown above. Vertical mirror planes are 
drawn as thick straight lines (according to the rules of how a projection is done), whereas a 
horizontal mirror plane is drawn as a thick line around the circle periphery in order to indicate 
that the xy-plane is a mirror plane. Stereograms for the point groups 2/m (monoclinic) and 
mmm (orthorhombic) are shown as examples in figure 13. 

 
Figure 13. Stereogram for the point groups 2/m, (a) symmetry elements (b) the effect of the 
symmetry elements on general and special positions; and similar for mmm in (c) and (d). 
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A general point is a point not situated on a symmetry element. Such a point is repeated the 
maximum number of times when operated on by all symmetry operations in the point group. 
The number of repetitions (including the identity operation) is characterise of the general 
position in the given point group. If the point is repeated 8 times, the position is said to be 8-
fold. If the point is lying on one or more symmetry elements, these operations will transform 
the point onto itself. This means that the number of formed equivalent points is lower than it 
was the case for the general position. Points on symmetry elements are called special points 
(positions). 
 
 Example 12 (stereograms; symmetry elements): 

If we are constructing a stereographic projection of the point group 6/mmm (relevant 
in hcp packing), we must first know the rules for the second (i.e. m) and the third 
symbol (also m). The second symbol inform of symmetry relations along the a- and b-
axis in the hexagonal group, while the third symbol indicate the symmetry relations 
perpendicular to the a- and b-axes. We must to show the symmetry elements in a 
stereogram. The z-axis with the six-fold symmetry is chosen to be perpendicular to the 
projection plane. It is symbolised by a . Perpendicular to this is a mirror plane 
(therefore the symbol 6/m), i.e. the projection plane must be a mirror plane, which is 
indicated by a thick line around the projection circle. We indicate a vertical mirror 
plane along the a-axis by a thick straight line. Because this mirror plane is vertical, 
the six-fold symmetry will recreate the mirror plane total of 6 times. These mirror 
planes are also drawn as thick lines. Finally the mirror planes (and the equivalent 
mirror planes) perpendicular to the a-axis are drawn as thick lines, and the 6-fold 
symmetry repeats it 6 times. 
 

 
 
We can evaluate whether there are more symmetry elements than those specifically 
drawn in the figures above. It is for instance possible to identify 2-fold rotation axes 
along the a- and b-axis and perpendicular to these. This means that both symbols no. 
2 and 3 in the point group symbol could be given as 2/m, so the whole symbol is 6/m 
2/m 2/m. The last symbol is known as the full symbol of the point group. It is however 
unnecessary to give the full symbol, because the “new” symmetry operations (the two-
fold axes) do not give any new equivalent positions, apart from those already made. 
The symbol 6/mmm identify all the essential symmetry elements of the point group. 
 
Example 13 (Stereograms, points): 
We consider the stereogram for the point group 6/mmm (see last Figure in the 
sequence above, example 12). We shall now look at how symmetry operations 
transform points. On a separate stereogram we place a general point (x,y,z). With a 
general point we understand a point that is not lying on any of the symmetry elements 
drawn in the stereogram in example 12. This is done at random, but the point is 
placed close to the periphery in order to make the figure easier to read. We can now 
operate using the actual symmetry elements in order to see how many times and where 
the general position is repeated – a total of 24 times (see below, to the left). Now we 
can make a specific choice to position the point on one of the vertical mirror planes 
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(see below, in the center). This mirror plane will not recreate the point anywhere else. 
The point represent a special position and is repeated 12 times by the symmetry 
elements of the system. If we imagine a point on the six-fold axis [in (0, 0, z), below to 
the right] none of the vertical mirror planes will recreate the point in a new position, 
and neither will the six-fold axis. The horizontal mirror plane will, on the other hand, 
recreate it (if it is not placed in the origo; z ≠ 0). This is a two-fold position. We see 
that the point group is centro symmetrical (for the point x,y,z there is an equivalent 
point –x,-y,-z). The three described points are said to be 24-, 12- and 2-fold, 
respectively 

.  
 
  Exercise 17: 

Draw stereograms of the following point groups, and insert the symmetry 
elements:     (a) 2     (b) m     (c) 2/m 2/m 2/m     (d) m m 2. Can any of the 
point groups be written in a simpler way, i.e. with a shorter symbol made of 
only the essential symmetry elements? 
 
Exercise 18: 
Place a general point (x,y,z) in a sphere and show the point in a stereographic 
projection. Operate on the point with the symmetry operations of each of the 
point groups in Exercise 17. Count how many times the general point is 
repeated in each case. What is the n-fold of the general positions of each of the 
four point groups? 
 
Exercise 19: 
Consider dichloromethane, CH2Cl2. Place the C-atom in origo and identify the 
symmetry elements. Draw the symmetry elements in a stereographic 
projection. State the point group symbol. Consider a general point. How many 
times is the general point repeated? Place points to represent the positions of C, 
H and Cl. 
 
Exercise 20: 
Use example 13 as a starting point. Identify a point in the stereogram of the 
point group 6/mmm that represent a 6-fold position. 

 
Crystallographic point groups. 
 
By crystallographic point groups we understand a selection of point groups that have 
symmetry elements that can all operate on a (infinite, 3-dimensional) lattice. This requirement 
is only fulfilled by 32 point groups. 
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Figure 14. A representation of lattice points A and B. 5-fold rotation axes pass through the 
points A and B perpendicular to the paper. 
 
