<u>Synthesis of</u> Vanadium Oxide Nanotubes (VO_x-NTs)

Vanadium(V) oxide precursor + Template

- 1. Hydrolysis
- 2. Aging (Polycondensation)
- 3. Hydrothermal treatment (180°C for ~ 1 w)

Vanadium oxide nanotubes

> Spahr, Bitterli, Nesper, Müller, Krumeich, Nissen, *Angew. Chem. Int. Ed.* 37 (1998) 1263 Niederberger, Muhr, Krumeich, Bieri, Günther, Nesper, *Chem. Mater.* 12 (2000) 1995

$\begin{array}{l} VO(I-prop)_{3} + C_{n}H_{2n+1}NH_{2} \\ new: V_{2}O_{5} + \end{array} \\ \end{array}$

M. E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen, Angew. Chem. Int. Ed. 1998, 37, 1263

Vanadium oxide NTs - Formation Process

VO_x-NTs

Morphology

VO_x-NTs <u>Elemental Maps by Electron</u> <u>Spectroscopic Imaging</u>

Section of the Electron V and C, respectively envirce window methods that with appear bright contrast. (EELS) of C_{12} -VO_x-NTs

Krumeich, Muhr, Niederberger, Bieri, R. Nesper Z. Anorg. Allg. Chem. 626 (2000) 2208

Transmission Electron Microscopy

Interlayer distances increase proportional to the length of the carbon chain (solid line).

Calculated distances increase with different inclination (dotted line).

STM Structure of the Walls

Prof. D. Carroll Clemson Univ.

structure 1x2 nm semiconductor E_G =0.6 eV

STM micrograph of Vanadium Oxide nanotube supported on HOPG.

Image bias = 100 mV Image setpoint = 20 pA

10.0 nm

Clemson University Laboratory for Nanotechnology

Vanadiumoxid NTs - Some Properties

C/H/N/V-Analysis magnet. measurement electrical measurement

black powder hardly wettable by H_2O response to electrical fields

 $VO_{2,45}[R-NH_3]_{0,27}$ R = C₄ - C₂₂

 $VO_{2,45}[NH_3-R-NH_3]_{-0.18}$ R = C₄ - C₁₂

paramagnetic V^{4.63+}

semiconductor $E_G = 0.6 eV$

thermally stable to max. 250°C

M.Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, U. Nissen, *Angew. Chem. Int. Ed.* 37 (1998) 1263
M. Niederberger, H.-J. Muhr, F. Krumeich, F. Bieri, D. Günther, R. Nesper, *Chem. Mater.* 12 (2000) 1995

[°] Crystalline Phase: (en)V₇O₁₆

Morphology

SEM image of a typical platelike crystal of (en)V₇O₁₆

VO_x-NTs

Crystalline Phase: (en)V7016

Electron diffraction

triclinic cell

 $a \approx b \approx 0.62 \text{ nm}, c \approx 1.85 \text{nm}$

$$\alpha \approx 98^\circ, \beta \approx 93^\circ, \gamma \approx 90^\circ$$

Structure of (en)V₇O₁₆ PT: a=0.616, b=0.617, c=1.91 nm, α =96.14, β =92.82, γ =90.07

- Ethylene diamine (en) molecules are embedded between V_7O_{16} layers.
- Two sheets of VO₅ square pyramids with the apices pointing in opposite directions.
- VO₄ tetrahedra connect the two VO₅ sheets.

Model for the Wall Structure of VOx-NTs

- Model derived on the basis of the VO_x layer structure present in the related crystalline phases (en) V_7O_{16} and BaV_7O_{16} .
- Simulated and observed XRD patterns agree well.
- •As in the structure of $(en)V_7O_{16}$, the long c axis is twice as long as the layer distance.

/O_x-NTs <u>Modified VO_x-NTs</u>

Synthesis

 $VO(OiPr)_3 + C_nH_{2n+1}NH_2$ (n=12-14)

Hydrolysis

Addition of ammonia

Polycondensation

Hydrothermal treatment

Long(2 nm) and short (~0.9 nm) interlayer distances occur alternately.