We will take a closer look at these limitations and evaluate which rotation axes are possible 
for a lattice. Consider figure 14. The points A and B are two lattice points. According to the 
definition of a lattice, the points must have identical surroundings. We then evaluate this 
statement for different rotation axes that are thought to be perpendicular to the plane and pass 
through the points in such a way, that B recreate A and vice versa, as shown in figure 14 (the 
new points are numbered A1, A2 etc). The distance between two lattice points must be a 
multiple of the distance t between A and B (e.g. the distance B4A1; general A’B’). This 
means: 
 

A’B’ = AB – AB’cosδ – A’Bcosδ = t(1 – 2cosδ) = mt, where m is an integer 
 
Because –1 ≤ cosδ < 1, (1 – m) = 2cosδ must be -2, -1, 0, 1 or 2, i.e. δ = π, ±2/3π, ±1/2π, 
±1/3π or 0, so that the rotation axes has a fold n = 2π/δ equal to 2, 3, 4 or 6. Five-fold or 
higher than six-fold rotation axes are therefore not possible in a lattice. This, however, does 
not mean that it is impossible to find structure fragments with a five- or seven-fold symmetry, 
which is repeated by lattice/symmetry operations (this context also include quasi crystals). 
 
There are 32 crystallographic point groups, divided into seven crystal systems (Table 7): 
 
Table 7: 
crystal system  crystallographic point group 
 
triclinic  1, -1 
monoclinic  2, m, 2/m 
orthorhombic  222, mm2, mmm 
tetragonal  4, -4, 4/m, 422, 4mm, -42m, 4/mmm 
trigonal  3, -3, 32, 3m, -3m 
hexagonal  6, -6, 6/m, 622, 6mm, -6m2, 6/mmm 
cubic   23, m3, 432, -43m, m3m 
 
Of these 11 are centro symmetric while 21 are non-centro symmetric. [*Systematic extinction, 
in the diffraction patterns (see crystallography and diffraction) are not depending on whether 
there is centro symmetry or not. If this is taken into account, one can only differentiate 
between 11 of the original 32 point groups. These 11 groups are known as Laue groups.*] 
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 Glide planes and screw axes 
 
In addition to the symmetry operations described for point groups, there are special symmetry 
operations for a solid material formed by pairing certain symmetry operations (rotation and 
mirroring) with translation. Two new symmetry elements appear, glide planes and screw axes. 
 
A screw axis have the notation nm where n is the rotation axis “fold” and m/n is the translation 
given as a fraction of the unit translation parallel to the rotation axis. There are e.g. 21, 41 and 
63 screw axes. Figure 15 shows schematically how a 21 axis (parallel to the a-axis in the plane 
of the paper) operate on an object. If the object is e.g. a coin, the operation with the 21 axis 
means that tail (T, figure 15) is transferred to head (H, figure 15) and at the same time the 
coin is moved a/2 (1/2 unit vector) along a. 
 
There are several types of glide planes; axial, diagonal and diamond type. Axial glide planes 
involve mirroring combined with a translation ½ along an axis. The axial glide planes are 
called a, b or c. Figure 15b shows a glide plane. The mirror plane consist of the xz-plane and 
the translation is done along a. In a similar example with a coin the tail side will remain tail 
after the operation, but it will appear as a mirror image (right – left hand operation). 
 
Diagonal glide planes have the notation n, and diamond glide planes have the notation d. 
 

 
Figure 15. The effect of (a) 21 screw axis and (b) a-glide plane on a coin, whereas (c) is a 41 
screw axis. The sides of the coin are marked by T and H, respectively. 
 
In projections where symmetry elements are shown, glide planes are drawn either as dotted 
lines (different types of dots have different meaning) or their presence is marked separately by 
angled arrows. Screw axes are shown with the same symbols as rotation axes, but the symbol 
have “wings” in the corners (different number of wings e.g. for 41, 42 and 43 axes), see chosen 
examples in Figure 16. 
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Figure 16: Examples of screw axis operations; projection perpendicular to the axes. 
 
 Example 14 (screw axes) 

We consider again hcp. In example 8 it was shown that a close packed layer have a 6-
fold rotation axis, which is not maintained if we stack several layers on top of each 
other in a close packing. In example 9 origo was defined in 
such a way that hcp was centro symmetrical. We choose this 
description as a basis for the following considerations, i.e. 
A-spheres are in the position (2/3, 1/3, 3/4) and B-spheres 
in (1/3, 2/3 1/4). A section of hcp consisting of six spheres 
(3 A and 3 B) is shown below. 

 
 
 
We let a rotation axis run perpendicular to the paper plane through origo (marked by 
x). We see that the axis is a three-fold rotation axe. The question is now whether the 
rotation can be continued with translation. Let us test the possibilities of a six-fold 
screw axe, i.e. a 6m axe. When operating a 6m axe, first a rotation of 60˚ is done 
followed by a translation in the direction of the axis (z-axis) i.e. m/6 units in fractional 
coordinates. In the ...AB... packing the next A layer has a z-value that is 1 higher than 
the original A-layer (i.e. one unit translation along c). The B-layer is in between the 
two A-layers (which are chosen to have z = 0 and z = 1), and is therefore given z = 
1/2. From the figure it is seen that with an A-sphere as the starting point, a 60˚ 
rotation will give a B-sphere if the rotation is combined with a translation ½ along c. 
This means that a 63 screw axis is present. The situation is schematically shown in 
Figure 16 for 63 axes. 

 
*Mathematical description and nomenclature 
 
The orientation of x-, y- and z-axes in the coordinate system used in the description of the unit 
cells crystal system is following the right hand rule. 
 
A symmetry operator, R, operates on a point r (see Figure 17) so that 
 

r’ = R r 
where R is a 3 x 3 matrix, i.e. 
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Figure 17: A point in space before and after a symmetry operation. 
 
Symmetry operations in a three-dimensional lattice can be described more generally by a 
Seitz operator which include both a rotation and a translation part. 
 

( R | t ) = Rr + t 
 
For the identity operator, I, all aij = 0 and aii = 1, and there is no translation. As Seitz operator 
the identity operator is written an ( 1 | 0 ). To describe a lattice, which is centred or only 
consist of unit translations, the Seitz operator ( 1 | tn ) is used, where tn = t1a + t2b + t3c and a, 
b and c are primitive translation vectors. 
 
A rotation axis is defined as n [uvw] depending on the direction within the reference system 
(n fold, uvw give the direction). A two-fold rotation axis parallel to the z-axis is called 2[001]. 
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The inversion operator is described as 
 

(-1 | 0) (x, y, z) = (-x, -y, -z) 
 
A mirror plane (m) is defined by the direction as normal to the mirror plane. For instance a xy 
mirror plane is denoted m[010], and is described by: 
 

(m[010] | 0) (x, y, z) = (x, -y, z) 
 
By help of the mathematical formulas one can easily derive what happens when operating two 
different (or Identical) operators right after one another: 
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From this we see that 2/m corresponds to inversion symmetry (-1 or
−

1 ). 
 
A b glide plane with a yz mirror plane is described as 



 29

 
( m[100] | ( 0, 1/2, 0 ) )r = m[100]r + ( 0, 1/2, 0) 

 
and transfer the point (x, y, z) onto (-x, 1/2+y, z).* 
 
  Exercise 21: 
  Show how a 41 screw axis parallel to the z-axis influences the coordinates x, y, 
z. 
 
  Exercise 22: 

Write the Seitz operator and describe with matrixes how a 32 screw axis 
parallel to the z-axis operate. 

 
Space groups. 
 
The combination of the 32 crystallographic point groups and the 14 Bravais lattices (which 
are again combinations of different crystal systems and non-centred or centred lattices) give 
rise to 230 different space groups (romgrupper). 
 
A given crystal structure and a given structure type, will be described within a given space 
group, i.e. the Bravais lattice is defined together with the point symmetry. When structural 
data for a structure / compound are given in the literature the space group symbol, unit cell 
dimensions and coordinates (x, y, z) for the atoms are given. 
 
Of the 230 space groups, 73 arise from combinations of Bravais lattices and the 
crystallographic point groups without any extra symmetry operations such as screw axes and 
glide planes being involved. These space groups are called symmorphic space groups. There 
are therefore 157 not-symmorphic space groups, and these must be described through one or 
more operators of the type 
 

( R | t )r = Rr + t where t ≠ 0. 
 
The space groups are referred to by a so called space group symbol Xefg, where X gives the 
Bravais lattice (P, F, I or A, B, C). efg is the characteristic symbol for the crystallographic 
point group, but symbols of symmetry operations combined with translation, i.e. screw axes 
or glide planes, can be given instead of normal symbols of rotation axes and mirror planes. 
The not-symmorph space groups are characterised by their symbol contain e.g. a, b, c, n, 21, 
32, 42...... 
 
In the triclinic crystal system there are only P-lattices, i.e. primitive Bravais lattices. This 
means that only Pefg space groups are found. In the triclinic system only a very few 
symmetry elements can be present. When more or higher symmetry elements than identity 
and inversion are present, the symmetry will be higher, i.e. there will be restrictions on angles 
or axes. In the triclinic system there are therefore only two possibilities; presence of only the 
identity element, and the identity together with inversion symmetry. The only two space 
groups in the triclinic system are P1 and P-1. 
 
In the monoclinic system both mirror planes and two-fold rotation axes can be present, c.f. the 
monoclinic point groups 2, m and 2/m. The Bravais lattice may be primitive or side centred. 
This give rise to a total of 13 monoclinic space groups. In the orthorhombic system there are 
59 space groups. We will not go further into detail regarding space groups here. 
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From the space group one can generally find the type of Bravais lattice (first letter in the 
symbol) and the crystallographic point group. To obtain the latter, one must exchange the 
symbols of the symmetry elements that involve translation with the symbols for elements 
without translation in the efg-symbol. Accordingly mirror plane symbols such as a, b, c, n and 
d must be replaced by m; screw axis symbols such as 21, 32, 61 are replaced by 2, 3 and 6, 
respectively. 
 
 Example 15 (Crystallographic point group belonging to space groups): 

hcp, bcc and fcc structures are described by the space groups P63/mmc, Im3m and 
Fm3m, respectively. From the space group symbols we can establish that hcp has a 
primitive Bravais lattice (P), bcc has a body centred (I) and fcc has a face centred 
lattice (F). It can also be established that they have the crystallographic point groups 
6/mmm, m3m and m3m, respectively. 
 
Example 16 (Point symmetry): 
In the close packed structures hcp and fcc there are voids that may potentially be 
filled by (small) atoms. This is the basis for discussion of other structure types, e.g. 
NaCl and NiAs type structures, using the sphere packing model as a starting point. 
Consider an A- and a B-layer. Between these there are many voids – e.g. in the xy-
positions we already have given for the sheet of type C. These holes are octahedral 
holes. Consider such a hole (use the figure in example 14). The octahedral hole is 
characterised by having 6 closest A- and B-spheres at the same distance and with a 
spatial distribution so that the symmetry relations of an octahedral point group is 
fulfilled (i.e. the actual symmetry relations are present). The local symmetry of the 
hole is octahedral. The corresponding applies for tetrahedral holes. 

 
  Exercise 23: 

Show that if a two-fold axis is present, the system cannot be triclinic. Show the 
same for a mirror plane. 
 
Exercise 24: 
Consider a monoclinic system. Assume that a two-fold rotation axis is present 
and that there is also a mirror plane. How should the mirror plane be oriented 
relative to the two-fold axis in order to maintain the monoclinic symmetry? 
 
Exercise 25: 
Which of the following space groups are symmorphic:     (a) P21/m     (b) 
Pnma     (c) P63/mmc     (d) I4/mmm     ? 
Based on example 14, determine whether hcp is described by a symmorphic or 
a non-symmorphic space group. For (a) – (d) give the corresponding 
crystallographic point group. 
 