Pillai, Krumeich, Muhr, Niederberger, Nesper, Solid State Ionics 141-142 (2001) 185

Calculated Curvature Changes

VO_x-NTs <u>3-Phenylpropylamine as template</u>

100 nm

VO_x-NTs **Exchange Reactions** monoamines simple & diamines complex cations

VO_x-NTs <u>Exchange Rections:</u> <u>Substitution of Monoamine Templates by α,ω-Diamines</u>

Krumeich, Muhr, Niederberger, Bieri, Reinoso, Nesper, Nanophase and Nanocomposite Materials III, MRS Proc. 581 (2000) 393

Ox-NTsExchange Rections:Substitution of Monoamine Templates by α,ω-Diamines

C₂-DA-VO_x-NTs, obtained from C₁₁-VO_x-NTs by exchange with ethylene diamine

Interlayer distance: 2.62 ----- 1.7 nm

C₁₂-DA-VO -NTs, obtained from C₁₁-VO -NTs by exchange with 1,12-dodecylamine.

inter-layer distance: 2.62 → 1.83 nm.

Krumeich, Muhr, Niederberger, Bieri, Reinoso, Nesper, Nanophase and Nanocomposite Materials III, MRS Proc. 581 (2000) 393

-NTs <u>Exchange Rections:</u> Substitution of Monoamine Templates by Cations

Cation Exchange Reactions

exchanged	not exchanged
Na⁺, K⁺	Li⁺, Rb⁺, Cs⁺
Mg ²⁺ , Ca ²⁺ ,Sr	•2+ Ba ²⁺
Fe ²⁺ , Co ²⁺ , N	ⁱ²⁺ , Cu ²⁺
Sm ³⁺ Tb ³⁺	

Ion1	ion2	selectivity
Na⁺	K⁺	1:16
Na⁺	Mg ²⁺	3:1
Na⁺	Ca ²⁺	1:5
Na⁺	Sr ²⁺	1:23

<u>Topotactic redox reactions of copper(II) and</u> <u>iron(III) salts within VO_x Nanotubes</u>

Novel Cu- and Fe-containing nanotubes of composition VO1.53 -2.1 (C12H28N)0.21Cu0.08(H2O)v0.56Clv0.01 and VO2.08vxv2.68

(C12H28N)0.13Fe0.19(H2O)v0.33Clv0.01 have been obtained by exchange of the protonated template in dodecylamine-Vox nanotubes with Cu(II) and Fe(III) salts. The exchanged materials have quite different characteristics in respect to the parent nanotubes, namely a wider inner diameter and thinner walls, owing to reduced interlayer spacings in their multiwalled structure.

10 nm

VO_x-NTs

Electrochemistry

Cyclic voltammogram of VO_x -NTs recorded at 50 mV/s in LiClO₄/ propylene carbonate. Dependence of specific charge on the cycle number.

- Electrochemical insertion of Lithium in VO_x-NTs is possible.
- Specific capacities of up to 200 mAh/g have been achieved.
- Rapid decay of tube structure causes drop of specific capacity.

VO_x-NTs

<u>Summary</u>

- First tubular vanadate nanophase
- Simple synthesis: sol-gel reaction + hydrothermal treatment
- Morphology depends on template
- Mixed valency: 45% V^{4+} , semiconductor, band gap ~ 0.60 eV
- Layer structure in VO_x-NTs is isostructural to that in (en)V₇O₁₆
- Topochemically active nanosystem
- Reversible intercalations / electrochemisty
- Ion selectivity
- optical limiting properties

<u>A Multitude of Nanotubes ?</u>

Neutral layers		Refs.
Graphite		11
Ni(CN) ₂		3, 8
MX ₂	(M = Ti, Zr, Hf, V, Nb, Ta, Mo, W; X = S, Se, Te)	1–9
MPX ₃	(M = Mg, V, Mn, Fe, Co, Ni, Zn, Cd, In; X = S, Se)	1, 3, 11
MoO_3, V_2O_5	αντικού πουσταγία (2 μεται 3 του 10 με	1, 3
MOXO ₄	(M = V, Nb, Ta, Mo; X = P, As)	12
MOX	(M = Ti, V, Cr, Fe; X = Cl, Br)	1, 3
Negatively charged	layers	
CaSi ₂		13
AMX ₂	(A = Group IA; M = Ti, V, Cr, Mn, Fe, Co, Ni; X = O, S)	3
Clays and layered		10, 14, 13
silicates		
Titanates	e.g. $K_2 Ti_4 O_9$	16
Niobates	e.g. K[Ca ₂ Na _{n-3} Nb _n O _{3n+1}] $3 \le n \le 7$	17
M(HPO ₄) ₂	M = Ti, Zr, Hf, Ce, Sn	1, 18
Positively charged	layers	
Hydrotalcites	$LiAl_2(OH)_6OH \cdot 2H_2O, Zn_2Cr(OH)_6Cl \cdot 2H_2O$	19