Exercise 26: 
To which crystal system belong the following space groups:     (a) P2     (b) 
Pmm2     (c) Pnma     (d) R3     (e) Fm3m     (f) I4/mmm     (g) P63mc     ? 
 
Exercise 27: 
Which of the following space groups are centro symmetrical:     (a)     P2/m     
(b) Pmmm     (c) P1     (d) P21/c     (e) P222     ? 
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International tables for crystallography. 
 
“International tables for crystallography” is a composite work with information on the 230 
space groups. The work is extensively used as a tool in the description of crystal structures. 
As a representative example, tabulated data are listed for the space group Pnma in the 
Appendix and it is discussed in the following. 
 
The top line in the table section 
Pnma  D2

16   mmm Orthorhombic 
tell that the space group is Pnma, it belongs to the crystallographic point group with the 
Schönflies symbol D2h (numbered variants) and mmm in the Hermann-Maugin nomenclature. 
The crystal system is orthorhombic.  
 
Next line 
No. 62  P21/n 21/m 21/a Patterson symmetry Pmmm 
gives the number of the space group (numbered from 1 to 230 with increasing symmetry from 
triclinic to cubic), the full space group symbol (screw axes (21) perpendicular to the glide- and 
mirror planes are given in addition to the short symbol nma; i.e. the full space group symbol 
is shown). The last point shows the symmetry of a special map used in solving crystal 
structures from diffraction data. 
 
Origin at –1 on 1211 
Tells whether the origo is placed relative to the symmetry elements. Origo is here on a center 
of symmetry. Generally origo is chosen to display the centro symmetry in centro symmetrical 
space groups. 
 
Asymmetric unit 0≤x≤1/2; 0≤y≤1/4; 0≤z≤1 
give the smallest unit that will recreate the full picture of the structure in the unit cell when 
repeated using the symmetry operations of the space group. In this case the asymmetric unit is 
1/8 of the unit cell. 
 
Symmetry operators 
List the symmetry operations (according to earlier stated nomenclature) and give their 
position within the unit cell. 
 
The second page of the table for the space group is more important for the use of the tables as 
a tool to describe a given structure. 
 
Positions 
Multiplicity, Wyckoff letter, Site symmetry, Coordinates 
Multiplicity describe how many times a given position is repeated by using all symmetry 
operations in the space group. The maximum number characterise the general position (i.e. a 
point that is not situated on any symmetry element). The general position is 8-fold in Pnma 
(the same as in the crystallographic point group) and there are three different special 
positions, all 4-fold. “Wyckoff letter” is a continuance alphabetic notation, which begins with 
“the most special position”. “Site symmetry” tell the point symmetry of the given (general or 
special) point. Coordinates gives the transformed coordinates of (x, y, z) after different 
symmetry operations have been operated. There are as many sets as the multiplicity of the 
position. 
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Reflection conditions 
gives extinction conditions of the Bragg reflections, hkl, when the atoms are placed in the 
given Wyckoff positions (see Crystallography and diffraction). 
 
Structural data 
 
One main point for this compendium is to communicate enough knowledge to make it 
possible to use crystallographic data in literature to get a structural description. Often one may 
want to describe coordination polyhedra with bond distances and angles. Another aspect is to 
try to correlate structural and physical properties of materials. 
 
Structure data for manganese monophosphide, MnP, as they are found in literature is given in 
table 8. The section from International Tables for Crystallography for the actual space group 
Pnma is shown in the Appendix and discussed above. Table 8 contains only the information 
that is strictly needed. 
 
Table 8. 
Compound:   MnP 
Space group:   Pnma 
Unit cell:   a = 525.5 pm, b = 318.0 pm, c = 590.5 pm 
Atom coordinates:  Mn in 4(c) x = 0.0050, z = 0.1885 
    P in 4(c) x = 0.1850, z = 0.5670. 
 
On the basis of these data and by using the International Tables for Crystallographic the 
structure is unambiguously described. 
 
If the symbols for glide planes (n and a) are replaced by m for mirror plane in the space group 
symbol, one can from the symbol Pmmm identify a primitive lattice with a crystallographic 
point group (mmm) characteristic of the orthorhombic crystal system. As a consequence no 
angles need to be defined for the unit cell (all are 90º). 
 
In order to be able to draw the structure of MnP one must use the information from 
“International Tables for Crystallography”. One must know how the 4(c) positions are 
transformed. Note that it is not necessary to give the value of y in the listed structural data 
(Table 8) because 4(c) is a special position with y fixed in ¼ or ¾ (the position lies on a 
symmetry element that cannot be moved freely within the unit cell). On the contrary x and z 
are free parameters that can take any value between 0 and 1. The given values of x and z for 
MnP are determined from experimental diffraction data. 
 
A sketch of a given structure is often made as a projection on a chosen (crystallographic) 
plane. Often the shortest possible projection axis is chosen in order to get the least possible 
number of overlapping atoms in the projection. For MnP one would make the projection on 
the ac-plane, because the b-axis is by far the shortest. Atoms of different kinds are drawn as 
different symbols (size, shape) and hatching is often used to illustrate different heights above 
the projection plane (the value of the third coordinate is often entered next to the symbols for 
the atoms). Computer programs are made in order to make better structural drawings. This 
makes it possible to obtain pictures while turning the structures, which makes it easier to 
discover details concerning coordination and bonding. 
 
Calculation of interatomic distances and angles is necessary to get an overview of how the 
different atoms are bonded. Coordination and bonding distances are for instance different for 
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different oxidation states for the same d-element (e.g. CrIII is octahedral while CrVI is 
tetrahedral. Because the ionic radius r(CrIII) > r(CrVI) the Cr-O distances depend on the 
oxidation state of chromium). For ionic anion-cation compounds short distances between the 
anions and cations are expected, where as there are longer distances (due to repulsive 
interactions) between cation and cation (and anion and anion). Metallic bonding is 
characterised by short metal-metal bonds. Physical properties (such as electric and magnetic 
properties, ionic transport etc) are closely related to the atomic arrangement. One must 
therefore be able to calculate distances and angles from listed crystallographic data. 
 