Table 6.1Layered structures for intercalation reactions

Optical Properties of VO_x Nanotubes and VO_x Nanotube-Composites

Optically active nanoparticles

- 1. tremendous importance for optical limiting purposes (very little Rayleigh scattering in the visible spectrum)
- 2. particular interest in multiphoton or excited state absorptions (very fast optical limiting phenomena in semiconductors like ZnO, ZnSe, InSb etc.)

Nonlinear Optical Transmission in VO_x Nanotubes and VO_x Nanotube-Composites

Two different absorption processes

- 1. 532 nm : ablation
- 2. 1064nm: unscrolling of tubes

J.-F. Xu, R. Cerw, S. Webster, D. L. Carroll, J. Ballato, R Nesper, Appl. Phys. Lett. 81 (2002) 1711

S. Webster, R. Cerw, R. Nesper, J. DiMaio, J.-F. Xu, J. Ballato, D. L. Carroll, *J. Nanosci.* Nanotechnol. 4 (2004) 260

Electrochemistry of VO_x-NTs

S. Nordlinder, K. Edström, T. Gustafsson, Electrochemical and Solid-State Letters, 4 (2001) A129-A131

Figure 5. Ex situ XRD patterns for (a) Na-VO_x nanoroll cell cycled 100 times with LiTFSI salt in the electrolyte. (b) Uncycled Na-VO_x nanoroll cell.

Figure 3. Discharge capacities for cells cycled with three different salts in the electrolytes; LiTFSI (O), LiBF₄ (Δ), LiPF₆ (\Box). The inset displays the first discharge/charge cycle for the cell cycled with LiTFSI-electrolyte. The potential is given *vs.* Li/Li⁺.

VO_x-rods

Transistor

S. Roth et al., APPLIED PHYSICS LETTERS VOLUME 76, 2000, 1875

FIG. 2. (a) Current–voltage characteristics obtained from the middle two electrodes (see Fig. 1) with zero gate voltage ($V_G = 0$ V) at different temperatures T = 131, 145, 160, 192, 294 K. (b) 3D plot of I/V curves in dependence of gate voltage at T = 145 K.

Nonlinear Optical Transmission in VO_x Nanotubes and VO_x Nanotube-Composites

J.-F. Xu, R Nesper, and D. L. Carroll

Optically active nanoparticles have gained tremendous importance for optical limiting purpose because they exhibit very little Rayleigh scattering in the visible spectrum. It is now widely known that different phenomena may lead to optical limiting. Light scattering in carbon black suspensions ~CBS, beam fanning in photorefractive materials and nonlinear optical absorption in *C*60, as a reverse saturable absorber, are all different examples of optical limiting mechanisms that have shown excellent performance for fast eye protection in the visible portion of the spectrum. Of particular interest in nanophotonic materials are mechanisms that involve multiphoton or excited state absorptions. An example of such a mechanism includes twophoton absorption ~TPA, which generally involves a transition from the ground state of a system to a higher-lying system by simultaneous absorption of two photons, and is well known to lead to very fast optical limiting phenomena in semiconductors, such as ZnO, ZnSe, InSb, as well as in some organic materials.

Nonlinear Optical Transmission in VO_x Nanotubes and VO_x Nanotube-Composites

J.-F. Xu, R. Czerwa, S. Webster, D. L. Carroll, J. Ballato, R. Nesper, APPLIED PHYS. LETT. 2002, 81, 1711

a)

FIG. 2. Linear transmittance of VO_x nanotubes in water and PMMA film. The spectrum for the film is shifted vertically by 20% for presentation.

FIG. 3. (a) Comparison of the optical limiting performance of VO_x nanotubes and MWNTs at 532 nm. (b) comparison of the optical limiting performance of VO_x nanotubes and MWNTs at 1064 nm.