 Example 17 (Projection of structure): 

Given the following data for the compound NiAs:     a = 360 pm,     c = 510 pm, space 
group P63/mmc with Ni in 2(a) and As in 2(c) positions. A copy of the relevant page 
from “International Tables for Crystallography” is given in the appendix. 
From the space group symbol it is seen that the Bravais lattice is primitive, and that 
the corresponding point group is 6/mmm (found by replacing symbols that involve 
translations with the corresponding symbols for operations without translations). The 
presence of a 6-fold axis means that the crystal system is hexagonal. The mirror plane 
perpendicular to the rotation axis (6/m) implies centro symmetry. As the unit cell has 
a 120º angle, it is natural to let the angle lie in the projection plane, i.e. we chose the 
ab-plane as the projection plane, see the Figure below. If the axes are drawn to 
correct scale, it is possible to measure distances within the projection plane and to use 
Pythagoras to calculate interatomic distances. 
 

 
 

 
 
Example 18 (Interatomic distances): 
We can calculate interatomic distances for NiAs and use this to describe the structure. 
If one draw several unit cells of NiAs (i.e. expands the figure in two dimensions) it is 
easily seen that the Ni atom is surrounded by 6 As atoms, and that the six atoms are 
distributed as an octahedral coordination polyhedron. The NiAs type structure is 
described as a hcp of As atoms, where all the octahedral voids are filled by Ni atoms. 
If you remove all the Ni atoms from the figure, you will recognize the hcp pattern for 
the As atoms. 
The longest space diagonal has the length 
 l = 2aacos120º  a2  a2 +  = a√3 
The bond length d(Ni-As) is therefore 
 d(Ni-As) = (c/4)2  ((av3)/3)2+ ] = 243.8 pm. 
The six Ni-As distances are identical. 
The distance between the Ni atoms along the c-axis (the projection axe) are very 
short: 
 d(Ni-Ni) = c/2 = 255 pm, 
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This clearly indicate, metallic bonding between the Ni atoms. According to this NiAs 
show metallic conductivity. 

 
  Exercise 28: 

Draw a projection of the MnP type structure onto the ac-plane (use the data 
given above). How many formula units are there per unit cell? What is the 
crystallographic density of MnP? What kind of coordination polyhedron does 
Mn and P have? What is the average Mn – P bond distance for the six shortest 
(bonding) distances? What kind of bonding do you think exist between Mn and 
Mn based on calculations of distance and comparison of bond distances in pure 
Mn metal? 
 
Exercise 29: 
Use the MnP type structure as starting point. Let the unit cell dimensions be a 
= 525.0 pm, b = 318.0 pm and c = 318.0•√3 pm. Move the atoms so that Mn 
has the coordinate ( 0, 1/4, 1/4) and P (1/4, 1/4, 7/12), then use the symmetry 
operations. Consider then a projection onto the bc-plane. Can you now identify 
a different symmetry than orthorhombic? Where is the 63 screw axis? Can you 
indicate a hexagonal unit cell? What is this structure type called? 

 
Crystallographic planes and directions. 
 
The unit cell vectors a, b and c for the unit cell define an internal coordinate system, which 
only in the case of cubic symmetry is Cartesian and have equal length of the vectors along the 
three directions. For solid materials of lower symmetry the axes a, b and c are often very 
different, e.g. one of the axes may be many times longer than the second longest axis. Not all 
crystal systems have orthogonal axes. For the monoclinic system the angle β ≠ 90º. For the 
hexagonal system γ = 120º, see figure 4. 
 
Crystallographic planes and directions are given relative to the coordinate system which is 
defined in the unit cell. 
 
The crystallographic planes are not derived from the crystal structure itself, i.e. from the 
particular pattern of atoms or chemical bonds. On the contrary, planes and directions are 
defined from the unit cell / lattice. 
 
For a given crystallographic plane or direction one can identify the distribution of atoms. For 
a layered structure the layers (with strong bonds between the atoms) are often stacked (via 
weak bonds) along a well defined crystallographic direction (often an axis in the unit cell). 
This applies e.g. to hcp close packing, where the ordering sequence ABABAB... follows the 
hexagonal c-axe, see figure 18, and the close packed layers are in the ab-plane. Mechanical 
properties (dislocations) for metals are closely related to planes and directions where there is 
close packing. The lubricating properties of graphite and MoS2 are due to weak van der Waal 
forces between 2-dimensional layers bound together by strong bonds. 
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Figure 18: Hexagonal close packing. Open spheres A-layer, filled spheres B-layer. Projection 
on the ab-plane. 
 
A plane that cuts through the x-, y- and z-axes (parallel to the a-, b- and c-axes for the unit 
cell) can generally be described through 
 

x/u + y/v + z/w = 1 
 
where u, v and w represent the values of where the plane intersect the three axes. Every 
crystallographic plane is identified of the so called Miller indices (hkl). The Miller indices are 
given by 
 

h = 1/u, k = 1/v and l = 1/w 
 
Miller indices are integers (i.e. if necessary fractions are multiplied to integers for h, k and l). 
A plane that intersect the a-axis in a/2, the b-axis in b and the c-axis in c/4 has u = 1/2, v = 1 
and w = 1/4, so that h = 2, k = 1 and l = 4. The Miller indices are therefore (214). In the same 
way one can from the Miller indices easily draw the particular planes for a given structure / 
unit cell / lattice. A plane (hkl) intersect the unit axes in 1/h, 1/j and 1/l. Some examples of 
crystallographic planes are shown in figure 19. 
 
The intersection points between a plane and the axes may have positive or negative values. 
I.e. h, k and l can be positive, 0 or negative. Negative values for Miller indices are shown by a 
line above of the number, e.g. (10-1) is often written as (101). Note that a value of 0 in the 
Miller indices means that the plane is parallel to the actual axis, e.g. the (hk0) plane is parallel 
to the c-axis, Figure 19. *If one considers the ab-plane for a hexagonal crystal it may be 
relevant to define a fourth axis (the third within the ab-plane) if an 120º angle to the a- and b-
axes. This results in an extra Miller index (see below) with the notation i, but because the 
requirement h + k + i = 0 always applies, it is not necessary to state i.* 
 
This way of describing is used for crystallographic planes within the unit cell and for 
describing outer surfaces of a macroscopic crystal (e.g. in mineralogy). The outer crystal 
planes are mostly parallel to certain crystallographic planes. This means that the crystal 
growth has been in certain preferred directions. Some materials are formed as needles (e.g. 
asbestos), others as plates (mica), something which often can be understood by considering 
the crystal structure. Diamonds are cut in such a way that the outer surface are parallel to 
certain crystal planes (brilliants). 
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Figure 19. Projection of lattice points in a hexagonal primitive lattice onto the ab-plane. 
Different crystallographic planes parallel to the z-axis are shown. 
 
Indices for the faces of a hypothetical crystal are shown in figure 20. These are also given as 
(hkl). Note that (100) is parallel to the y- and z-axes and intersect the x-axis of a positive 

value of x, and that (
−

100) is also parallel to the y- and z-axes but intersect the x-axis of a 
negative value. 
 

 
Figure 20: Hypothetic crystal with outer surfaces parallel to the faces of the corresponding 
crystallographic unit cell. 
 
Directions within a crystal are easiest defined from origo. Directions are given in square 
brackets. The direction [100] is parallel to the a-axis, while [001] is parallel to the c-axis. 

[00
−

1] is also parallel to the c-axis but points towards smaller values of the z-coordinates (in 
negative direction). Generally, directional indices are vector components of the directions 
concerning the unit cell axes. The direction [111] can be defined as the line through origo and 
the point translated from origo by the unit translations 1t1, 1t2, 1t3 (generally for [uvw]; the 
direction from origo through the point ut1, vt2, wt3), see figure 21. 
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Planes are always given in brackets; i.e. as (hkl). If one wishes to indicate all sets of 
equivalent planes it is given as {hkl}. Directions are given is square brackets [uvw]. If one 
wishes to give all equivalent directions, e.g. all [111] directions within a cubic crystal, it is 
indicated by <hkl>. 
 

 
Figure 21. Statement of crystallographic directions [uvw]. Coordinates for some points are 
given in brackets (must not be confused with statement of planes). 
 
 Example 19: 

Again we consider the most common metal structures, hcp, bcc and fcc. Mechanical 
properties of metals are related to the number of close packed directions and planes. 
We first consider a close packed plane, like those found in hcp and fcc materials. 

 
In such a layer (hexagonal unit cell indicated; compare examples 1 – 3) there are 
directions where the atoms (spheres) lie like pearls on a string, i.e. as close as 
possible. There are three such close packed directions, along the a-axis [100], along 
the b-axis [010] and along the c-axis [001], respectively. Every close packed layer 
has three close packed directions. 
 
In the hcp structure the basal plane is made of this close packed layer, i.e. it lies in the 
ab-plane perpendicular to the hexagonal axis. This means that the c-axis is normal to 
the close packed layer. The close packed layer can be given as (001). The hcp 
structure has only one close packed layer. 
 
In the fcc unit cell the relation to the close packed layer is somewhat more 
complicated (compare West figure 7.5.). The close packed layers normally lie on the 
space diagonal for the cubic face centred unit cell. I.e. such a plane can be given with 
the Miller indices (111). In the cubic unit cell four space diagonals can be drawn. 
There are close packed layers perpendicular to all these. All these equivalent layers 
are given as {111}. The fcc structure has four close packed layers. 
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Thus, last we consider the bcc structure. This is not a close packed structure and does 
not contain any close packed layers. If we consider the unit cell with atoms in (0, 0, 0) 
and in (1/2, 1/2, 1/2), we see that the central atom can be thought to touch all atoms in 
the corners of the cube. This means that the atoms lie like pearls on a string along the 
space diagonals. As in the fcc structure, bcc has 4 close packed directions, i.e. <111>, 
but it does not have any close packed planes. 

 
  Exercise 30: 

Identify the planes with the Miller indices (100), (110) and (111) for the NaCl 
type structure (unit cell parameter a = 450 pm). How many Na and Cl atoms 
are there per unit area in the three planes? 
 
Exercise 31: 
Consider NaCl again (exercise 30). Calculate the distance between closest 
laying planes with Miller indices (100), (110) and (111). Make similar 
calculations for the planes (100), (200) and (400). 
 
Exercise 32: 
Show that the intra plane distance dhkl in a cubic crystal (with the unit cell 
parameter a) is generally given by (see Jastrsebski) 
d = a/(h2 + k2 + l2)1/2 
How will this equation look like for (a) a tetragonal and (b) an orthorhombic 
crystal. 

 
Crystallography and diffraction. 
 
The systematic repeating lattice in a solid material, and hence the resulting repeating pattern 
of atoms will, when the material is irradiated by neutrons, X-ray phonons or electrons with a 
wavelength of the same size as the interatomic distances, give rise to characteristic diffraction 
patterns. The diffraction pattern from e.g. a powder material, is often given in form of d-
values for the so called Bragg reflections. The reason for the observed reflection with the d-
value dhkl is interference from the crystal planes (hkl). These planes have a reciprocal plane 
distance dhkl. In addition to the d-value the measured intensity is given for the observed 
reflection. 
 
Powder diffraction gives in a fast and practical way information on Bragg reflections with a d-
value dhkl and intensity Ihkl. The set of dhkl and Ihkl constitute a characteristic fingerprint for a 
given compound. Collecting diffraction data is a very central in characterisation of synthesis 
products, materials, minerals, corrosion products etc. Such characteristic sets of dhkl and Ihkl 
for inorganic and organic compounds are assembled in databases. 
 
Crystallographic planes are related to diffraction angle and wavelength for the radiation used 
through Braggs law 

2 dhkl sin θ = λ 
 

where dhkl is the distance between planes. In diffraction experiments the diffracted intensity is 
measured as a function of diffraction angle θ. This gives a set of dhkl and Ihkl. Note, that 
reflections from planes with the largest plane distance will be observed with the lowest θ. For 
monoclinic phases dhkl will be different from d-hkl, see figure 22. This mean that more 
reflections are observed in the diffraction diagram. For β = 90º dhkl is equal to d-hkl. 
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Figure 22. Negative and positive Miller indices for crystallographic planes. 
 
When special symmetry operations are present, the closest lying plane (with the same hkl) 
reflects with the opposite phase and the combined intensity will be zero, i.e. Ihkl = 0. Such 
cases are called systematic extinction. From the observed reflections (or lack of observed 
reflections) possible extinction rules can be identified, which is a great help in determination 
of the space group. It is often a requirement for single crystal diffraction data that one can get 
enough data from different planes to make a reliable identification of the extinction rules. In 
powder diffraction data there will often be an overlap of reflections that are too close in d-
value to be separated in the measured data (depends on instrument, beam and quality of the 
sample). 
 
Systematic extinction exist because of centring of the Bravais lattices, compare Table 9. The 
conditions mentioned must be fulfilled for Ihkl ≠ 0; i.e. in order to observe the Bragg 
reflections. 
 
Table 9. 
I centring hkl: h+k+l=2n (i.e. 0 or an even number) 
F centring hkl: h+k=2n; h+l=2n; k+l=2n; i.e. h,k and l are all either even or odd 
C centring hkl; h+k=2n 
 
From the information in Table 9, it is seen that if only (111), (200), (220), (311), (222), (400), 
(331) etc are observed for a cubic lattice, the lattice must be F-centred. If only (110), (200), 
(211), (220), (222), (321), (400), (330), (420) etc. are observed, the lattice is I-centred. If the 
reflections 100 and 110 are observed for a cubic phase, the lattice must be primitive. 
 
Screw axes and glide planes (because they involve translations) also give rise to 
systematically extinctions (but this will not be considered here). 
 
Powder X-ray diffraction, as described above, are central in characterisation of solids / 
inorganic compounds. One can e.g. determine purity (0.5 – 2w%), identify pollution phases, 
determine symmetry and the unit cell parameters, and by more sophisticated experiments, 
determine the crystal structure. 
 
Often conventional X-ray from an X-ray tube and an x-ray generator is used for such 
experiments. Different types of radiation can be used, e.g. monochromatic Cr, Cu or Mo-
radiation (this is discussed thoroughly in KJ/MV 213). The choice of radiation depends on 
what one wishes to study. Some elements emit considerable fluorescence (give more 
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background; i.e. reduce the signal to noise ratio) when they are being exposed to a certain 
wavelength. In some experiments it is desirable to get good angular resolution (in θ), in other 
experiments it is desirable to collect information on a many Bragg reflections as possible 
(position dhkl and intensity Ihkl). 
 
As an example we consider a powder sample of a cubic phase with unit cell dimension a = 
600 pm. If the material is studied using both CrKα1 radiation with λ = 228.98 pm and MoKα1 
radiation with λ = 71.09 pm, one can give the following estimate of how many reflections can 
be observed if the maximum available experimental scattering angle is θmax = 45º: 
 

2d sinθ = λ and 
d = a/(h2+k2+l2)1/2 (only applies for cubic symmetry) 

so that 
(h2+k2+l2)max = 4a2sin2θmax/λ2 = 72/λ2 

 
For the two types of radiation the number of reflections is calculated as: 
CrKα1 : (h2+k2+l2)max = 13.7, i.e. (h2+k2+l2)max = 13 (integer) 
MoKα1 : (h2+k2+l2)max = 142.5, i.e. (h2+k2+l2)max = 142 (integer), 
i.e. for a primitive (P) cubic lattice there will be maximum of 12 (note that it is not possible to 
have a plane so that h2+k2+l2 = 7) and around one hundred reflections to be observed in the 
two cases, respectively. 
 
 Example 20: 

We consider which reflections we may expect to observe from a fcc metal with unit 
cell parameter a = 400 pm. Because the Bravais lattice is F-centred, only reflections 
in agreement with the systematic extinction rules can be observed. I.e. reflections 
where h, k and l are not all odd or all even will have zero intensity (compare Table 9). 
We therefore expect to observe the reflections (111), (200), (220), (311), (222), (400), 
(331), (420), etc. These are observed in the powder diffraction diagram for d-values 
given by dhkl = (400 pm/(h2+k2+l2)1/2, so that e.g. d200 = 200 pm and d311 = 110.9 pm. 
In the scattering angle θ, this corresponds to 45.3º and 88.0º ,respectively, if 
monochromatic CuKα1 radiation is been used with λ = 154.06 pm. 

 
  Exercise 33. 

Give the first five reflections which are expected to be observed in a powder 
diffraction diagram of NiAs with a = 360 pm and c = 510 pm, space group 
P63/mmc. The rule which applies for a hexagonal crystal structure is:  
1/d2

hkl = [(h2+k2+hk)/3a2 + l2/4c2] 
 
Defects and crystallography 
 
Defects are categorised depending on whether they are isolated one-, two- or three-
dimensional. Some comments will be made concerning isolated defects (point defects) and 
condensed defects in form of defect clusters. 
 
The ideal crystal structure is a natural reference system in which all atomic positions are 
completely filled. These positions are defined from symmetry operations in the unit cell and 
the repeating pattern of unit cells (the lattice). In the perfect case all atomic positions for all 
types of atoms in a compound are 100 % filled.  
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It should be noted that from this definition there are compounds which are never perfect – i.e. 
the compounds exist only because of the presence of a significant number of defects (the 
presence of non-stoichiometry). Some ion conducting materials belong to this category. Other 
compounds have measurable but very small deviations from ideal behaviour. The formation 
of defect in a material costs enthalpy but increase the entropy. This means that the defect 
concentration in a material increases with temperature. 
 
Isolated defects (see chapter 9 in West and figure 23) are found e.g. as: 

- vacancies 
- wrong distribution of atoms on atomic positions belonging to the structure 
- extra (interstitial) atoms in positions other than usual in the structure. 

 
All these types of defects influenceson the distribution of atoms on the different possible 
crystallographic positions. They have nothing to do with the lattice, which is only a 
mathematical description of the repetition of lattice points. In order to describe an interstitial 
defect situation, one must add extra atom positions in the structure description and allow a 
small statistic distribution of atoms on these positions. When giving a chemical formula for a 
defect material this must be done in agreement with crystallographic realities. NiO can be 
prepared with a molar ratio of Ni/O < 1. The phase must be described as Ni1-xO and not 
NiO1+y because there is a formation of vacant Ni positions in normal octahedral positions in 
the NaCl type structure. The situation in wüstite, Fe1-xO is described in details in West. In 
wüstite the defect concentration is high so that defects can interact and form defect clusters 
(minimizing energy). Vacancies are found on octahedral positions and in addition some 
tetrahedral positions are the filled by Fe3+. The formation of vacancies and filling of 
tetrahedral positions are spatially confined, i.e. they are located close to each other. 
 

 
Figure 23: Schematic representation of (a) vacancy on Ag-positions in AgCl (NaCl type 
structure) with simultaneous interstitial Ag in a vacant tetrahedral position (Frenkel defect), 
(b) vacancies in both cation and anion positions (Schottky defect) and (c) K substitution on 
the cation position. 
 
Measurements of pycnometric density and comparison with the X-ray density calculated from 
the measured unit cell dimensions and different presumed defect models may, when defect 
concentrations are large, show which type of defect situation exists (vacancies versus 
interstitial). 
 
  Exercise 34: 

Frenkel defects in NaCl type compounds, e.g. AgCl, are related to vacancies in 
normal Ag positions at the same time as Ag are located in interstitial positions. 
To be more explicit; Ag is situated in a tetrahedral position in a close packed 
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arrangement of Cl-anions. Give the coordinates for the two positions which are 
effected by a Frenkel defect (i.e. the normal Ag-position and the tetrahedral 
position). 

 
 
Unit cell and solid solution 
 
When complete solid solubility between two phases exists, one has a so called mixed phase / 
solid-solution phase (see Chapter 10 in West). If the two end members have the same 
structure type (the structures must be closely related in order to get a complete solubility) then 
the crystal system, Bravais lattice and space group will remain unchanged regardless of the 
composition of the solid solution phase. One would expect certain small changes for the unit 
cell dimensions and atomic coordinates since the atoms which subsidise each other have 
somewhat different size. 
 
In the ideal case Vegard’s law is followed, i.e. the unit cell dimensions varies linearly with the 
ratio of the composition of the values of the end members. Different types of deviation from 
ideal behaviour may be observed; negative, positive (both symmetric deviance) or 
asymmetrically deviation. Positive deviation (on the volume-composition-curve) may be 
taken as an indication of additional repulsive interaction, something which may indicate that a 
splitting of the two phases and limited solubility range in the studied system could exist at 
lower temperatures. A positive deviation is found for (Al1-xCrx)2O3, as indicated in the 
variations in the unit cell parameters in Figure 24. The data for (Al1-xCrx)2O3 represent 
samples prepared at high temperature which are not in thermodynamic equilibrium at room 
temperature. If (Al1-xCrx)2O3 is prepared at a lower temperature a splitting into two phases is 
obeserved. 
 

 
Figure 24: Variation of the unit cell parameters a and c for the solid solution phase (Al1-

xCrx)2O3 0.0 ≤ x ≤ 1. Positive deviation from Vegard’s law is observed. 
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Solid-solubility between two phases AB and AC may be related to the “anion” or the “cation” 
part of the structure. A better description is to say that the solubility is tied to the metal or the 
non-metal part of the structure. To more precisely state the nature of the solubility, this must 
be shown as a representative chemical formula for the mixed structure. An example of this is 
the solid solution phase between Al2O3 and Cr2O3 (see Figure 23). Al and Cr substitute for 
each other on metal positions in the structure, i.e. the mixed phase is described by the formula 
(Al1-xCrx)2O3. For the limited solubility phase between NaCl and MnCl2 vacancies (ٱ) are 
created on metal positions when the cations are substituted, in order to maintain an overall 
neutral charge. The mixed phase is best described as Na1-xMnxٱxCl. Alternatively the overall 
charge could be preserved by introducing interstitial chloride ions, and the phase would in this 
case be described as Na1-xMnxCl1+x with 0.0 ≤ x ≤ xmax. Experimentally it has been shown that 
the first description is correct. 
 
One often find descriptions which refer to a “metal sublattice”, a “cation sublatice” etc. From 
these descriptions one might think, that there are different lattices for different atoms/kinds of 
atoms in a solid. This is completely wrong, and the concept is misleading. Whereas the lattice 
is the mathematical repeating network of lattice points, is it the basis that contain information 
about the metal (cations) and non-metal (anions). The concept “sublattice” may be 
conveniently used if one is completely aware of the fact that is has nothing to do with the 
lattice in a crystallographic context. 
 
 


